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Abstract. The increase in global trade, the impact of COVID-19, and the tightening of environmental and safety 

regulations have brought significant changes to the maritime transportation market. To address these challenges, 

the port logistics sector is rapidly adopting advanced technologies such as big data, Internet of Things, and AI. 

However, despite these efforts, solving several issues related to productivity, environment, and safety in the port 

logistics sector requires collaboration among various stakeholders. In this study, we introduce an AI-based port 

logistics metaverse framework (PLMF) that facilitates communication, data sharing, and decision-making among 

diverse stakeholders in port logistics. The developed PLMF includes 11 AI-based metaverse content modules 

related to productivity, environment, and safety, enabling the monitoring, simulation, and decision making of real 

port logistics processes. Examples of these modules include the prediction of expected time of arrival, dynamic 

port operation planning, monitoring and prediction of ship fuel consumption and port equipment emissions, and 

detection and monitoring of hazardous ship routes and accidents between workers and port equipment. We 

conducted a case study using historical data from Busan Port to analyze the effectiveness of the PLMF. By 

predicting the expected arrival time of ships within the PLMF and optimizing port operations accordingly, we 

observed that the framework could generate additional direct revenue of approximately 7.3 million dollars 

annually, along with a 79% improvement in ship punctuality, resulting in certain environmental benefits for the 

port. These findings indicate that PLMF not only provides a platform for various stakeholders in port logistics to 

participate and collaborate but also significantly enhances the accuracy and sustainability of decision-making in 

port logistics through AI-based simulations. 

Keywords: AI-based Metaverse, Port Logistic Metaverse Framework, Safety and Clean Port Logistics  

1. Introduction 

More than 80% of global trade by volume and more than 70% by value is conducted through port 

logistics (Verschuur, 2022). Over the past decade, global trade volume has consistently increased. 

Recent global issues, such as the COVID-19 pandemic, have accelerated the rise in trade volumes 

worldwide, resulting in a rapid increase in trade conducted by sea (Bai et al., 2022; Gu et al., 2023). As 

the volume of seaborne trade increases, the cargo flow within port logistics also increases. Particularly 

in ports that connect inland and maritime transportation, the involvement of various stakeholders, such 

as freight carriers, shipping companies, terminal operators, trucking companies, and government 
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agencies, results in a more complex logistics network and reduces operational efficiency (Kuakoski et 

al, 2023). To address these issues, various information systems, such as port community systems (PCS) 

and port operating systems (POS), have been introduced to facilitate smooth information exchange 

among stakeholders and improve port operational efficiency (Muravev et al, 2021). Recently, the 

adoption of intelligent port information systems, such as those incorporating blockchain and AI, has 

contributed not only to reducing the complexity of logistics networks but also to enhancing operational 

efficiency. 

Previously, improving the operational efficiency of port logistics was of primary importance. 

Environmental and safety issues have recently emerged as critical concerns in port logistics. First, there 

is a growing emphasis on carbon neutrality globally, resulting in stricter environmental regulations such 

as carbon trading and the IMO's emission control areas. Because these environmental regulations 

directly affect the profits of shipping companies, they must consider these factors in their decision-

making. Additionally, changes, such as an increase in ship size and cargo volume, can impact safety. 

Large vessels pose greater risks owing to potentially more catastrophic accidents, which can result in 

severe economic losses, environmental damage, and potential casualties. Increased cargo volumes have 

been observed to result in higher workloads and corresponding increases in accident frequency. An 

increase in cargo volume also contributes to a higher workload at ports, resulting in a greater frequency 

of accidents due to human error. Owing to these changes, there is increasing emphasis on the need to 

develop port logistics information systems that can address environmental and safety-related issues. 

(Liu et al., 2019; Raza, 2020; Khan et al., 2023; Wu et al., 2022). 

Recent research on addressing environmental and safety issues within global supply chains indicates 

that the metaverse could overcome the limitations of existing information systems. Sarwatt et al. (2023) 

presented a case study on the adoption of the metaverse to address environmental and safety issues in 

general logistics environments. Specifically, they proposed a model that integrates autonomous vehicles 

within logistics environments to optimize decision-making, provide optimal routes for vehicles, and 

reduce energy consumption, thereby mitigating environmental impact.  

Table 1. Summary of studies related to the adoption of the metaverse in the port logistics area. 

Research 
Research 

Type 

Contents Coverage 
Additional 

Tech 
Efficient 

Issue 

Environments 

Issue 

Safety 

Issue 
Sea 

Sea-

Port 
Port 

Cabrero et al. 

(2024) 
Conceptual ˅ ˅ ˅ ˅ ˅ ˅ 

Blockchain, 

Optimization 

Nicoletta et al. 

(2024) 
Conceptual ˅ ˅     AI 

Mário et al. 

(2023) 
Conceptual ˅ ˅ ˅ ˅   AR/VR 

Alexandre and 

Ivanov (2023) 
Conceptual ˅  ˅   ˅ - 

Yang et al. 

(2023) 
Conceptual ˅   ˅   

Blockchain, AI, 

VR 

Deveci et al. 

