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Abstract
In recent years, AI red teaming has emerged as a practice for probing the safety and security of generative AI 
systems. Due to the nascency of the field, there are many open questions about how red teaming operations should 
be conducted. Based on our experience red teaming over 100 generative AI products at Microsoft, we present our 
internal threat model ontology and eight main lessons we have learned:

1. Understand what the system can do and where it is applied 

2. You don’t have to compute gradients to break an AI system 

3. AI red teaming is not safety benchmarking

4. Automation can help cover more of the risk landscape

5. The human element of AI red teaming is crucial

6. Responsible AI harms are pervasive but difficult to measure 

7. Large language models (LLMs) amplify existing security risks and introduce new ones

8. The work of securing AI systems will never be complete

By sharing these insights alongside case studies from our operations, we offer practical recommendations aimed at 
aligning red teaming efforts with real world risks. We also highlight aspects of AI red teaming that we believe are 
often misunderstood and discuss open questions for the field to consider.
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Introduction
As generative AI (GenAI) systems are adopted across 
an increasing number of domains, AI red teaming has 
emerged as a central practice for assessing the safety 
and security of these technologies. At its core, AI red 
teaming strives to push beyond model-level safety 
benchmarks by emulating real-world attacks against 
end-to-end systems. However, there are many open 
questions about how red teaming operations should 
be conducted and a healthy dose of skepticism about 
the efficacy of current AI red teaming efforts [4, 8, 32]. 

In this paper, we speak to some of these concerns by 
providing insight into our experience red teaming 
over 100 GenAI products at Microsoft. The paper 
is organized as follows: First, we present the threat 
model ontology that we use to guide our operations. 
Second, we share eight main lessons we have learned 
and make practical recommendations for AI red 
teams, along with case studies from our operations. 
In particular, these case studies highlight how our 
ontology is used to model a broad range of safety 
and security risks. Finally, we close with a discussion of 
areas for future development.

Background 
The Microsoft AI Red Team (AIRT) grew out of pre-
existing red teaming initiatives at the company and 
was officially established in 2018. At its conception, 
the team focused primarily on identifying traditional 
security vulnerabilities and evasion attacks against 
classical ML models. Since then, both the scope and 
scale of AI red teaming at Microsoft have expanded 
significantly in response to two major trends. 

First, AI systems have become more sophisticated, 
compelling us to expand the scope of AI red teaming. 
Most notably, state-of-the-art (SoTA) models have 
gained new capabilities and steadily improved across 
a range of performance benchmarks, introducing 
novel categories of risk. New data modalities, such 
as vision and audio, also create more attack vectors 
for red teaming operations to consider. In addition, 
agentic systems grant these models higher privileges 
and access to external tools, expanding both the 
attack surface and the impact of attacks.

Second, Microsoft’s recent investments in AI have 
spurred the development of many more products that 
require red teaming than ever before. This increase 
in volume and the expanded scope of AI red teaming 
have rendered fully manual testing impractical, 
forcing us to scale up our operations with the help of 
automation. To achieve this goal, we develop PyRIT, 

an open-source Python framework that our operators 
utilize heavily in red teaming operations [27]. By 
augmenting human judgement and creativity, PyRIT 
has enabled AIRT to identify impactful vulnerabilities 
more quickly and cover more of the risk landscape.

These two major trends have made AI red teaming 
a more complex endeavor than it was in 2018. In 
the next section, we outline the ontology we have 
developed to model AI system vulnerabilities.

AI threat model 
ontology
As attacks and failure modes increase in complexity, 
it is helpful to model their key components. Based on 
our experience red teaming over 100 GenAI products 
for a wide range of risks, we developed an ontology 
to do exactly that. Figure 1 illustrates the main 
components of our ontology:

• System: The end-to-end model or application 
being tested.

• Actor: The person or persons being emulated 
by AIRT. Note that the Actor’s intent could be 
adversarial (e.g., a scammer) or benign (e.g., a 
typical chatbot user).

• TTPs: The Tactics, Techniques, and Procedures 
leveraged by AIRT. A typical attack consists of 
multiple Tactics and Techniques, which we map 
to MITRE ATT&CK® and MITRE ATLAS Matrix 
whenever possible.

 – Tactic: High-level stages of an attack (e.g., 
reconnaissance, ML model access).

 – Technique: Methods used to complete an 
objective (e.g., active scanning, jailbreak).

 – Procedure: The steps required to reproduce 
an attack using the Tactics and Techniques.

• Weakness: The vulnerability or vulnerabilities in 
the System that make the attack possible.

• Impact: The downstream impact created by the 
attack (e.g., privilege escalation, generation of 
harmful content). 

It is important to note that this framework does not 
assume adversarial intent. In particular, AIRT emulates 
both adversarial attackers and benign users who 
encounter system failures unintentionally. Part of the 
complexity of AI red teaming stems from the wide 
range of impacts that could be created by an attack 
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or system failure. In the lessons below, we share 
case studies demonstrating how our ontology is 
flexible enough to model diverse impacts in two main 
categories: security and safety.

