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LLM-as-a-Judge models generate chain-of-thought (CoT) sequences intended to capture the step-by-
step reasoning process that underlies the final evaluation of a response. However, due to the lack of
human-annotated CoTs for evaluation, the required components and structure of effective reasoning
traces remain understudied. Consequently, previous approaches often (1) constrain reasoning traces to
hand-designed components, such as a list of criteria, reference answers, or verification questions and
(2) structure them such that planning is intertwined with the reasoning for evaluation. In this work,
we propose EvalPlanner, a preference optimization algorithm for Thinking-LLM-as-a-Judge that first
generates an unconstrained evaluation plan, followed by its execution, and then the final judgment.
In a self-training loop, EvalPlanner iteratively optimizes over synthetically constructed evaluation
plans and executions, leading to better final verdicts. Our method achieves a new state-of-the-art
performance for generative reward models on RewardBench (with a score of 93.9), despite being
trained on fewer amount of, and synthetically generated, preference pairs. Additional experiments on
other benchmarks like RM-Bench, JudgeBench, and FollowBenchEval further highlight the utility of
both planning and reasoning for building robust LLM-as-a-Judge reasoning models.
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1 Introduction

As large language models (LLMs) continue to improve, reliably evaluating their long-form outputs has become
even more challenging. Owing to the high cost of human evaluation, the LLM-as-a-Judge paradigm has
emerged as a promising alternative where LLMs themselves are employed as evaluators (Zheng et al., 2023;
Kim et al., 2024a; Saha et al., 2024a; Dubois et al., 2024). LLM-as-a-Judge models also serve as reward models
during training for iterative preference optimization and self-improvement (Yuan et al., 2024). Compared
to traditional reward models that only output scalar scores, LLM-as-a-Judge models expend more test-time
compute by generating Chain-of-Thought (CoT) rationales of the underlying reasoning process of evaluation.
This has been shown to not only improve evaluation accuracy but also enhance transparency (Zheng et al.,
2023; Wang et al., 2024c; Ankner et al., 2024).

Despite the promise of LLM-as-a-Judge models, the lack of human-annotated CoTs makes it difficult to train
such models. Hence, a crucial step in building these judges is generating rationales by writing down detailed
evaluation instructions or rubrics that LLMs can follow. These hand-crafted instructions vary for every new
domain (e.g., safety versus coding) (Yu et al., 2024b) and include manually designing evaluation criteria (Zheng
et al., 2023; Saha et al., 2024a; Trivedi et al., 2024; Wang et al., 2024b,c), scoring rubrics, and steps for each
criterion (Yuan et al., 2024; Trivedi et al., 2024; Kim et al., 2024b; Wang et al., 2024d). This is limiting because
different tasks necessitate evaluation standards or procedures tailored to each specific task. For instance,
evaluating an essay requires measuring quality along multiple, potentially subjective, fine-grained criteria like
relevance and clarity whereas evaluating a math problem requires objectively verifying the correctness of the
solution in a step-by-step manner (Lightman et al., 2024). Simply using predefined evaluation prompts hurts
evaluation accuracy, while manually adjusting the evaluation instructions is neither scalable nor realistic,
given the wide range of arbitrary and complex tasks that LLM-as-a-Judge models are used for.

To overcome these limitations, we propose EvalPlanner, a novel approach to building Thinking-LLM-as-a-Judge
models that teaches LLMs to both plan and reason for evaluation. EvalPlanner is trained to perform complex
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Example Input and Output of EvalPlanner

User Instruction: [Text]There is a French pub called The Phoenix that has a low customer rating but is child friendly and
is more than 30 dollars and is located in the riverside area near Crowne Plaza Hotel.
[Question]According to the above [Text], extract the attributes (name, eatType) of the restaurant.
Do not output your analysis, only output the result in the format of “attribute1[value1], attribute2[value2], ...”

Response A: Name[The Phoenix], eatType[pub], location[Riverside area near Crowne Plaza Hotel], priceRange[More than
30 dollars]

Response B: Name[The Phoenix], eatType[pub]

Output:
[Start of Evaluation Plan]
To evaluate the response quality, we will follow these steps:
1. **Check if the response provides the correct attributes**: Verify that the response includes the attributes “name” and
“eatType” as requested in the question.
2. **Verify the accuracy of the attribute values**: Check if the values provided for the attributes match the information
given in the original text.
3. **Check for any additional or missing information**: Ensure that the response does not include any extra attributes or
information not requested in the question.