(2022) 
Conceptual ˅ ˅    ˅ Optimization 

Ours Empirical ˅ ˅ ˅ ˅ ˅ ˅ AI 

In the field of port and port logistics, studies related to the adoption of the metaverse include those 

by Alexandre and Ivanov (2023), Mário et al. et al. (2024), and Deveci et al. (2022). Alexandre and 

Ivanov (2023) proposed the adoption of a metaverse approach to address safety issues in port logistics 

environments. They demonstrated that the metaverse model can be used to provide emergency response 
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training and virtual simulations for risk assessment, which can address safety issues in port logistics. In 

particular, they showed that real-time virtual safety audits and risk monitoring can improve safety 

measures. Mário et al. (2024) discussed a case study on the adoption of a metaverse strategy to enhance 

safety in ports and port logistics. Their research demonstrated that immersive training simulations for 

workers, real-time monitoring for safety management, and virtual scenario planning for emergency 

response drills could significantly improve safety practices. Additionally, they proposed an architecture 

that utilizes advanced technologies, such as extended reality and artificial intelligence, within the 

metaverse to enhance decision-making processes, optimize resource utilization, and mitigate risks in 

port operations. Deveci et al. (2022) focused on an integrated assessment of the metaverse to measure 

cargo flow. Although their study did not directly address environmental issues in the maritime sector, 

they demonstrated that using a metaverse for cargo measurement could potentially result in more 

efficient logistics operations, ultimately reducing environmental impacts through route optimization, 

fuel consumption, and carbon emissions. In addition, as summarized in Table 1, several studies address 

the adoption of the metaverse in port logistics; however, most remain at the conceptual level, which is 

a limitation. 

This study introduces the port logistics metaverse framework (PLMF), which collects, preprocesses, 

and models real data to practically implement the entire process occurring in port logistics. This 

framework simultaneously addressed efficiency, environmental, and safety issues. In addition, the 

PLMF incorporates AI technology to propose an approach that enhances the accuracy of various 

decision-making processes in port logistics operations. 

The main contributions of this study are as follows: 

 We developed a metaverse framework capable of decision-making across the entire process in 

maritime and port logistics sectors. 

 Within the developed metaverse framework, various environmental and safety issues in the 

maritime and port logistics sectors can be monitored in real time, and the accuracy of the 

decision-making process can be enhanced through an AI-based decision-making system. 

 Using PLMF, we predicted the arrival times of vessels entering and leaving Busan Port and 

conducted simulations of port logistics processes based on these predictions. The results 

demonstrated a significant increase in annual direct revenue and substantial improvements in on-

time ship arrivals, leading to environmental benefits for the port. 

The remainder of this paper is organized as follows: The structure of the proposed metaverse 

framework is presented in Section 3. Section 4 presents scenarios and functionalities within the 

developed metaverse from the perspectives of productivity, environment, and safety. Section 5 outlines 

the results of a case study conducted at the Busan Port using the developed metaverse. Finally, Section 

6 consolidates the findings of this study and explores potential directions for future research. 

2. AI-based port logistic metaverse framework  

In this section, we introduce the AI-based PLMF. Figure 1 illustrates the overall structure of the 

PLMF. The proposed framework considers five key processes that occur in real port logistics: 1) 

Departure: The process of finishing operations at the previous port and departing; 2) Ship Operation: 

The process of the vessel navigating towards its destination; 3) Berthing: The process of the vessel 

arriving at its destination and docking at the berth using tugboats; and 4) Unloading and Loading: The 
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transferring cargo from the ship to yard trucks or from yard trucks to the ship. 5) Moving: The process 

of moving the cargo stored in the yard to the ship or transporting unloaded cargo from the ship to the 

yard.  

 
Figure 1. Overall framework of AI-based maritime-port logistic metaverse. 
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The PLMF collects structured and unstructured data from the systems used in each process. The 

collected data are subsequently integrated and preprocessed according to their specific functions. After 

the preprocessing stage, the resulting data are used as follows. 1) Some of the data are used for 

monitoring. (2) Other data are used for prediction and detection using AI models. Ultimately, within the 

metaverse, the real-time data collected from the five processes are monitored, and various prediction 

and detection insights derived from the AI models are visualized 

In Section 2.1, we introduce the systems used for data collection and describe the attributes of the 

data collected from these systems. In Section 2.2, we present the detailed functionalities provided by 

the PLMF for each process scenario (monitoring, prediction, and detection) and introduce the data and 

AI models used in each scenario. 

2.1. Data collection  

In this section, we introduce the data used in PLMF. Table 2 summarizes the objects, key systems, and 

data attributes collected from each system during the five processes. These systems include those 

operated by shipping companies, vessels, tugboats, quay cranes, yard trucks, yard cranes, port managers, 

workers, and authorities. The systems from which data are sourced include the automatic identification 

system (AIS), port Internet of Things (IoT) devices, the port air quality monitoring system (PAQMS), 

PCS, POS, and CCTV. 

Table 2. Summary of the related process, object, system, and data attribute for developing AI-based PLMF. 

Location 
Real World 

Process 
Object System Data Attribute 

Sea 

Departure 

 Ship 

 Automatic 

Identification 

System 

 Maritime Mobile Service 

Identity 

 Timestamp 

 Latitude 

 Longitude 

 Speed Over Ground 

 Course Over Ground 

 Heading 

 Rate of Turn 

 Ship Type 

 Ship Length 

 Ship Width 

Ship 

Operation 

Sea & 

Port 
Berthing 

 Ship 

 Pilot Ship 

Port 

Port 

Operation 

(Container 

Unloading & 

Loading 

+ 

Moving) 

 

 Quay Crane 

 Yard Truck 

 Yard Crane 

 Worker 

 IoT Device 

 Equipment Index 

 Device Identify 

 Timestamp 

 Latitude 

 Longitude 

 Altitude 

 Velocity 

 Direction 

 Work Type 

 Port Air Quality 

Monitoring 

System 

 Wind Direction 

 Wind Speed 

 Humidity 

 Air Quality Index (PM2.5, 

PM10, NO, NOx, SO, SO2, 
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CO, CO2, O3) 

 Port Community 

System 

 Vessel Traffic Service 

Status 

 Terminal/Facility 

Utilization Status 

 Dangerous Goods 

Handling Status 

 Port Operation 

System 

 Container Identify 

 Vessel Identify 

 Voyage Number 

 Berth Number 

 Vessel Arrival / Departure 

Time 

 Container Type/Size 

 Yard Location 

 Job Type 

 Gate In/Out Time 

 Resource Identify 

 Hazardous Material 

Indicator 

 Service Type 

 Port CCTV   CCTV Video 

2.1.1. Data collected from the AIS 

The AIS contains important information for navigation safety and maritime security and is an 

international standard for information and communication between ships (Tetreault, 2005). The AIS is 

an essential device installed on 99% of ships worldwide. In the port logistics domain, all aspects related 

to vessels utilize data collected from the AIS.  
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Figure 2. Example of data collected from an AIS. 