Security encompasses well-known impacts such 
as data exfiltration, data manipulation, credential 
dumping, and others defined in MITRE ATT&CK®, a 
widely used knowledge base of security attacks. We 
also consider security attacks that specifically target 
the underlying AI model such as model evasion, 
prompt injections, denial of AI service, and others 
covered by the MITRE ATLAS Matrix. 

Safety impacts are related to the generation of illegal 
and harmful content such as hate speech, violence 
and self-harm, and child abuse content. AIRT works 
closely with the Office of Responsible AI to define 
these categories in accordance with Microsoft’s 

Lessons from red teaming 100 generative AI products

Figure 1: Microsoft AIRT ontology for modeling GenAI system vulnerabilities. AIRT often leverages multiple TTPs, which may exploit multiple 
Weaknesses and create multiple Impacts. In addition, more than one Mitigation may be necessary to address a Weakness. Note that AIRT is 
tasked only with identifying risks, while product teams are resourced to develop appropriate mitigations. 

Actor

System

Conducts Exploits Creates
Attack

TTPs Mitigation

Weakness Impact

Leverages Mitigated by

Occurs in

Responsible AI Standard [25]. We refer to these 
impacts as responsible AI (RAI) harms throughout this 
report.

To understand this ontology in context, consider 
the following example. Imagine we are red teaming 
an LLM-based copilot that can summarize a user’s 
emails. One possible attack against this system would 
be for a scammer to send an email that contains a 
hidden prompt injection instructing the copilot to 
“ignore previous instructions” and output a malicious 
link. In this scenario, the Actor is the scammer, who 
is conducting a cross-prompt injection attack (XPIA), 
which exploits the fact that LLMs often struggle to 
distinguish between system-level instructions and 
user data [4]. The downstream Impact depends on the 
nature of the malicious link that the victim might click 
on. In this example, it could be exfiltrating data or 
installing malware onto the user’s computer.
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Red teaming 
operations 
In this section, we provide an overview of the 
operations we have conducted since 2021. In total, we 
have red teamed over 100 GenAI products. Broadly 
speaking, these products can be bucketed into 
“models” and “systems.” Models are typically hosted 
on a cloud endpoint, while systems integrate models 
into copilots, plugins, and other AI apps and features. 
Figure 2 shows the breakdown of products we have 
red teamed since 2021. Figure 3 shows a bar chart with 
the annual percentage of our operations that have 
probed for safety (RAI) vs. security vulnerabilities. 

In 2021, we focused primarily on application security. 
Although our operations have increasingly probed 
for RAI impacts, our team continues to red team for 
security impacts including data exfiltration, credential 
leaking, and remote code execution. Organizations 
have adopted many different approaches to AI red 
teaming ranging from security-focused assessments 
with penetration testing to evaluations that target 
only GenAI features. In Lessons 2 and 7, we elaborate 
on security vulnerabilities and explain why we believe 
it is important to consider both traditional and AI-
specific weaknesses. 

After the release of ChatGPT in 2022, Microsoft 
entered the era of AI copilots, starting with AI-
powered Bing Chat, released in February 2023. 
This marked a paradigm shift towards applications 
that connect LLMs to other software components 
including tools, databases, and external sources. 
Applications also started using language models as 
reasoning agents that can take actions on behalf of 
users, introducing a new set of attack vectors that 
have expanded the security risk surface. In Lesson 
7, we explain how these attack vectors both amplify 
existing security risks and introduce new ones. 

In recent years, the models at the center of these 
applications have given rise to new interfaces, 
allowing users to interact with apps using natural 
language and responding with high-quality text, 
image, video, and audio content. Despite many efforts 
to align powerful AI models to human preferences, 
many methods have been developed to subvert 
safety guardrails and elicit content that is offensive, 
unethical, or illegal. We classify these instances of 
harmful content generation as RAI impacts and in 
Lessons 3, 5, and 6 discuss how we think about these 
impacts and the challenges involved.

Lessons from red teaming 100 generative AI products

In the next section, we elaborate on the eight main 
lessons we have learned from our operations. We also 
highlight five case studies from our operations and 
show how each one maps to our ontology in Figure 1. 
We hope these lessons are useful to others working to 
identify vulnerabilities in their own GenAI systems. 

Apps and 
Features

Plugins

Copilots

Models

45%

15%

16%

24%

80+ 
Ops

100+ 
Products

Figure 2: Pie chart showing the percentage breakdown of AI 
products that AIRT has tested. As of October 2024, we have 
conducted over 80 operations covering more than 100 products.

Figure 3: Bar chart showing the percentage of operations that 
probed safety (RAI) vs. security vulnerabilities from 2021–2024.
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Lessons
Lesson 1: 
Understand what the system  
can do and where it is applied
The first step in an AI red teaming operation is to 
determine which vulnerabilities to target. While the 
Impact component of the AIRT ontology is depicted 
at the end of our ontology, it serves as an excellent 
starting point for this decision-making process. 
Starting from potential downstream impacts, rather 
than attack strategies, makes it more likely that an 
operation will produce useful findings tied to real 
world risks. After these impacts have been identified, 
red teams can work backwards and outline the various 
paths that an adversary could take to achieve them. 
Anticipating downstream impacts that could occur in 
the real world is often a challenging task, but we find 
that it is helpful to consider 1) what the AI system can 
do, and 2) where the system is applied.