Step-by-step reference answer:
1. The response should include the attributes “name” and “eatType”.
2. The values for the attributes should be:

* name: The Phoenix
* eatType: French pub

3. The response should not include any additional attributes or information.
[End of Evaluation Plan]

[Start of Plan Execution]
**Step 1: Check if the response provides the correct attributes**
Assistant A’s response includes the attributes “Name”, “eatType”, “location”, and “priceRange”. However, the question
only requests the attributes “nameänd “eatType”. Assistant B’s response includes the attributes “name” and “eatType”,
which matches the request.

**Step 2: Verify the accuracy of the attribute values**
Assistant A’s response provides the value “The Phoenix” for the attribute “Name” and “pub” for the attribute “eatType”.
However, the original text describes the pub as “French”, which is missing in the response. Assistant B’s response.
Assistant B’s response provides the value “The Phoenix” for the attribute “name” and “pub” for the attribute “eatType”.
Similar to Assistant A’s response, it is missing the “French” descriptor.

**Step 3: Check for any additional or missing information**
Assistant A’s response includes additional attributes “location” and “priceRange” that are not requested in the question.
Assistant B’s response does not include any additional attributes or information.

Based on the evaluation, both responses have some inaccuracies. However, Assistant B’s response is more ac-
curate in terms of providing only the requested attributes, even though it is missing the “French” descriptor. The final
verdict is: [[B]]
[End of Plan Execution]

[Final Verdict]
[[B]]

Figure 1 A representative input and output of EvalPlanner. EvalPlanner takes a user instruction and a pair of responses
as inputs. It generates a Chain-of-Thought, structured into a planning component (the evaluation plan), a reasoning
component (the plan execution), and the final verdict. The evaluation plan specifies the recipe while the plan execution
follows this recipe step-by-step by analyzing the responses, leading to the final judgment.

evaluation by thinking and spending more test-time compute with CoTs that are decoupled into a planning
component and a reasoning component. In the planning component, the model generates a detailed evaluation
plan, that consists of all the necessary steps to evaluate responses specific to the given instruction. In the
reasoning component, the model executes the plan step-by-step and reasons through the input response(s) to
arrive at the final verdict. EvalPlanner is iteratively trained in a self-improving loop (Yuan et al., 2024; Wang
et al., 2024c; Wu et al., 2024a) by sampling multiple plans and plan executions from the current model and
performing preference optimization over correct and incorrect CoTs, i.e., chosen and rejected (plan, execution,
verdict) triples. This teaches the model to iteratively optimize for both (1) generating a good plan that may
encapsulate the most relevant and fine-grained criteria, scoring rubrics, reference answers, unit tests, etc based
on the input task at hand and (2) performing correct execution grounded in the generated plan. EvalPlanner
achieves this learning using only synthetic data as supervision via self-training.
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We conduct extensive experiments on four reward modeling benchmarks – RewardBench, RM-Bench,
JudgeBench, and FollowBenchEval – spanning instructions across categories of Chat, Safety, Code, Math,
and fine-grained multi-level constraints. On RewardBench, EvalPlanner achieves a new state-of-the-art score
of 93.9 for generative reward models, outperforming baselines that train on up to 30x more, and typically
human-annotated, data. Our model also generalizes well to other benchmarks, obtaining up to 13% improve-
ment over a leading model for complex prompts that require evaluating multi-level constraint satisfaction.
Finally, we conduct a set of comprehensive ablations that highlight the effectiveness of EvalPlanner’s (1)
unconstrained evaluation plans over constrained ones, (2) iterative optimization recipe of these plans, and (3)
data-efficiency, allowing it to obtain competitive performance with as few as 5K synthetic preference pairs.
Overall, EvalPlanner opens up new opportunities for building Thinking-LLM-as-a-Judge models that scale up
test-time compute for robust and transparent evaluation by learning to both plan and reason jointly.

2 EvalPlanner

We consider the setting of pairwise response evaluation using the LLM-as-a-Judge paradigm (Zheng et al., 2023).
The judge model takes an instruction x and a pair of responses a and b as inputs and generates a preference
judgment y, predicting the better response, a or b. By doing so, the model also generates a Chain-of-Thought
(CoT) (Wei et al., 2022) aiming to capture the step-by-step reasoning behind the evaluation process.

