
Engineering at Anthropic

Building effective agents
We've worked with dozens of teams building LLM agents across
industries. Consistently, the most successful implementations use simple,
composable patterns rather than complex frameworks.

https://www.anthropic.com/
https://www.anthropic.com/engineering


Published Dec 19, 2024

Over the past year, we've worked with dozens of teams building large language
model (LLM) agents across industries. Consistently, the most successful
implementations weren't using complex frameworks or specialized libraries.
Instead, they were building with simple, composable patterns.

In this post, we share what we’ve learned from working with our customers
and building agents ourselves, and give practical advice for developers on
building effective agents.

What are agents?

"Agent" can be defined in several ways. Some customers define agents as fully
autonomous systems that operate independently over extended periods, using
various tools to accomplish complex tasks. Others use the term to describe
more prescriptive implementations that follow predefined workflows. At

Anthropic, we categorize all these variations as agentic systems, but draw an

important architectural distinction between workflows and agents:

Workflows are systems where LLMs and tools are orchestrated through
predefined code paths.

Agents, on the other hand, are systems where LLMs dynamically direct
their own processes and tool usage, maintaining control over how they
accomplish tasks.

Below, we will explore both types of agentic systems in detail. In Appendix 1
(“Agents in Practice”), we describe two domains where customers have found
particular value in using these kinds of systems.

When (and when not) to use agents

When building applications with LLMs, we recommend finding the simplest



solution possible, and only increasing complexity when needed. This might
mean not building agentic systems at all. Agentic systems often trade latency
and cost for better task performance, and you should consider when this
tradeoff makes sense.

When more complexity is warranted, workflows offer predictability and
consistency for well-defined tasks, whereas agents are the better option when
flexibility and model-driven decision-making are needed at scale. For many
applications, however, optimizing single LLM calls with retrieval and in-
context examples is usually enough.

When and how to use frameworks

There are many frameworks that make agentic systems easier to implement,
including:

LangGraph from LangChain;

Amazon Bedrock's AI Agent framework;

Rivet, a drag and drop GUI LLM workflow builder; and

Vellum, another GUI tool for building and testing complex workflows.

These frameworks make it easy to get started by simplifying standard low-level
tasks like calling LLMs, defining and parsing tools, and chaining calls together.
However, they often create extra layers of abstraction that can obscure the
underlying prompts ​​and responses, making them harder to debug. They can
also make it tempting to add complexity when a simpler setup would suffice.

We suggest that developers start by using LLM APIs directly: many patterns
can be implemented in a few lines of code. If you do use a framework, ensure
you understand the underlying code. Incorrect assumptions about what's
under the hood are a common source of customer error.

See our cookbook for some sample implementations.

Building blocks, workflows, and agents

https://langchain-ai.github.io/langgraph/
https://aws.amazon.com/bedrock/agents/
https://rivet.ironcladapp.com/
https://www.vellum.ai/
https://github.com/anthropics/anthropic-cookbook/tree/main/patterns/agents


In this section, we’ll explore the common patterns for agentic systems we’ve
seen in production. We'll start with our foundational building block—the
augmented LLM—and progressively increase complexity, from simple
compositional workflows to autonomous agents.

Building block: The augmented LLM
The basic building block of agentic systems is an LLM enhanced with
augmentations such as retrieval, tools, and memory. Our current models can
actively use these capabilities—generating their own search queries, selecting
appropriate tools, and determining what information to retain.

The augmented LLM

We recommend focusing on two key aspects of the implementation: tailoring
these capabilities to your specific use case and ensuring they provide an easy,
well-documented interface for your LLM. While there are many ways to
implement these augmentations, one approach is through our recently
released Model Context Protocol, which allows developers to integrate with a
growing ecosystem of third-party tools with a simple client implementation.

For the remainder of this post, we'll assume each LLM call has access to these
augmented capabilities.

Workflow: Prompt chaining

https://www.anthropic.com/news/model-context-protocol
https://modelcontextprotocol.io/tutorials/building-a-client#building-mcp-clients


Prompt chaining decomposes a task into a sequence of steps, where each LLM
call processes the output of the previous one. You can add programmatic
checks (see "gate” in the diagram below) on any intermediate steps to ensure
that the process is still on track.

The prompt chaining workflow

When to use this workflow: This workflow is ideal for situations where the
task can be easily and cleanly decomposed into fixed subtasks. The main goal
is to trade off latency for higher accuracy, by making each LLM call an easier
task.