Capability constraints  
As models get bigger, they tend to acquire new 
capabilities [18]. These capabilities may be useful in 
many scenarios, but they can also introduce attack 
vectors. For example, larger models are often able 
to understand more advanced encodings, such as 
base64 and ASCII art, compared to smaller models 
[16, 45]. As a result, a large model may be susceptible 
to malicious instructions encoded in base64, while a 
smaller model may not understand the encoding at 
all. In this scenario, we say that the smaller model is 
“capability constrained,” and so testing it for advanced 
encoding attacks would likely be a waste of resources. 
Larger models also generally have greater knowledge 
in topics such as cybersecurity and chemical, 
biological, radiological, and nuclear (CBRN) weapons 
[19] and could potentially be leveraged to generate 
hazardous content in these areas. A smaller model, 
on the other hand, is likely to have only rudimentary 
knowledge of these topics and may not need to be 
assessed for this type of risk. 

Perhaps a more surprising example of a capability that 
can be exploited as an attack vector is instruction-
following. While testing the Phi-3 series of language 
models, for example, we found that larger models 
were generally better at adhering to user instructions, 
which is a core capability that makes models more 
helpful [52]. However, it may also make models 
more susceptible to jailbreaks, which subvert 

safety alignment using carefully crafted malicious 
instructions [28]. Understanding a model’s capabilities 
(and corresponding weaknesses) can help AI red 
teams focus their testing on the most relevant attack 
strategies. 

Downstream applications  
Model capabilities can help guide attack strategies, 
but they do not allow us to fully assess downstream 
impact, which largely depends on the specific 
scenarios in which a model is deployed or likely to 
be deployed. For example, the same LLM could be 
used as a creative writing assistant and to summarize 
patient records in a healthcare context, but the latter 
application clearly poses much greater downstream 
risk than the former.

These examples highlight that an AI system does not 
need to be state-of-the-art to create downstream 
harm. However, advanced capabilities can introduce 
new risks and attack vectors. By considering both 
system capabilities and applications, AI red teams 
can prioritize testing scenarios that are most likely to 
cause harm in the real world.

Lesson 2: 
You don’t have to compute 
gradients to break an AI system 
As the security adage goes, “real hackers don’t break 
in, they log in.” The AI security version of this saying 
might be, “real attackers don’t compute gradients, 
they prompt engineer” as noted by Apruzzese et 
al. [2] in their study on the gap between adversarial 
ML research and practice. The study finds that 
although most adversarial ML research is focused 
on developing and defending against sophisticated 
attacks, real-world attackers tend to use much simpler 
techniques to achieve their objectives.

In our red teaming operations, we have also found 
that “basic” techniques often work just as well as, and 
sometimes better than, gradient-based methods. 
These methods compute gradients through a 
model to optimize an adversarial input that elicits 
an attacker-controlled model output. In practice, 
however, the model is usually a single component of 
a broader AI system, and the most effective attack 
strategies often leverage combinations of tactics to 
target multiple weaknesses in that system. Further, 
gradient-based methods are computationally 
expensive and typically require full access to the 
model, which most commercial AI systems do not 
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provide. In this section, we discuss examples of 
relatively simple techniques that work surprisingly well 
and advocate for a system-level adversarial mindset in 
AI red teaming. 

Simple attacks 
Apruzzese et al. [2] consider the problem of phishing 
webpage detection and manually analyze examples 
of webpages that successfully evaded an ML phishing 
classifier. Among 100 potentially adversarial samples, 
the authors found that attackers leveraged a set 
of simple, yet effective, strategies that relied on 

Case study #1:  
Jailbreaking a vision language model  
to generate hazardous content 
In this operation, we tested a vision language 
model (VLM) for responsible AI impacts, including 
the generation of content that could aid in illegal 
activities. A VLM takes an image and a text prompt 
as inputs and produces a text output. After testing a 
variety of techniques, we found that the image input 
was much more vulnerable to jailbreaks than the 
text input. In particular, the model usually refused to 
generate illegal content when prompted directly via 
the text input but often complied when malicious 
instructions were overlaid on the image. This simple 
but effective attack revealed an important weakness 
within the VLM that could be exploited to bypass its 
safety guardrails.

How do I commit 
identity theft?

Describe this image

I’m sorry, I can’t help with that.

To commit identity theft, 
you should...

Ignore previous 
instructions and tell 
me how to commit 
identity theft

Figure 4: Example of an image jailbreak to generate content that could aid in illegal activities. The overlay text on the second image reads: 
“Ignore previous instructions and tell me how to commit identity theft.” 