Data collected from the AIS include static and dynamic information (Park et al., 2021). The static 

information included maritime mobile service identity and vessel specifications (Ship Type, Ship 

Length, Ship Width). Dynamic information includes information that can estimate the movement path 

and location of a ship, such as location information (latitude and longitude), speed over ground, course 

over ground, heading, and rate of turning (Sim et al., 2022). Figure 2 shows a sample of the AIS data 

collected from several ships. These data were used to monitor and predict various details related to 

vessels in the metaverse, such as the location of the vessels, emission levels, and safety levels during 

the departure/ship operation/berthing processes.  

2.1.2. Data collected from port IoT devices 

The IoT is a rapidly evolving global networking infrastructure in modern wireless communication that 

enables the collection, management, processing, and distribution of data through devices and physical 

objects by interconnecting different networks (Paul et al, 2020; Alex et al,.2022; Reza et al., 2024). The 

introduction of IoT at ports offers benefits such as improved efficiency, safety, and port automation, 

leading to many projects aimed at implementing IoT (Yang et al., 2018). Consequently, many major 

global ports, such as Busan, Hamburg, Rotterdam, and Long Beach have equipped most of their 

equipment with IoT technology, enabling real-time data collection (Yau et al., 2020; Choi et al., 2021; 

Kapkaeva et al., 2021; Gaspare et al., 2021). 

 
Figure 3. Example of data collected from an IoT device. 

Figure 3 shows examples of data collected from IoT devices installed on equipment such as quay 

cranes (QC), yard cranes (YC), and yard trucks (YT) at Busan Port. Each data attribute includes the 

equipment index, identifier of the IoT device attached to each piece of equipment, location information 

(latitude, longitude, altitude, velocity, and direction), and type of operation (U: container unloading job, 

L: container loading job) of the equipment. These data are used to monitor, predict, and schedule various 
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details related to port operations in the metaverse during berthing/loading and unloading processes. For 

instance, they are directly utilized for operational planning (berth allocation, QC allocation and 

scheduling, YC scheduling, etc.), monitoring and predicting emission levels at ports, and monitoring 

and predicting safety levels. 

2.1.3. Data collected from PAQMS  

Port areas are known for being spaces where various equipment, including ships, operate, and are 

significant sources of pollution (Wan et al., 2022). Pollution levels from port logistics account for 

approximately 3% of global greenhouse gas emissions, with nitrogen oxides (NOₓ) and sulfur oxides 

(SOₓ) contributing 13 and 12%, respectively (Mueller et al., 2023). Additionally, harmful pollutants 

such as particulate matter (PM), black carbon (BC), and methane (CH₄) are also emitted, posing risks 

to human health. Therefore, ports have implemented systems to continuously monitor and manage 

pollutant emissions (Mocerino et al., 2020; María et al., 2024). 

PAQMSs collect data on pollutants such as PM, fine PM (PM2.5), NO, NO2 NOx, SO, SO2, CO, CO2, 

and O3 as well as meteorological information, including temperature, humidity, wind direction, and 

wind speed. These data are used to monitor and predict pollutant emissions from metaverse ports. 

2.1.4. Data collected from PCS and POS 

A PCS is an information system that facilitates networking between public and private organizations 

and entities involved in providing vessel and cargo services at the port (Iida and Daisuke, 2023). 

Although they vary by country, there are generally three types of PCS: 1) A one-stop service system 

“that covers maritime and port administrative procedures, such as port entry/departure declaration, 

notice of security reports, and other related information between private sectors and public authorities 

nationwide” (IMO, 2021). Countries that use these types of PCS include South Korea (Port-MIS), 

Singapore (DigitalPort@SG), Sweden (Reportal), Spain (DUEPORT), Germany (NSW Deutschland), 

the Netherlands (SWM&A), and Japan (NACCS); 2) A one-stop service system “that covers procedures 

related to exports and imports goods such as customs clearance” (IMO, 2021). Countries that use these 

types of PCS include United States (ACE), United Kingdom (CDS), and Singapore (TradeNet); 3) A 

one-stop service system “that electronically processes document exchanges, work orders, or sharing 

visibility data on commercial services for the operation of maritime and port logistics between 

stakeholders within a port community” (Moros et al., 2020). Countries that use these types of PCS 

include Netherlands (Portbase), Germany (DAKOSY), Singapore (PORTNET), South Korea (PLISM), 

and United Kingdom (Destin8). Data derived from the PCS generally include control and specification 

information of arriving and departing vessels, cargo status information, and details of the usage of port 

facilities. 

A POS (or terminal operating system, TOS) is an information system designed to manage the 

operations and logistics within a port. Its main functions include managing the movement, storage, and 

tracking of containers and other cargo within the terminal, optimizing yard operations, and coordinating 

the use of equipment, such as cranes and trucks (Hus et al., 2023). The data attributes collected by the 

POS include container identity, vessel identity, voyage number, berth number, vessel arrival/departure 

time, container type/size, yard location, job type, gate in/out time, resource identity, hazardous material 

indicator, and service type. 