Examples where prompt chaining is useful:

Generating Marketing copy, then translating it into a different language.

Writing an outline of a document, checking that the outline meets certain
criteria, then writing the document based on the outline.

Workflow: Routing
Routing classifies an input and directs it to a specialized followup task. This
workflow allows for separation of concerns, and building more specialized
prompts. Without this workflow, optimizing for one kind of input can hurt
performance on other inputs.



The routing workflow

When to use this workflow: Routing works well for complex tasks where there
are distinct categories that are better handled separately, and where
classification can be handled accurately, either by an LLM or a more
traditional classification model/algorithm.

Examples where routing is useful:

Directing different types of customer service queries (general questions,
refund requests, technical support) into different downstream processes,
prompts, and tools.

Routing easy/common questions to smaller models like Claude 3.5 Haiku
and hard/unusual questions to more capable models like Claude 3.5
Sonnet to optimize cost and speed.

Workflow: Parallelization
LLMs can sometimes work simultaneously on a task and have their outputs
aggregated programmatically. This workflow, parallelization, manifests in two
key variations:

Sectioning: Breaking a task into independent subtasks run in parallel.

Voting: Running the same task multiple times to get diverse outputs.



The parallelization workflow

When to use this workflow: Parallelization is effective when the divided
subtasks can be parallelized for speed, or when multiple perspectives or
attempts are needed for higher confidence results. For complex tasks with
multiple considerations, LLMs generally perform better when each
consideration is handled by a separate LLM call, allowing focused attention on
each specific aspect.

Examples where parallelization is useful:

Sectioning:
Implementing guardrails where one model instance processes user
queries while another screens them for inappropriate content or
requests. This tends to perform better than having the same LLM call
handle both guardrails and the core response.

Automating evals for evaluating LLM performance, where each LLM
call evaluates a different aspect of the model’s performance on a given
prompt.

Voting:
Reviewing a piece of code for vulnerabilities, where several different
prompts review and flag the code if they find a problem.

Evaluating whether a given piece of content is inappropriate, with
multiple prompts evaluating different aspects or requiring different
vote thresholds to balance false positives and negatives.

Workflow: Orchestrator-workers
In the orchestrator-workers workflow, a central LLM dynamically breaks down
tasks, delegates them to worker LLMs, and synthesizes their results.



The orchestrator-workers workflow

When to use this workflow: This workflow is well-suited for complex tasks
where you can’t predict the subtasks needed (in coding, for example, the
number of files that need to be changed and the nature of the change in each
file likely depend on the task). Whereas it’s topographically similar, the key
difference from parallelization is its flexibility—subtasks aren't pre-defined,
but determined by the orchestrator based on the specific input.

Example where orchestrator-workers is useful:

Coding products that make complex changes to multiple files each time.

Search tasks that involve gathering and analyzing information from
multiple sources for possible relevant information.

Workflow: Evaluator-optimizer
In the evaluator-optimizer workflow, one LLM call generates a response while
another provides evaluation and feedback in a loop.



The evaluator-optimizer workflow

When to use this workflow: This workflow is particularly effective when we
have clear evaluation criteria, and when iterative refinement provides
measurable value. The two signs of good fit are, first, that LLM responses can
be demonstrably improved when a human articulates their feedback; and
second, that the LLM can provide such feedback. This is analogous to the
iterative writing process a human writer might go through when producing a
polished document.

Examples where evaluator-optimizer is useful:

Literary translation where there are nuances that the translator LLM might
not capture initially, but where an evaluator LLM can provide useful
critiques.

Complex search tasks that require multiple rounds of searching and
analysis to gather comprehensive information, where the evaluator
decides whether further searches are warranted.

Agents
Agents are emerging in production as LLMs mature in key capabilities—
understanding complex inputs, engaging in reasoning and planning, using
tools reliably, and recovering from errors. Agents begin their work with either a
command from, or interactive discussion with, the human user. Once the task
is clear, agents plan and operate independently, potentially returning to the
human for further information or judgement. During execution, it's crucial for
the agents to gain “ground truth” from the environment at each step (such as
tool call results or code execution) to assess its progress. Agents can then pause
for human feedback at checkpoints or when encountering blockers. The task
often terminates upon completion, but it’s also common to include stopping
conditions (such as a maximum number of iterations) to maintain control.

Agents can handle sophisticated tasks, but their implementation is often



straightforward. They are typically just LLMs using tools based on
environmental feedback in a loop. It is therefore crucial to design toolsets and
their documentation clearly and thoughtfully. We expand on best practices for
tool development in Appendix 2 ("Prompt Engineering your Tools").