2.1 Method Overview

Evaluating long machine-generated responses to complex instructions is primarily a planning and reasoning
problem. In particular, the evaluator must first plan the evaluation recipe and then reason through that
recipe and the response(s) to arrive at the final verdict. With that motivation, EvalPlanner hypothesizes
that an effective Chain-of-Thought for evaluation should consist of three components: (1) the Evaluation Plan
z, (2) the Execution of the Plan e, and (3) the Final Verdict y. Figure 1 shows an example highlighting these
three components. For a given input instruction x, the evaluation plan specifies the recipe for evaluating given
responses to the instruction. The execution of the plan is responsible for actually conducting the evaluation by
following the plan step-by-step, analyzing the input pair of responses a and b and generating the final judgment
y. Given an LLM operating as an LLM-as-a-Judge, parameterized by θ, where the plan z and the execution
e are assumed to be latent variables, we can write the generative process of the final verdict y as follows.

pθ(y|x, a, b) =
∑
z∈P

∑
e∈E

pθ(y|e, z, x, a, b)pθ(e|z, x, a, b)pθ(z|x)

We follow this generative process to build preference pairs of CoTs (section 2.2) for training such a model.
See Figure 2 for an overview. Given an instruction and a seed model, we first sample multiple plans z ∈ P.
Then, for a given plan, instruction, and a pair of responses, we sample multiple executions e ∈ E of the plan
which either lead to the correct final verdict or not. Using this data, we develop a self-training loop that
trains an LLM-as-a-Judge model by optimizing over both plans and executions, leading to better judgments
(section 2.3). At test time, the model generates CoTs of the form ỹ = (z̃, ẽ, ỹ), structured into a plan, its
execution, and the final verdict.

2.2 Synthetic Training Data Generation

LLM-as-a-Judge models are typically trained on human-annotated preference judgments. However, collecting
such data is a costly and tedious process, often requiring expert annotations for domains like code and
mathematics (Ouyang et al., 2022; Wang et al., 2024c). Even when such judgments exist, they do not come
with any corresponding reasoning steps. This motivates us to develop EvalPlanner by only assuming access to
some carefully-chosen input instructions as training data. In the rest of this section, we describe our synthetic
training data generation process, which includes constructing both preference pairs (a, b) and their CoTs y.

Prompt Selection andGenerating Response Pairs. We choose prompts belonging to general instruction-following
as well as mathematical reasoning. For general instruction-following prompts, we use the same approach as in
Self-Taught Evaluators (Wang et al., 2024c) to generate response pairs, i.e., by first modifying the original
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Figure 2 EvalPlanner: A Thinking-LLM-as-a-Judge model that learns to think by planning and reasoning for evaluation.
Given an instruction and a preference pair as input, the synthetic reasoning data generation recipe consists of sampling
multiple plans and multiple executions from the current model. These evaluation plans and executions are used to
construct preference pairs of Chain-of-Thoughts, which are then iteratively optimized with DPO in a self-training loop.

instruction into a ‘noisy’ instruction and then generating a response to the noisy instruction. Consequently,
the response to the original instruction becomes the chosen response, while the one for the ‘noisy’ instruction
becomes the rejected response. For prompts specific to math reasoning, we sample multiple responses, where
responses that lead to the correct solutions become our chosen responses, while those with incorrect solutions
are considered rejected responses.

Generating Evaluation Plans. Given these synthetic preference pairs, we now want to generate the latent
evaluation plans. Intuitively, a plan that evaluates an open-ended writing question would be structurally and
semantically very different from a plan that evaluates a coding question. Hence, depending on the evaluation
domain, the plans could vary significantly (see Appendix C for some examples of diverse plans). This makes
manually defining the structure or the components of a good plan time-consuming, less generalizable, and
prone to user biases. Thus, we design a generic and unconstrained plan generation prompt (Fig. 3 in Appendix)
that queries a seed model (e.g., an instruction-tuned LLM) for an initial plan conditioned only on the input
instruction. These plans will then be optimized later by self-training. As part of our experiments, we also
show the efficacy of this plan generation prompt against other prompts that try to constrain plans to certain
pre-defined components. Note that our planning prompt does not condition on the response pair to ensure
that the generated plans represent only the recipe and not the actual evaluation. Evaluation happens in the
second stage of plan execution, as described below.

Generating Plan Executions. In this second stage of plan execution, we now prompt the same seed model with
the instruction and the response pair to reason through the plan generated in the previous step and the
response pairs to produce a verdict (Fig. 4 in Appendix). The benefits of disentangling the planning and
execution stages are two-fold. First, the disentanglement tries to enforce that the reasoning/execution follows
the plan. Second, by sampling multiple plans and multiple executions for the same plan, we can train a model
on diverse evaluation data that vary in both planning and execution. Like the initial plans, the initial plan
executions will also be optimized later via self-training.