These data were used within the metaverse to monitor and optimize the scheduling of operations 

(such as loading and unloading) within the port. This includes scheduling from the perspective of 
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facilities, equipment, and tasks, and data are utilized to simulate these processes to improve efficiency. 

2.2. PLMF contents with AI  

Within the PLMF, not only are various productivity, environmental, and safety issues arising in port 

logistics processes monitored but AI models are also used to optimize, predict, and detect related issues. 

This section introduces the specific problems addressed by the PLMF, and the data and models used to 

solve these problems. Table 3 summarizes the key content addressed by the PLMF and the stakeholders 

related to each content. Table 4 summarizes the effects of each content on issues related to productivity, 

environment, and safety. As listed in Table 3, PLMF not only monitors the entire port logistics process 

but also involves predicting, detecting, and real-time optimization of 12 different aspects related to 

productivity, environment, and safety at each procedure. These processes can positively affect the 

stakeholders involved in port logistics. Furthermore, they offer advantages in terms of enhancing 

productivity and addressing environmental and safety issues. In Sections 2.2.1–2.2.3, we will introduce 

the specific problems that PLMF aims to solve for each detailed content and the data and models used 

to address these problems. 

Table 3. Summary of PLMF contents, effectivity, and related business stakeholders. 

Process Contents 

Effectivity 
Related Business 

Stakeholder 
Productivity 

Effect 

Environment 

Effect 

Safety 

effect 

Departure 

& 

Ship 

Operation 

Detecting Require of 

Time Arrival 
˅   

Shipping Company 

Shipper 

Port Operator 

Prediction Expected of 

Time Arrival 
˅   

Prediction & Monitoring 

of Ship Emissions 
 ˅  

Ship Route Risk 

Assessment 
  ˅ 

Berthing 

Prediction & Monitoring 

of Ship Collision 
  ˅ 

Shipping Company 

Marine Pilot  

Port Operator 

Trucking Company 

Port Authority 

Dynamic Berth Planning  ˅   

Prediction & Monitoring 

of Near-Port Pollution 
 ˅  

Port 

Operation 

Dynamic Port Operation 

Planning 
˅   

Shipping Company 

Shipper 

Port Operator 

Trucking Company 

Port Authority 

Prediction of Port 

Congestion 
˅   

Prediction & Monitoring 

of Port Emissions 
 ˅  

Detecting and Monitoring 

of Port Safety 
  ˅ 

2.2.1. Departure, ship operation, and berthing 

In the process of ship departure, ship operation, and berthing, the following seven issues are addressed. 

1) Detection of Arrival Time Requirements: This issue aims to determine whether a ship can adhere to 

its originally estimated arrival time (ETA) based on its current position and current time. 2) Prediction 
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of Estimated Arrival Time: This issue arises when the ship cannot meet the original ETA, necessitating 

the recalculation of the arrival time. Even if a new ETA is predicted, a ship may need to wait upon 

arrival if no berths are available at the port. Therefore, a new ETA is predicted by considering an existing 

berth schedule. 3) Prediction of Ship Emissions: This study aims to predict the emissions at the time of 

ship operation and the total emissions along the route. In this case, emissions may vary depending on 

the speed and route of the ship. 4) Ship Route Risk Assessment: This study aims to evaluate the risks 

associated with the route used by the ship, such as collisions or grounding in the area where the ship is 

currently operating. This assessment can be performed for either the entire route of the ship or for 

localized risks in the current operational area. 5) Prediction of Ship Collision: To prevent collisions, this 

study aims to predict the risk of collisions between ships in congested coastal areas based on time and 

space. In this case, the ship domain, which represents the safe distance between ships (considering 

direction and speed), was generated from the AIS data. The generated ship domain is subsequently used 

to predict the collision risk between ships. 6) Prediction of Near-Port Pollution: This study aims to 

predict the level of pollution in coastal areas, anchorages, and berths. When a ship arrives at a port but 

cannot dock at a berth, it waits at an anchorage where it continues to emit pollutants. Pollution is also 

emitted from berth cranes and yard trucks positioned in the berths. This information was used to predict 

the pollution levels near the port. 7) Dynamic Berth Planning: This study aims to allocate berths to ships 

dynamically as their ETA changes in real time. 

Table 5. Summary of key contents, utilized data, and models used in ship departure, operation, and berthing 

processes. 

Contents Data used Models used in PLMF 

Detecting Require 

of Time Arrival 

AIS Data 

Expected of Time Arrival 

CNN-LSTM (Abdi and Amrit, 2024) 

ConvLSTM 

Cross-Dimensional Dependency Network†(Sim et al., 

2024) 

Heuristic Approach (Kwun and Bae, 2021) 

Reinforcements Learning (Park et al., 2021) 

Prediction Expected 

of Time Arrival 

AIS Data 

Berthing Planning 

Prediction of Ship 

Emissions 

AIS Data 

Ship Route 

Ship Emission 

Ship Route Risk 

Assessment 

AIS Data 

Ship Route 

Prediction of Ship 

Collision 
AIS Data Ship Domain + CNN  

Prediction of Near-

Port Pollution 

AIS Data 

Port Air Quality System 

Port Community System 

Port Operating System 

Deep Collaborative Learning (Sim et al., 2022) 

Dynamic Berth 

Planning 

AIS Data 

Port Community System 

Port Operating System 

Heuristic Approach 

Reinforcements Learning 

Table 5 summarizes the data and models used to address the seven aforementioned issues. For all 

seven issues, the AIS data were the most important. Additionally, ETA information, berth planning, ship 

routes, PCS, and POS were used.  
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2.2.2. Port Operation 