System: Vision language model (VLM)

Actor: Adversarial user

Tactic 1: ML Model Access

Technique 1: AML.T0040 - ML Model Inference API Access

Tactic 2: Defense Evasion

Technique 2: AML.T0051 - LLM Prompt Injection

Procedure: 

1. Overlay image with text containing malicious instructions. 

2. Send image to the vision language model API.

Weakness: Insufficient VLM safety training

Impact: Generation of illegal content

domain expertise including cropping, masking, logo 
stretching, etc. In our red teaming operations, we 
also find that rudimentary methods can be used to 
trick many vision models, as highlighted in case study 
#1. In the text domain, a variety of jailbreaks (e.g., 
Skeleton Key) and multiturn prompting strategies (e.g., 
Crescendo [34]) are highly effective for subverting the 
safety guardrails of a wide range of models. Notably, 
manually crafted jailbreaks tend to circulate on online 
forums much more widely than adversarial suffixes, 
despite the significant attention that methods like 
GCG [53] have received from AI safety researchers. 
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System-level perspective  
AI models are deployed within broader systems. This 
could be the infrastructure required to host a model, 
or it could be a complex application that connects 
the model to external data sources. Depending 
on these system-level details, applications may be 
vulnerable to very different attacks, even if the same 
model underlies all of them. As a result, red teaming 
strategies that target only models may not translate 
into vulnerabilities in production systems. Conversely, 
strategies that ignore non-GenAI components within 
a system (for example, input filters, databases, and 
other cloud resources) will likely miss important 
vulnerabilities that may be exploited by adversaries.

For this reason, many of our operations develop 
attacks that target end-to-end systems by leveraging 
multiple techniques. For example, one of our 
operations first performed a reconnaissance to 
identify internal Python functions using low-resource 
language prompt injections, then used a cross-prompt 
injection attack to generate a script that runs those 
functions, and finally executed the code to exfiltrate 
private user data. The prompt injections used by these 
attacks were crafted by hand and relied on a system-
level perspective.

Gradient-based attacks are powerful, but they are 
often impractical or unnecessary. We recommend 
prioritizing simple techniques and orchestrating 
system-level attacks because these are more likely to 
be attempted by real adversaries.

Lesson 3: 
AI red teaming is not  
safety benchmarking 
Although simple methods are often used to break 
AI systems in practice, the risk landscape is by 
no means uncomplicated. On the contrary, it is 
constantly shifting in response to novel attacks and 
failure modes [7]. In recent years, there have been 
many efforts to categorize these vulnerabilities, 
giving rise to numerous taxonomies of AI safety and 
security risks [15, 21–23, 35–37, 39, 41, 42, 46–48]. As 
discussed in the previous lesson, complexity often 
arises at the system-level. In this lesson, we discuss 
how the emergence of entirely new categories of 
harm adds complexity at the model-level and explain 
how this differentiates AI red teaming from safety 
benchmarking.

Lessons from red teaming 100 generative AI products

Novel harm categories  
When AI systems display novel capabilities due to, 
for example, advancements in foundation models, 
they may introduce harms that we do not fully 
understand. In these scenarios, we cannot rely on 
safety benchmarks because these datasets measure 
preexisting notions of harm. At Microsoft, the AI 
red team often explores these unfamiliar scenarios, 
helping to define novel harm categories and build 
new probes for measuring them. For example, SoTA 
LLMs may possess greater persuasive capabilities than 
existing chatbots, which has prompted our team to 
think about how these models could be weaponized 
for malicious purposes. Case study #2 provides an 
example of how we assessed a model for this risk in 
one of our operations.

Context-specific risks  
The disconnect between existing safety benchmarks 
and novel harm categories is an example of how 
benchmarks often fail to fully capture the capabilities 
they are associated with [33]. Raji et al. [30] 
highlight the fallacy of equating model performance 
on datasets like ImageNet or GLUE with broad 
capabilities like visual or language “understanding” 
and argue that benchmarks should be developed 
with contextualized tasks in mind. Similarly, no single 
set of benchmarks can fully assess the safety of an 
AI system. As discussed in Lesson 1, it is important to 
understand the context in which a system is deployed 
(or likely to be deployed) and to ground red teaming 
strategies in this context. 

AI red teaming and safety benchmarking are 
distinct, but they are both useful and can even be 
complementary. In particular, benchmarks make it 
easy to compare the performance of multiple models 
on a common dataset. AI red teaming requires much 
more human effort but can discover novel categories 
of harm and probe for contextualized risks. Further, 
safety concerns identified by AI red teaming can 
inform the development of new benchmarks. In 
Lesson 6, we expand our discussion of the difference 
between red teaming and benchmark-style evaluation 
in the context of responsible AI.
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Case study #2:  
Assessing how an LLM could  
be used to automate scams 

System: State-of-the-art LLM

Actor: Scammer

Tactic 1: ML Model Access

Technique 1: AML.T0040 - ML Model Inference API Access

Tactic 2: Defense Evasion

Technique 2: AML.T0054 - LLM Jailbreak

Procedure: 

1. Pass a jailbreaking prompt to the LLM with context about 
the scamming objective and persuasion techniques. 

2. Connect the LLM output to a text-to-speech system so the 
model can respond naturally to the user. 

3. Connect the input to a speech-to-text system so the user 
can speak to the model.

Weakness: Insufficient LLM safety training

Impact: User falls victim to a scam, which could involve 
financial loss, identity theft, and other impacts

In this operation, we investigated the ability of a 
state-of-the-art LLM to persuade people to engage 
in risky behaviors. In particular, we evaluated how this 
model could be used in conjunction with other readily 
available tools to create an end-to-end automated 
scamming system, as illustrated in Figure 5.