Autonomous agent

When to use agents: Agents can be used for open-ended problems where it’s
difficult or impossible to predict the required number of steps, and where you
can’t hardcode a fixed path. The LLM will potentially operate for many turns,
and you must have some level of trust in its decision-making. Agents'
autonomy makes them ideal for scaling tasks in trusted environments.

The autonomous nature of agents means higher costs, and the potential for
compounding errors. We recommend extensive testing in sandboxed
environments, along with the appropriate guardrails.

Examples where agents are useful:

The following examples are from our own implementations:

A coding Agent to resolve SWE-bench tasks, which involve edits to many
files based on a task description;

Our “computer use” reference implementation, where Claude uses a
computer to accomplish tasks.

https://www.anthropic.com/research/swe-bench-sonnet
https://github.com/anthropics/anthropic-quickstarts/tree/main/computer-use-demo


High-level flow of a coding agent

Combining and customizing these patterns

These building blocks aren't prescriptive. They're common patterns that
developers can shape and combine to fit different use cases. The key to
success, as with any LLM features, is measuring performance and iterating on
implementations. To repeat: you should consider adding complexity only
when it demonstrably improves outcomes.

Summary

Success in the LLM space isn't about building the most sophisticated system.
It's about building the right system for your needs. Start with simple prompts,
optimize them with comprehensive evaluation, and add multi-step agentic
systems only when simpler solutions fall short.

When implementing agents, we try to follow three core principles:



1. Maintain simplicity in your agent's design.

2. Prioritize transparency by explicitly showing the agent’s planning steps.

3. Carefully craft your agent-computer interface (ACI) through thorough tool
documentation and testing.

Frameworks can help you get started quickly, but don't hesitate to reduce
abstraction layers and build with basic components as you move to
production. By following these principles, you can create agents that are not
only powerful but also reliable, maintainable, and trusted by their users.

Acknowledgements
Written by Erik Schluntz and Barry Zhang. This work draws upon our
experiences building agents at Anthropic and the valuable insights shared by
our customers, for which we're deeply grateful.

Appendix 1: Agents in practice

Our work with customers has revealed two particularly promising applications
for AI agents that demonstrate the practical value of the patterns discussed
above. Both applications illustrate how agents add the most value for tasks
that require both conversation and action, have clear success criteria, enable
feedback loops, and integrate meaningful human oversight.

A. Customer support
Customer support combines familiar chatbot interfaces with enhanced
capabilities through tool integration. This is a natural fit for more open-ended
agents because:

Support interactions naturally follow a conversation flow while requiring
access to external information and actions;

Tools can be integrated to pull customer data, order history, and
knowledge base articles;

Actions such as issuing refunds or updating tickets can be handled
programmatically; and



Success can be clearly measured through user-defined resolutions.

Several companies have demonstrated the viability of this approach through
usage-based pricing models that charge only for successful resolutions,
showing confidence in their agents' effectiveness.

B. Coding agents
The software development space has shown remarkable potential for LLM
features, with capabilities evolving from code completion to autonomous
problem-solving. Agents are particularly effective because:

Code solutions are verifiable through automated tests;

Agents can iterate on solutions using test results as feedback;

The problem space is well-defined and structured; and

Output quality can be measured objectively.

In our own implementation, agents can now solve real GitHub issues in the
SWE-bench Verified benchmark based on the pull request description alone.
However, whereas automated testing helps verify functionality, human review
remains crucial for ensuring solutions align with broader system
requirements.

Appendix 2: Prompt engineering your tools

No matter which agentic system you're building, tools will likely be an
important part of your agent. Tools enable Claude to interact with external
services and APIs by specifying their exact structure and definition in our API.
When Claude responds, it will include a tool use block in the API response if it
plans to invoke a tool. Tool definitions and specifications should be given just
as much prompt engineering attention as your overall prompts. In this brief
appendix, we describe how to prompt engineer your tools.

There are often several ways to specify the same action. For instance, you can
specify a file edit by writing a diff, or by rewriting the entire file. For structured
output, you can return code inside markdown or inside JSON. In software
engineering, differences like these are cosmetic and can be converted

https://www.anthropic.com/research/swe-bench-sonnet
https://www.anthropic.com/news/tool-use-ga
https://docs.anthropic.com/en/docs/build-with-claude/tool-use#example-api-response-with-a-tool-use-content-block


losslessly from one to the other. However, some formats are much more
difficult for an LLM to write than others. Writing a diff requires knowing how
many lines are changing in the chunk header before the new code is written.
Writing code inside JSON (compared to markdown) requires extra escaping of
newlines and quotes.