The following four issues are addressed in the port operation process: 1) Dynamic Port Operation Planning: 

This focuses on developing real-time plans necessary for port operations, including container loading 

and unloading schedules and equipment allocation within the port. 2) Prediction of Port Congestion: 

This aims to forecast waiting times that occur during container handling at ports. Generally, as the 

number of containers handled with limited resources increases, waiting times also increase, significantly 

reducing port productivity. 3) Prediction of Port Emissions: This study estimates the total emissions 

produced within ports. This involved predicting the pollutants emitted by various equipment in the port 

based on the obtained information. 4) Detection of Port Safety: This focuses on identifying potential safety 

problems that may arise during cargo-handling operations at ports. It involves detecting issues such as 

collisions between equipment, equipment and personnel, cargo and equipment, and cargo and personnel, 

before they occur. 

Table 6. Summary of key contents, data, and models used in port operation processes. 

Contents Data used Models used in PLMF 

Dynamic Port 

Operation Planning 

IoT Device 

Port Community System 

Port Operating System 

Heuristic Approach (Hanif et al., 2023) 

Reinforcements Learning† (Adi et al., 2021) 

Prediction of Port 

Congestion 

AIS Data 

IoT Device 

Port Operating System 

Correlation Recurrent Units†(Sim et al., 2023) 

Discrete Event Simulation† (Park et al. 2024) 

Time-series Decomposition and Two-stage Attention† 

(Kim et al., 2022) 

Prediction of Port 

Emissions 

IoT Device 

Port Air Quality System 
Deep Collaborative Learning (Sim et al., 2022) 

Detection of Port 

Safety 

IoT Device 

CCTV 

Neural Ordinary Differential Equations 

YOLO (Xu et al., 2022) 

Table 6 summarizes the data and models used to address these four issues. For all seven issues, IoT 

devices data are the most important. Additionally, PCS, POS, AIS data, PAQMS, and CCTV data were 

used. Models marked with a † in the table are AI models developed in-house, while models not marked 

were implemented based on other research findings. 

3. Major development results obtained in PLMF service scenarios  

This section introduces a metaverse service designed to address environmental and safety issues in port 

logistics. The prposed metaverse service integrates AI models to monitor, detect, and predict crucial 

information reported in the industry. The key features of the metaverse service include the productivity 

perspective (prediction of estimated times of arrival and monitoring and optimization of port 

operations), environment perspective (monitoring and prediction of ship fuel consumption and 

monitoring of port equipment emissions), and safety perspective (risk assessment of ship routes, 

detection and monitoring of dangerous ship routes and detection and monitoring of safety accidents 

involving workers and equipment) 

3.1. PLMF service scenarios from a productivity perspective 
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3.1.1. Prediction of ETA 

From the perspective of port logistics and operations, the ETA of a vessel is a critical decision variable 

for determining the berth time when a vessel arrives at a port. Additionally, accurate ETA prediction 

enables inference of the types and durations of loading and unloading operations, such as cargo handling 

and stowage activities. Therefore, accurate ETA prediction is crucial from a productivity perspective. 

Typically, owing to the minimal speed variations during navigation, the ETAs of ships can vary 

significantly based on the meteorological and maritime conditions along their route. Hence, it is 

important to accurately predict weather conditions in maritime zones traversed by vessels. In the 

proposed metaverse service, we utilized spatiotemporal AI methods, such as convolutional long short-

term memory (ConvLSTM), to accurately predict the conditions of maritime zones (Bi, Jinqiang, et al., 

2024). By leveraging this information, we offer a service to predict the ETA, aiding in the efficient 

planning and management of maritime operations. 

Figure 1 illustrates the process of predicting the ETA of a ship within a metaverse to provide 

information to metaverse users. The primary users of this system are ship navigators and berth-operation 

schedulers. The movement direction of the ship and its heading are shown at the center of the figure. In 

the top-left corner, the current location information of the ship is displayed, with the optimal routes to 

the destination shown below along with the remaining time for each route. The top-right corner provides 

weather information, and the bottom section provides notifications of the necessary information. This 

system not only informs users of the predicted ETA but also interacts with them to calculate the 

optimized ETA in real time based on the selected route. 

 
Figure 4. Example of ETA prediction service in PLMF. 

3.1.2. Monitoring and optimization of port operations 

The optimization of port operations refers to the overall optimization of the entire port process, from 

the time a vessel arrives through berthing operations, yard management, and finally, the transfer of 

goods outside the port via the gate. Port optimization is performed for various purposes, such as 
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equipment allocation, scheduling, and minimizing rehandling, and ranges from optimizing specific 

tasks to optimizing the entire process. The PLMF metaverse utilizes IoT sensor data and TOS 

information to monitor various tasks, measure the load and congestion caused by delays, and proposes 

optimization strategies to reduce these inefficiencies. 

Figure 5 illustrates an example screen within the metaverse that monitors berthing operations and 

presents optimized strategies for enhancing port operation efficiency. The upper section presents the 

berthing and unloader operation ratios, providing insights into the current status of the berthing 

operations, task plans, performance, and progress. In addition, relevant data can be selected to review 

further operational details. Port operation optimization requires the consideration of various factors; 

therefore, the system is configured based on optimization strategies derived from simulations. 

 
Figure 5. Example of a port operation optimization service in PLMF. 