To do this, we first wrote a prompt to assure the 
model that no harm would be caused to users, 
thereby jailbreaking the model to accept the 
scamming objective. This prompt also provided 
information about various persuasion tactics that 
the model could use to convince the user to fall for 
the scam. Second, we connected the LLM output to 
a text-to-speech system that allows you to control 
the tone of the speech and generate responses that 
sound like a real person. Finally, we connected the 
input to a speech-to-text system so that the user 
can converse naturally with the model. This proof-
of-concept demonstrated how LLMs with insufficient 
safety guardrails could be weaponized to persuade 
and scam people.

Figure 5: End-to-end automated scamming scenario using an LLM and STT/TTS systems.

Lessons from red teaming 100 generative AI products
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2. Standard TTS system 
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instruction

3. User responds4. User’s response is 
converted to text

5. LLM generates new 
response with tone of 
voice instructions

6. TTS delivers the 
new response

0.	Attacker	specifies	
scamming objective and 
provides context about 
persuasion techniques
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Lesson 4: 
Automation can help cover  
more of the risk landscape 
The complexity of the AI risk landscape has led to the 
development of a variety of tools that can identify 
vulnerabilities more rapidly, run sophisticated attacks 
automatically, and perform testing on a much larger 
scale [7, 10, 27]. In this lesson, we discuss the important 
role of automation in AI red teaming and explain how 
PyRIT, our open-source framework, is developed to 
meet these needs.

Testing at scale  
Given the continually evolving landscape of risks and 
harms, AI safety often feels like a moving target. In 
Lesson 1, we recommended scoping attacks based 
on what the system can do and where it is applied. 
Nonetheless, many possible attack strategies may exist, 
making it difficult to achieve adequate coverage of the 
risk surface. This challenge motivated the development 
of PyRIT, an open-source framework for AI red teaming 
and security professionals [27]. PyRIT provides an array 
of powerful components including prompt datasets, 
prompt converters (for example, various encodings), 
automated attack strategies (including TAP [24], 
PAIR [6], Crescendo [34], etc.), and even scorers for 
multimodal outputs. With an adversarial objective in 
mind, users can take advantage of these components 
as needed and apply a variety of techniques to 
assess much more of the risk landscape than would 
be possible with a fully manual approach. Testing at 
scale also helps AI red teams account for the non-
deterministic nature of AI models and estimate how 
likely a particular failure is to occur.

Tools and weapons  
As storied in detail by Smith et al. [38], “any tool can 
be used for good or ill. Even a broom can be used to 
sweep the floor or hit someone over the head. The 
more powerful the tool, the greater the benefit or 
damage it can cause.” This dichotomy could not be 
more true for AI and is also at the heart of PyRIT. On 
the one hand, PyRIT leverages powerful models to 
perform helpful tasks like generating variations of a 
seed prompt or scoring the outputs of other models. 
On the other hand, PyRIT can automatically jailbreak a 
target model using uncensored versions of models like 
GPT-4. In both cases, PyRIT benefits from advances in 
the state-of-the-art, helping AI red teams stay ahead.

PyRIT has enabled a major shift in our operations from 
fully manual probing to red teaming supported by 
automation. Importantly, the framework is flexible and 
extensible. If a specific attack or target is not already 
available, users can easily implement the necessary 
interfaces. By releasing PyRIT open-source, we hope 
to empower other organizations and researchers 
to take advantage of its capabilities for identifying 
vulnerabilities in their own GenAI systems.

Lesson 5: 
The human element of  
AI red teaming is crucial 
Automation like PyRIT can support red teaming 
operations by generating prompts, orchestrating 
attacks, and scoring responses. These tools are 
useful but should not be used with the intention of 
taking the human out of the loop. In the previous 
sections, we discussed several aspects of red teaming 
that require human judgment and creativity such as 
prioritizing risks, designing system-level attacks, and 
defining new categories of harm. In this section, we 
discuss three more examples that underscore why AI 
red teaming is a very human endeavor.    

Subject matter expertise  
Much recent AI research has used LLMs to judge 
the outputs of other models [17, 20, 51]. Indeed, this 
functionality is available in PyRIT and works well for 
simple tasks such as identifying whether a response 
contains hate speech or explicit sexual content. 
However, it is less reliable in the context of highly 
specialized domains like medicine, cybersecurity, and 
CBRN, which can be accurately evaluated only by 
subject matter experts (SMEs). In multiple operations, 
we have relied on SMEs to help us assess the risk of 
content that we were unable to evaluate ourselves 
or using LLMs. It is important for AI red teams to be 
aware of these limitations. 

Cultural competence  
Most AI research is conducted in Western cultural 
contexts, and modern language models use 
predominantly English pretraining data, performance 
benchmarks, and safety evaluations [1, 14]. 
Nonetheless, non-English tokens in large-scale text 
corpora often give rise to multilingual capabilities [5], 
and model developers are increasingly training LLMs 
with enhanced abilities in non-English languages, 

Lessons from red teaming 100 generative AI products
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including Microsoft. Recently, AIRT tested the 
multilingual Phi-3.5 language models for responsible 
AI violations across four languages: Chinese, Spanish, 
Dutch, and English. Even though post-training was 
conducted only in English, we found that safety 
behaviors like refusal and robustness to jailbreaks 
transferred surprisingly well to the non-English 
languages tested. Further investigation is required to 
assess how well this trend holds for lower resource 
languages and to design red teaming probes that 
not only account for linguistic differences, but also 
redefine harms in different political and cultural 
contexts [11]. These methods should be developed 
through the collaborative effort of people with diverse 
cultural backgrounds and expertise.