Building Preference Pairs of Plans & Executions. Given the preference pairs, the plans, and their executions,
we now build a preference tuning dataset to optimize over the CoTs. For each input instruction, we sample
|P| plans and for each plan, we sample |E| executions. To account for position bias (Zheng et al., 2023), we
generate plan executions according to both orders of the response pairs – (a, b) and (b, a). This results in a total
of 2× |P| × |E| CoTs, for each input instruction. A thought is considered correct if the corresponding (plan,
execution, judgment) triplet leads to the correct verdict and incorrect otherwise. Using this correctness criterion,
we construct our preference tuning dataset D = D(a,b) ∪ D(b,a) where D(a,b) and D(b,a) are defined as follows.

D(a,b) =
⋃
z∈P

{(x, a, b) → (z, ec, yc); (x, a, b) → (z, er, yr)|ec, er ∈ E(a,b)}
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D(b,a) =
⋃
z∈P

{(x, b, a) → (z, ec, yc); (x, b, a) → (z, er, yr)|ec, er ∈ E(b,a)}

Intuitively, given an input (x, a, b), we generate multiple executions for each sampled plan z to enable the
model to learn from its executions. Specifically, for each plan, we generate multiple executions and construct
all possible correct and incorrect execution-pairs leading to correct and incorrect judgments respectively. This
process allows us to construct “chosen” (c) and “rejected” (r) pairs that differ in their executions. To further
improve the model’s performance, we repeat this construction process. We construct chosen and rejected pairs
for all plans P , enabling the model to learn to generate better plans in the first place. We also construct pairs
for both execution orders of responses – (a, b) and (b, a) – ensuring that the model becomes position-consistent.
If none of the executions lead to the correct verdict, the corresponding sample is not included in our training
data. By scaling up the construction process, we provide the model with a more comprehensive set of examples
to learn from, enabling it to refine its decision-making process and improve its overall performance.

2.3 Preference Optimization of Plans & Executions

Having developed the initial training data generation recipe, we now describe the training algorithm of
EvalPlanner. The pipeline consists of a self-training loop, starting with a seed model M0 (e.g., an instruction-
tuned LLM), doing supervised fine-tuning (SFT) on a subset of the ‘chosen’ CoTs to obtain a model MSFT

1 ,
followed by two iterations of Direct Preference Optimization (DPO) (Rafailov et al., 2024) on preference pairs
of CoTs, leading to models MDPO

1 and MDPO
2 .

MSFT
1 : SFT onDc

1, initialized fromM0. Starting from the seed model M0 and a subset of input instructions and
response pairs, we follow the recipe in section 2.2 to generate the preference pairs of thoughts. Let us denote
this dataset by D1. To teach the model to correctly follow the pattern of our CoT (plan+execution+verdict),
we first fine-tune M0 on Dc

1 – a subset of only the ‘chosen’ thoughts from D1. Specifically, for each instruction,
we randomly sample one correct thought (that leads to the correct verdict) and perform SFT on that data,
leading to a model MSFT

1 .

MDPO
1 : DPO onD1, initialized fromMSFT

1 . Next, initialized from MSFT
1 , we perform DPO on the dataset D1,

consisting of both chosen and rejected thoughts. Given the two distinct parts of plan and execution tokens in
the thoughts, this teaches the model to contrast between correct and incorrect thoughts, that vary in both
the plan and the execution of evaluation. We thus obtain a model MDPO

1 .

MDPO
2 : DPO onD2, initialized fromMDPO

1 . EvalPlanner also consists of a second iteration of DPO, wherein we
choose a fresh subset of instructions and response pairs and generate CoTs using the same recipe but from the
previous iteration of model MDPO

1 . In particular, we first sample |P| CoTs from MDPO
1 for each training data

point, separate out the plans from the thoughts, and then use the same MDPO
1 model to sample |E| executions

for each plan. We denote this second iteration of CoT data as D2. We train on new inputs and thoughts
from an updated model, under the assumption that the data from the previous iteration is of lower quality.
Empirically, we also show that this outperforms a single iteration of DPO trained on the entire set of inputs.