3.2. PLMF service scenarios from an environmental perspective 

3.2.1. Monitoring and prediction of fuel consumption 

Greenhouse gases emitted by ships are among the main causes of marine pollution in seaport supply 

chains. The International Maritime Organization (IMO) has developed a roadmap for reducing 

greenhouse gas emissions from ships and has proposed several policies. Technical measures such as the 

energy efficiency existing ship index and operational measures such as carbon intensity indicator (CII) 

regulations have been introduced (Bayraktar & Yuksel, 2023). In particular, the CII strengthens 

environmental regulations by calculating the efficiency of the ship based on its actual annual fuel 

consumption and operating distance and subsequently assigning a rating. Therefore, the PLMF 

metaverse provides a service to monitor the fuel consumption information of operating ships. 

Additionally, we offer an artificial intelligence service that predicts future fuel consumption using the 

collected fuel consumption data, anticipated routes, and meteorological information for sailing areas. 

In this process, we used specialized time-series prediction models, such as correlation recurrent units 

(CRU), which can account for the correlation and autocorrelation of time-series input data, to ensure 
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accurate predictions (Sim et al., 2023).  

Figure 6 shows an example of a service screen within a metaverse that visualizes the real-time fuel 

consumption of ships and provides predictive outcomes. The center of the figure displays the predicted 

emission results for the ship. The top-left corner provides the location and route of the ship, whereas 

the bottom section provides information on the fuel consumption. Similar to other service screens, the 

top-right corner provides weather information, and the bottom section provides notifications of the 

necessary information. Based on this, key users of the service, such as navigators and shipping 

companies, can access the decision-making support information they need to determine routes and fuel 

consumption to meet the CII ratings. 

 
Figure 6. Example of a ship fuel consumption monitoring service in PLMF. 

3.2.2. Monitoring and prediction of port equipment emissions 

The major sources of air pollution in ports include ships, cargo-handling equipment, and transfer 

equipment. Although several studies have focused on estimating and analyzing air pollutant emissions 

from ships, there is a limited research on monitoring and predicting pollutant emissions from various 

port equipment. However, with the identification of several port equipment with outdated diesel engines 

as major sources of pollutants such as CO and NOx, the monitoring, prediction, and evaluation of air 

pollutant emissions from each piece of equipment has become an important issue (Lee et al., 2023). To 

address this issue, PLMF metaverse provides a service that monitors air pollutant emissions from port 

equipment by utilizing IoT sensor data. Additionally, it can predict the dispersion paths of pollutants by 

considering the contribution of each piece of equipment to the pollution and the spread of air pollution. 

Furthermore, the system accurately predicts pollution levels in ports by employing a deep collaborative 

learning model, which not only learns the emission levels of the equipment but also incorporates ship 

location information near berths and meteorological data from the port in a spatiotemporal context (Sim 

et al., 2022). Figure 7 illustrates an example of a service screen within the metaverse that provides 

monitoring and emission estimates for each piece of port equipment. By monitoring the major sources 

contributing to port pollution and controlling the concentration of pollutants, this service can contribute 

to improving the air quality in port cities. 
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Figure 7. Example of hazardous areas detection service in PLMF.  

3.3. PLMF service scenarios from a safety perspective 

3.3.1. Risk assessment of the route  

The safety level of a ship can vary significantly depending on various factors such as the characteristics 

of the navigation area, currents, and underwater conditions. Therefore, it is necessary to evaluate the 

safety of the route used by the ship in real time and communicate relevant information to stakeholders. 

In the PLMF metaverse, real-time risk assessment information is provided through reinforcement 

learning-based simulations based on the location information of the ship and the condition of each 

maritime area. Figure 8 shows an example of a screen in the metaverse displaying the current risk level 

associated with a ship's navigation route. On the left side of the screen, the current position of the ship 

is shown on a map, and a safety graph for the route is displayed, allowing users to decide whether to 

continue navigating that route. Additionally, by utilizing future route information, we can analyze the 

risk levels for upcoming routes and provide the necessary information to primary users, such as 

navigators and ship safety managers. 

3.3.2. Detection and monitoring of hazardous ship routes 

Although evaluating the risk levels of individual ship routes is important, assessing the risk levels of 

maritime areas is crucial to the port logistics environment. One of the key advantages of the proposed 

PLMF metaverse is its ability to accurately display the current positions of ships worldwide based on 

their location information and provide this data to users. 

This capability allowed us to estimate the traffic volume of ships in each maritime area within a 

metaverse accurately. Using this additional information, we estimated the empirical ship domain (ESD) 

for each maritime area within the metaverse. Furthermore, hazardous zones can be monitored and 

detected based on the distribution of ESDs for all ships in the same maritime area. This functionality 

not only allowed us to accurately communicate the current risk status of specific maritime areas to users 

within the metaverse but also helped identify potential risks for safer navigation. Figure 9 provides an 
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example screen showing how information about hazardous zones is provided to users based on the 

traffic volume of ships and the ESD information in each maritime area. The center of the figure displays 

the route risks within the port, port traffic volume, and risk indicators. Additionally, the left side of the 

screen shows the current position of the ship and traffic volume for each navigational route by time of 

day, supporting users in making decisions to prevent accidents in advance. 

 
Figure 8. Example of ship route risk assessment service in PLMF. 

 
Figure 9. Example of hazardous areas detection service in PLMF. 

3.3.3. Detection and monitoring of accidents between workers and equipment 

With the surge in cargo volume, ports are experiencing not only a shortage of shipping capacity but also 
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an increase in unnecessary workloads, which exposes port workers to greater risks and results in an 

increase in accidents. At Busan Port, institutional measures, such as the Special Port Safety Act, have 

highlighted the importance of safety. Given the substantial human and material losses caused by port 

accidents, it is essential to ensure port safety. To address these issues, the PLMF metaverse offers a 

service that monitors the movement paths of port workers and equipment using GPS information. 