Our suggestions for deciding on tool formats are the following:

Give the model enough tokens to "think" before it writes itself into a
corner.

Keep the format close to what the model has seen naturally occurring in
text on the internet.

Make sure there's no formatting "overhead" such as having to keep an
accurate count of thousands of lines of code, or string-escaping any code it
writes.

One rule of thumb is to think about how much effort goes into human-
computer interfaces (HCI), and plan to invest just as much effort in creating
good agent-computer interfaces (ACI). Here are some thoughts on how to do
so:

Put yourself in the model's shoes. Is it obvious how to use this tool, based
on the description and parameters, or would you need to think carefully
about it? If so, then it’s probably also true for the model. A good tool
definition often includes example usage, edge cases, input format
requirements, and clear boundaries from other tools.

How can you change parameter names or descriptions to make things
more obvious? Think of this as writing a great docstring for a junior
developer on your team. This is especially important when using many
similar tools.

Test how the model uses your tools: Run many example inputs in our
workbench to see what mistakes the model makes, and iterate.

Poka-yoke your tools. Change the arguments so that it is harder to make
mistakes.

While building our agent for SWE-bench, we actually spent more time
optimizing our tools than the overall prompt. For example, we found that the
model would make mistakes with tools using relative filepaths after the agent
had moved out of the root directory. To fix this, we changed the tool to always
require absolute filepaths—and we found that the model used this method

https://console.anthropic.com/workbench
https://en.wikipedia.org/wiki/Poka-yoke
https://www.anthropic.com/research/swe-bench-sonnet


flawlessly.

Product

Claude overview

Claude Code

Claude team plan

Claude enterprise plan

Claude education plan

Download Claude apps

Claude.ai pricing plans

Claude.ai login

API Platform

API overview

Developer docs

Claude in Amazon Bedrock

Claude on Google Cloud's
Vertex AI

Pricing

Console login

Research

Research overview

Economic Index

Claude models

Claude 3.7 Sonnet

Claude 3.5 Haiku

Claude 3 Opus

Commitments

Transparency

Responsible scaling policy

Security and compliance

Solutions

AI agents

Coding

Customer support

Learn

Anthropic Academy

Customer stories

Engineering at Anthropic

Explore

About us

Become a partner

Careers

News

Help and security

Status

Availability

Terms and policies

Privacy choices

Privacy policy

https://www.anthropic.com/
https://www.anthropic.com/claude
https://anthropic.com/claude-code
https://www.anthropic.com/team
https://www.anthropic.com/enterprise
https://www.anthropic.com/education
https://claude.ai/download
https://www.anthropic.com/pricing
http://claude.ai/login
https://www.anthropic.com/api
https://docs.anthropic.com/
https://www.anthropic.com/amazon-bedrock
https://www.anthropic.com/google-cloud-vertex-ai
https://www.anthropic.com/google-cloud-vertex-ai
https://www.anthropic.com/pricing#api
https://console.anthropic.com/
https://www.anthropic.com/research
https://www.anthropic.com/economic-index
https://www.anthropic.com/claude/sonnet
https://www.anthropic.com/claude/haiku
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/transparency
https://www.anthropic.com/responsible-scaling-policy
https://trust.anthropic.com/
https://www.anthropic.com/solutions/agents
https://www.anthropic.com/solutions/coding
https://www.anthropic.com/solutions/customer-support
https://www.anthropic.com/learn
https://www.anthropic.com/customers
https://www.anthropic.com/engineering
https://www.anthropic.com/company
https://www.anthropic.com/referral
https://www.anthropic.com/careers
https://www.anthropic.com/news
https://status.anthropic.com/
https://www.anthropic.com/supported-countries
https://www.anthropic.com/legal/privacy


Support center Responsible disclosure policy

Terms of service - consumer

Terms of service - commercial

Usage policy

© 2025 Anthropic PBC

https://www.anthropic.com/
https://support.anthropic.com/
https://www.anthropic.com/responsible-disclosure-policy
https://www.anthropic.com/legal/consumer-terms
https://www.anthropic.com/legal/commercial-terms
https://www.anthropic.com/legal/aup
https://www.youtube.com/@anthropic-ai
https://www.linkedin.com/company/anthropicresearch
https://x.com/AnthropicAI