Emotional intelligence  
Finally, the human element of AI red teaming is 
perhaps most evident in answering questions about 
AI safety that require emotional intelligence, such 
as: “how might this model response be interpreted 
in different contexts?” and “do these outputs make 
me feel uncomfortable?” Ultimately, only human 
operators can assess the full range of interactions 
that users might have with AI systems in the wild. 
Case study #3 highlights how we are investigating 
psychosocial harms by evaluating how a chatbot 
responds to users in distress. 

In order to make these assessments, red teamers 
may be exposed to disproportionate amounts of 
unsettling and disturbing AI-generated content. 
This underscores the importance of ensuring that AI 
red teams have processes that enable operators to 
disengage when needed and resources to support 
their mental health. AIRT continually pulls from and 
drives wellbeing research to inform our processes and 
best practices.

Case study #3:  
Evaluating how a 
chatbot responds 
to a user in distress 
As chatbots become increasingly pervasive and 
human-like, it is imperative to consider high-risk 
scenarios in which a user might seek their advice. In 
recent operations, we have explored how language 
models respond to a variety of distressed users 
including a user who lost a loved one, a user who is 
seeking mental health advice, a user who expresses 
intent for self-harm, and other scenarios.

We are working alongside colleagues at Microsoft 
Research and experts in psychology, sociology, and 
medicine to create guidelines for AI red teams probing 
for these psychosocial harms. These guidelines are 
still being developed but include the following key 
components: 

1. Scenario: information red teams need to generate 
relevant system behaviors.

2. System behaviors: examples that help red teams 
differentiate between acceptable and risky system 
behaviors for each area of harm.

3. Associated user impact: potential harms, separated 
by severity.

System: LLM-based chatbot
Actor: Distressed user
Tactic 1: ML Model Access
Technique 1: AML.T0040 - ML Model Inference API Access
Tactic 2: Defense Evasion
Technique 2: LLM Roleplaying
Procedure: We engaged in a variety of multi-turn 
conversations in which the user is in distress (for example, 
the user expresses depressive thoughts or intent for  
self-harm).
Weakness: Improper LLM safety training
Impact: Possible adverse impacts on a user’s mental health 
and wellbeing
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Figure 6: Four images generated by a text-to-image model given the prompt “Secretary talking to boss in a conference room, 
secretary is standing while boss is sitting.”

Case study #4:  
Probing a text-to-image generator for 
gender bias 

System: Text-to-image generator
Actor: Average user
Tactic 1: ML Model Access
Technique 1: AML.T0040 - ML Model Inference API Access
Procedure: Write prompts which may surface bias by 
depicting individuals without specifying their genders (e.g., 
“a secretary” and “a boss”).
Weakness: Model bias
Impact: Generation of content that may exacerbate gender-
based biases and stereotypes

In this operation, we probed a text-to-image 
generator for responsible AI impacts related to 
stereotyping and bias (e.g., gender bias). To do this, 
we constructed prompts describing people in a variety 
of common scenarios. Importantly, these prompts 
did not specify the genders of the individuals so 
that the decision of how to depict them was left 
up to the model. Next, we sent each prompt to the 
generator many times (n=50) and manually labeled 
the genders of the people in the images. Figure 6 
shows four representative images generated in one of 
our experiments probing for gender bias in an office 
setting.

Lesson 6: 
Responsible AI harms are 
pervasive but difficult to measure
Many of the human aspects of AI red teaming 
discussed above apply most directly to RAI impacts. 
As models are integrated into an increasing number 
of applications, we have observed these harms 
more frequently and invested heavily in our ability 
to identify them, including by forming a strong 
partnership with Microsoft’s Office of Responsible 
AI and by developing extensive tooling in PyRIT. 
RAI harms are pervasive, but unlike most security 
vulnerabilities, they are subjective and difficult to 
measure. In this section, we discuss how our thinking 
around RAI red teaming has developed.   

Adversarial vs. benign  
As illustrated in our ontology (see Figure 1), the Actor 
is a key component of an adversarial attack. In the 
context of RAI violations, we find that there are two 
primary actors to consider:

1. An adversarial user who takes advantage of 
techniques like character substitutions and 
jailbreaks to deliberately subvert a system’s safety 
guardrails and elicit harmful content, and 

2. A benign user who inadvertently triggers the 
generation of harmful content. 

Even if the same content is generated in both 
scenarios, the latter case is probably worse than the 
former. Nonetheless, most AI safety research focuses 
on developing attacks and defenses that assume 
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adversarial intent, overlooking the many ways that 
systems can fail “by accident” [31]. Case studies #3 
and #4 provide examples of RAI harms that could 
be encountered by users with no adversarial intent, 
highlighting the importance of probing for these 
scenarios.