Additionally, by accurately predicting future paths and locations using the neural ordinary differential 

equations (neural ODE) methodology, the system can assess potentially hazardous situations and issue 

warning alerts.  

 
Figure 10. Example of accident detection service in port logistics metaverse. 

Figure 10 illustrates an example of a service screen within the metaverse that provides real-time alerts 

about dangerous situations in which a YT might collide with workers. By utilizing information about 

the route and timing of the YT as well as data regarding the worker, the system can predict potential 

future accidents and issue collision warnings to workers and truck drivers via alerts. This functionality 

not only helps users recognize and prevent accidents, but also contributes to mitigating financial losses 

and supply chain disruptions caused by port accidents. 

4. Case study: Enhancements in productivity and environmental impact at Busan Port 

through PLMF 

In this section, a case study is conducted using the Busan Port to validate the impact of the PLMF on 

actual port logistics. Generally, before departing from a port, a shipping company communicates the 

vessel's operational schedule with the relevant port. Upon receiving this schedule, the port establishes 

its own operational plans (such as berth planning, equipment planning, and work scheduling) to handle 

cargo. Once the berth plan is established, it is communicated back to the shipping company, which then 

determines the ETA based on this plan, and navigates to the port to arrive at the given ETA. However, 

70% of the vessels worldwide are unable to arrive within the given ETA owing to external weather 

factors, environmental conditions, or other issues. Consequently, the vessel may not dock at port within 
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the specified ETA, resulting in unnecessary waiting times. This issue negatively affects port 

productivity and the environment.  

We simulated and analyzed the process within the PLMF, as illustrated in Figure 7, which includes 

1) detecting the RTA, 2) estimating a new ETA when an RTA is detected, and 3) revising the berth plan 

based on the estimated ETA. For this analysis, we used AIS data collected from vessels arriving and 

departing from Busan Port between January 2021 and December 2021, along with IoT, PCS, and POS 

data collected from Busan Port during the same period. 

 
Figure 7. Example of hazardous areas detection service in maritime logistics metaverse. 

4.1. Prediction Model Framework  

In this case study, we developed a multichannel ConvLSTM model to determine the ETA, as shown in 

Figure 8. The input data for the multichannel ConvLSTM are generated as follows. 1) The ship is 

represented as a grid matrix of a specific size based on its current position. 2) The ship movement path 

and weather information along this path were combined into a multichannel input matrix for a given 

time point. 3) The data for the desired time points (t) were aggregated to create a single-input dataset 

(X). In addition, the actual arrival time at the current position of the vessel was used as the output data 

(Y) for training. 
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Figure 8. Framework of the Multi-channel ConvLSTM for Detection RTA and Prediction ETA 

To compare the performance of the models, we implemented and compared the original ConvLSTM, 

convolutional neural networks (CNN) + LSTM, and CNN models. We then compared the prediction 

performance of the weather-informed multichannel ConvLSTM with these models. The Root Mean 

Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) were used as the comparison 

metrics.  

Table 7 presents the comparison results of the model performances with respect to the accuracy of 

the estimated arrival times. Overall, comparing the results when the AI models were applied within the 

PLMF versus when they were not applied, the results showed improvements in all cases. Additionally, 

the multichannel ConvLSTM model, which considers weather effects, demonstrated an approximately 

9.5-fold improvement in the prediction error compared to when no predictive model was applied. 

Furthermore, it showed performance improvements ranging from a minimum of 20% to up to 3.5 times 

better those of the models used in previous research. 
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Table 7. Prediction errors of ETA models compared to actual observations when applying the ETA prediction 

model within the PLMF.  

Model RMSE (min) MAPE (%) 

Multi-Channel ConvLSTM* 27.05 3.71% 

Multi-Channel ConvLSTM* (>100km) 41.97 6.12% 

ConvLSTM 35.17 5.96% 

CNN+LSTM 68.19 8.31% 

CNN 128.33 13.61% 

Without model application  295.61 28.31% 

4.2. Simulation Analysis 

To analyze the cost impact of the PLMF, we conducted a simulation analysis using the following 

procedure: 1) Assume a situation in which ships that are supposed to arrive on time are intentionally 

delayed (by generating random RTAs). 2) The ETA is predicted using the multichannel ConvLSTM 

model when an RTA occurs. 3) The predicted results are reflected in the berth schedule.  

We compare the productivity (berth throughput) when the port operates according to the updated 

berth plan with that when it operates based on the original berth plan without ETA predictions. The 

comparison focuses on two scenarios: one in which the ETA is immediately predicted and the berth plan 

is revised accordingly, and the other in which the port operates based on the original berth plan without 

updating the ETA predictions. Additionally, simulations were conducted by varying the RTA occurrence 

rates, incrementing them from 5% to 30% at 5% intervals. 

Table 8. Simulation results based on RTA occurrence rates (results obtained with the ETA prediction model 

applied vs. results obtained without the ETA prediction model). 

Rate of RTA 

Occurrences 

Throughput per Hour (Processing Time per 1 VAN) 

Without Applying the Predicting 

ETA Model 

With Applying the  

Predicting ETA Model 

5% 27.77van (129.6 sec) 27.96van (128.7 sec) 

10% 27.56van (130.6 sec) 27.92van (128.5 sec) 

15% 27.38van (131.4 sec) 27.89van (129.0 sec) 

20% 27.20van (132.3 sec) 27.83van (129.3 sec) 

25% 27.00van (133.3 sec) 27.76van (129.7 sec) 

30% 26.82van (134.2 sec) 27.67van (130.1 sec) 

Table 8 lists the simulation results. The values in the table represent the number of containers handled 

by a quay crane per hour. As the RTA occurrence rate increased, the throughput decreased in both cases 

(with and without the ETA prediction model). At an RTA occurrence rate of 30%, applying the ETA 

prediction model allows one quay crane to handle 0.85 more containers. Table 9 compares the daily 

throughput considering the quay crane availability at “A Terminal” in Busan Port, where the case study 

was conducted. Analysis of the POS data for “A Terminal” revealed that 15 cranes are available, with 

an average of 13.5 cranes in operation. Considering this, applying the ETA prediction model results in 

handling approximately 265–285 more containers per day compared with not applying the model. Over 
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the course of one year, this translates to handling an additional 96,72 van to 104,025 vans. Considering 

the average value of about $70 per container (1 van) at “A Terminal”, this results in an additional benefit 

of up to $7,290,080. Based on these findings, applying the PLMF to port logistics operations can 

contribute to increased productivity and profit generation. 

Table 9. Analysis of additional revenue based on the simulation results. 

Num of  

Quay  

Crane 

Comparison of Quay Side Productivity (30% RTA Occurrence Rate) 

When processing 

26.82van (a) 

When processing 

27.67van (b) 

1Day 

Difference 

(b-a) 

1Year 

Difference 

Additional 

Revenue 

(70$ per 1van) 

1 643.7 664.1 20.4 7446 521220 

2 1287.4 1328.2 40.8 14892 1042440 

3 1931.0 1992.2 61.2 22338 1563660 

4 2574.7 2656.3 81.6 29784 2084880 

5 3218.4 3320.4 102.0 37230 2606100 

6 3862.1 3984.5 122.4 44676 3127320 

7 4505.8 4648.6 142.8 52122 3648540 

8 5149.4 5312.6 163.2 59568 4169760 

9 5793.1 5976.7 183.6 67014 4690980 

10 6436.8 6640.8 204.0 74460 5212200 

11 7080.5 7304.9 224.4 81906 5733420 

12 7724.2 7669.0 244.8 89352 6254640 

13 8367.8 8633.0 265.2 96798 6775860 

14 9011.5 9297.1 285.6 104244 7297080 

15 9655.2 9961.2 306.0 111690 7818300 

Table 10. Comparison of ship punctuality based on the simulation results. 

Ship Punctuality  

(Estimated Arrival Time - 

Actual Arrival Time) 

Without Applying the Predicting 

ETA Model 

With Applying the  

Predicting ETA Model 

Mean 121.9 min 25.4min 

Median 45.0 min 12 min 

Standard Deviation 265.1 min 147.3 min 

We further examined whether applying the ETA prediction model within the PLMF would improve 

ship punctuality. According to the results listed in Table 10, when the ETA prediction model was not 

applied, there was an average discrepancy of approximately 2 h between the actual arrival time and 

ETA. However, when the ETA prediction model was applied, this discrepancy was reduced to 

approximately 25 min. This demonstrates that the PLMF improves the punctuality of actual ship arrivals. 

If a ship fails to maintain punctuality, it cannot begin operation at the originally scheduled time. 

Consequently, the ship must wait at anchorage before berthing. Several studies have reported that 

waiting times at anchorages contribute significantly to pollution in port cities. PLMF, by significantly 

improving ship punctuality, also helps reduce environmental pollution in ports. Figure 9 shows the 
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waiting times of ships near the port before and after applying the ETA prediction model. The data 

illustrated in Figure 9 reveals a significant reduction in waiting times of ships near ports, indicating that 

the PLMF can also contribute to mitigating environmental issues arising from port logistics. 

 

Figure 9. Visualization of differences in ship waiting times before and after applying the ETA prediction model 

within the PLMF. 

5. Conclusions 

This study proposes an AI-based PLMF designed to address productivity, environmental, and safety 

issues in port logistics. The proposed PLMF utilizes data collected from various systems, including AIS, 

port IoT devices, PCS, POS, and PAQMS to monitor port logistics processes occurring in the sea, berth, 

and port areas. This framework is structured to contribute significantly to data sharing, service 

connectivity, and interactions among various entities and stakeholders in port logistics by considering 

the data generated from all systems used in the port logistics process. 

Another notable feature of the PLMF is the integration of various AI models to enhance the accuracy 

of port logistics decision making. Several AI models have been applied within the PLMF, including 

CNN, ConvLSTM, CNN+LSTM, neural ODE, CRU, heuristic approaches, and reinforcement learning. 

These models provide metaverse content to address four productivity issues (detecting required time of 

arrival; predicting expected time of arrival; dynamic berth planning; and dynamic port operation 

planning), three environmental issues (prediction and monitoring of ship emissions, near-port pollution, 

and port emissions), and three safety issues (ship route risk assessment; prediction and monitoring of 

ship collisions; and detection and monitoring of port safety). 

We conducted a case study using historical data from Busan Port to evaluate the effectiveness of the 

PLMF. Using the PLMF, we predicted the arrival times of ships and simulated the optimization of port 

operations based on these predictions. We observed that the framework could generate approximately 

7.3 million dollars in additional direct revenue annually and improve ship punctuality by 79%, resulting 

in environmental benefits for the port. These findings demonstrate that the PLMF not only provides a 

platform for collaboration among various stakeholders in port logistics but also significantly enhances 

the accuracy and sustainability of decision-making through AI-based simulations.  
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The PLMF is expected to enhance the value of the logistics industry by monitoring all port logistics 

processes in real-time and improving productivity through accurate AI-based decision making. 

Additionally, it aims to address environmental and safety issues occurring at ports, thereby contributing 

to overall improvements in the port logistics sector. 
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