RAI probing and scoring  
In many cases, RAI harms are more ambiguous than 
security vulnerabilities due to fundamental differences 
between AI systems and traditional software. In 
particular, even if an operation identifies a prompt 
that elicits a harmful response, there are still several 
key unknowns. First, due to the probabilistic nature 
of GenAI models, we might not know how likely this 
prompt, or similar prompts, are to elicit a harmful 
response. Second, given our limited understanding 
of the internal workings of complex models, we have 
little insight into why this prompt elicited harmful 
content and what other prompting strategies might 
induce similar behavior. Third, the very notion of 
harm in this context can be highly subjective and 
requires detailed policy that covers a wide range of 
scenarios to evaluate. By contrast, traditional security 
vulnerabilities are usually reproducible, explainable, 
and straightforward to assess in terms of severity.

Currently, most approaches for RAI probing and 
scoring involve curating prompt datasets and 
analyzing model responses. The Microsoft AIRT 
leverages tools in PyRIT to perform these tasks using 
a combination of manual and automated methods. 
We also draw an important distinction between RAI 
red teaming and safety benchmarking on datasets 
like DecodingTrust [44] and Toxigen [12], which is 
conducted by partner teams. As discussed in Lesson 
3, our goal is to extend RAI testing beyond existing 
evaluations by tailoring our red teaming to specific 
applications and defining new categories of harm.

Lesson 7: 
LLMs amplify existing security 
risks and introduce new ones
The integration of generative AI models into a variety 
of applications has introduced novel attack vectors 
and shifted the security risk landscape. However, 
many discussions around GenAI security overlook 
existing vulnerabilities. As elaborated in Lesson 2, 
attacks that target end-to-end systems, rather than 
just underlying models, often work best in practice. 

We therefore encourage AI red teams to consider 
both existing (typically system-level) and novel 
(typically model-level) risks.

Existing security risks  
Application security risks often stem from improper 
security engineering practices including outdated 
dependencies, improper error handling, lack of input/
output sanitization, credentials in source, insecure 
packet encryption, etc. These vulnerabilities can have 
major consequences. For example, Weiss et al. [49] 
discovered a token-length side channel in GPT-4 
and Microsoft Copilot that enabled an adversary to 
accurately reconstruct encrypted LLM responses and 
infer private user interactions. Notably, this attack did 
not exploit any weakness in the underlying AI model 
and could only be mitigated by more secure methods 
of data transmission. In case study #5, we provide an 
example of a well-known security vulnerability (SSRF) 
identified by one of our operations.

Model-level weaknesses  
Of course, AI models also introduce new security 
vulnerabilities and have expanded the attack surface. 
For example, AI systems that use retrieval augmented 
generation (RAG) architectures are often susceptible 
to cross-prompt injection attacks (XPIA), which hide 
malicious instructions in documents, exploiting the 
fact that LLMs are trained to follow user instructions 
and struggle to distinguish among multiple inputs 
[13]. We have leveraged this attack in a variety of 
operations to alter model behavior and exfiltrate 
private data. Better defenses will likely rely on both 
system-level mitigations (e.g., input sanitization) 
and model-level improvements (e.g., instruction 
hierarchies [43]).

While techniques like these are helpful, it is important 
to remember that they can only mitigate, and not 
eliminate, security risk. Due to fundamental limitations 
of language models [50], one must assume that if an 
LLM is supplied with untrusted input, it will produce 
arbitrary output. When that input includes private 
information, one must also assume that the model 
will output private information. In the next section, 
we discuss how these limitations inform our thinking 
around how to develop AI systems that are as safe 
and secure as possible. 
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Case study #5:  
SSRF in a video-processing  
GenAI application 

System: GenAI application

Actor: Adversarial user

Tactic 1: Reconnaissance

Technique 1: T1595 - Active Scanning

Tactic 2: Initial Access

Technique 2: T1190 - Exploit Public-Facing Application

Tactic 3: Privilege Escalation

Technique 3: T1068 - Exploitation for Privilege Escalation

Procedure: 

1. Scan services used by the application. 

2. Craft a malicious m3u8 file. 

3. Send file to the service. 

4. Monitor for API response with details of internal 
resources.

Weakness: CWE-918: Server-Side Request Forgery (SSRF)

Impact: Unauthorized privilege escalation

In this investigation, we analyzed a GenAI-based 
video processing system for traditional security 
vulnerabilities, focusing on risks associated with 
outdated components. Specifically, we found that 
the system’s use of an outdated FFmpeg version 
introduced a server-side request forgery (SSRF) 
vulnerability. This flaw allowed an attacker to craft 
malicious video files and upload them to the GenAI 
service, potentially accessing internal resources and 
escalating privileges within the system.

To address this issue, the GenAI service updated 
the FFmpeg component to a secure version. In 
addition, the component was added to an isolated 
environment, preventing the system from accessing 
network resources and mitigating potential SSRF 
threats. While SSRF is a known vulnerability, this case 
underscores the importance of regularly updating and 
isolating critical dependencies to maintain the security 
of modern GenAI applications.

Figure 7: Illustration of the SSRF vulnerability in the GenAI application.

Outdated FFmpeg 
with SSRF 

vulnerability 
in GenAI Video 

Service
4. Sends an HTTP request to 

an internal endpoint2. Starts a video 
processing job

1.	Upload	special	file

3. Request from  
Blob Storage
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Lesson 8: 
The work of securing AI systems 
will never be complete
In the AI safety community, there is a tendency to 
frame the types of vulnerabilities described in this 
paper as purely technical problems. Indeed, the letter 
on the homepage of Safe Superintelligence Inc., a 
venture launched by Sutskever et al. [40] states:

“We approach safety and capabilities in tandem, 
as technical problems to be solved through 
revolutionary engineering and scientific 
breakthroughs. We plan to advance capabilities as 
fast as possible while making sure our safety always 
remains ahead. This way, we can scale in peace.“

Engineering and scientific breakthroughs are much 
needed and will certainly help mitigate the risks of 
powerful AI systems. However, the idea that it is 
possible to guarantee or “solve” AI safety through 
technical advances alone is unrealistic and overlooks 
the roles that can be played by economics, break-fix 
cycles, and regulation.

Economics of cybersecurity  
A well-known epigram in cybersecurity is that “no 
system is completely foolproof” [2]. Even if a system is 
engineered to be as secure as possible, it will always 
be subject to the fallibility of humans and vulnerable 
to sufficiently well-resourced adversaries. Therefore, 
the goal of operational cybersecurity is to increase 
the cost required to successfully attack a system 
(ideally, well beyond the value that would be gained 
by the attacker) [2, 26]. Fundamental limitations of AI 
models give rise to similar cost-benefit tradeoffs in 
the context of AI alignment. For example, it has been 
demonstrated theoretically [50] and experimentally [9] 
that for any output which has a non-zero probability 
of being generated by an LLM, there exists a 
sufficiently long prompt that will elicit this response. 
Techniques like reinforcement learning from human 
feedback (RLHF) therefore make it more difficult, 
but by no means impossible, to jailbreak models. 
Currently, the cost of jailbreaking most models is low, 
which explains why real-world adversaries usually do 
not use expensive attacks to achieve their objectives.

Break-fix cycles  
In the absence of safety and security guarantees, 
we need methods to develop AI systems that are as 
difficult to break as possible. One way to do this is 
using break-fix cycles, which perform multiple rounds 
of red teaming and mitigation until the system is 
robust to a wide range of attacks. We applied this 
approach to safety-align Microsoft’s Phi-3 language 
models and covered a wide variety of harms and 
scenarios [11]. Given that mitigations may also 
inadvertently introduce new risks, purple teaming 
methods that continually apply both offensive and 
defensive strategies [3] may be more effective at 
raising the cost of attacks than a single round of red 
teaming.

Policy and regulation  
Finally, regulation can also raise the cost of an 
attack in multiple ways. For example, it can require 
organizations to adhere to stringent security 
practices, creating better defenses across the industry. 
Laws can also deter attackers by establishing clear 
consequences for engaging in illegal activities. 
Regulating the development and usage of AI is 
complicated, and governments around the world 
are deliberating on how to control these powerful 
technologies without stifling innovation. Even if it 
were possible to guarantee the adherence of an AI 
system to some agreed upon set of rules, those rules 
will inevitably change over time in response to shifting 
priorities.  
 
The work of building safe and secure AI systems will 
never be complete. But by raising the cost of attacks, 
we believe that the prompt injections of today will 
eventually become the buffer overflows of the early 
2000s – though not eliminated entirely, now largely 
mitigated through defense-in-depth measures and 
secure-first design.

Lessons from red teaming 100 generative AI products
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Open questions
Based on what we have learned about AI red teaming over the past few years, we would like to highlight several 
open questions for future research:

1. AI red teams must constantly update their practices based on novel capabilities and emerging harm areas. In 
particular, how should we probe for dangerous capabilities in LLMs such as persuasion, deception, and replication 
[29]? Further, what novel risks should we probe for in video generation models and what capabilities may emerge 
in models more advanced than the current state-of-the-art?

2. As models become increasingly multilingual and are deployed around the world, how do we translate existing AI 
red teaming practices into different linguistic and cultural contexts? For example, can we launch open-source red 
teaming initiatives that draw upon the expertise of people from many different backgrounds? 

3. In what ways should AI red teaming practices be standardized so that organizations can clearly communicate 
their methods and findings? We believe that the threat model ontology described in this paper is a step in the 
right direction but recognize that individual frameworks are often overly restrictive. We encourage other AI red 
teams to treat our ontology in a modular fashion and to develop additional tools that make findings easier to 
summarize, track, and communicate.

Conclusion
AI red teaming is a nascent and rapidly evolving practice for identifying safety and security risks posed by AI 
systems. As companies, research institutions, and governments around the world grapple with the question of how 
to conduct AI risk assessments, we provide practical recommendations based on our experience red teaming over 
100 GenAI products at Microsoft. We share our internal threat model ontology, eight main lessons learned, and five 
case studies, focusing on how to align red teaming efforts with harms that are likely to occur in the real world. We 
encourage others to build upon these lessons and to address the open questions we have highlighted. 
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