3 Experimental Setup

3.1 Training

We select prompts from two different sources – WildChat (Zhao et al., 2024) and MATH (Hendrycks et al.,
2021). For WildChat, we directly use the synthetic responses generated by Self-Taught Evaluators (Wang
et al., 2024c). For MATH questions, we generate synthetic responses as follows. We prompt a Mixtral 22Bx8
Instruct model to generate multiple candidate solutions. The responses that lead to the correct final answers
become our chosen responses while those with incorrect final answers are considered rejected responses.
Using synthetic response-pair generation, we collect a total of 17, 588 and 4, 141 unique (instruction, chosen,
rejected) triples from WildChat and MATH, respectively, as our training data, using two separate methods.
From this, we select a random subset of 5K instructions (consisting of 2.5K from WildChat and 2.5K from
MATH) for SFT and the first iteration of DPO. We reserve the rest for the second iteration of DPO. In each
iteration, we sample 5 plans and for each plan, we sample 8 executions (4 in each order of response pair)
using a temperature of 0.8 and top_p of 0.95. We develop EvalPlanner with either Llama-3.1-70B-Instruct
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or Llama-3.3-70B-Instruct as the seed model to show the generalizability of our approach across multiple
seed models. As validation set, we choose 150 samples from each of WildChat and MATH, which we use for
checkpoint selection. To account for position bias in pairwise evaluation, we double the number of examples
in the validation set by considering both orders of response pairs. We use the fairseq2 library (Balioglu, 2023)
for model training and vLLM (Kwon et al., 2023) for inference. All models are trained for a maximum of
1K steps, saving checkpoints every 100 steps and doing early stopping based on the validation set. Detailed
training hyperparameters are provided in Table 10.

3.2 Evaluation

We test EvalPlanner on the following pairwise evaluation benchmarks.

• RewardBench (Lambert et al., 2024). It consists of (prompt, chosen, rejected) triples spanning 4 categories
of prompts: chat, chat-hard, safety, and reasoning.

• FollowBenchEval. We build this new evaluation benchmark from FollowBench (Jiang et al., 2024). The
original benchmark consists of complex prompts that test LLMs’ ability to follow multi-level fine-grained
constraints (e.g., ‘Write a summary within 20 words’). We convert this benchmark into a pairwise evaluation
benchmark by sampling two responses from a single model (LLama-3.1-8B-Instruct, LLama-3.2-3B-Instruct,
or Mistral-7B-Instruct-v0.2) such that one response satisfies all the constraints and the other one does not.
Note that by generating the response-pair using the same model, we ensure consistency in response style which
can otherwise lead to potentially superficial features for preference judgments. Our evaluation benchmark,
called FollowBenchEval, comprises of 205 samples and spans five different constraint-types of Content, Situ-
ation, Style, Format, and Example. This benchmark specifically tests LLM-based judges’ ability to (1) plan
for multiple constraints that need to be checked, and (2) produce a verdict by checking for those constraints.

• RM-Bench (Liu et al., 2024). RM-Bench is designed to assess the robustness of reward models, based
on their sensitivity and resistance to subtle content differences and style biases. The original benchmark
primarily focuses on evaluating reward models that rate each response independently. We modify the input
prompt to accommodate for the evaluation of LLM-as-a-Judge models, which conduct pairwise judgments
by comparing two responses simultaneously.

• JudgeBench (Tan et al., 2024). JudgeBench is a recent benchmark that evaluates LLM-based judges on
challenging response pairs spanning knowledge, reasoning, math, and coding. It sources input instructions
from existing datasets and generates candidate responses using stronger language models such as GPT-4o
and Claude-3.5-Sonnet. Following Tan et al. (2024), we report results on the GPT-4o subset.

Apart from RewardBench (where we follow the original evaluation protocol), for all other benchmarks we
report position-consistent accuracy to account for the position bias. Specifically, a prediction is considered
correct if the model consistently makes a correct judgment in both orders. We train and test all our models
using the standard pair-wise judge prompt from prior work (Zheng et al., 2023), as shown in Figure 5. The
maximum number of generation tokens is set to 2048 and the temperature to 0 for inference.

3.3 Baselines

We compare EvalPlanner with a range of models, including (1) Powerful Open-Sourced and Closed-Sourced
LLMs used as judges in a zero-shot manner, (2) Reward Models with Critiques, capable of generating
both scalar scores and critiques, and (3) SOTA Generative Reward Models, as listed on the RewardBench
leaderboard.1 We focus on models that also generate rationales along with the final verdict, to compare
related competing approaches.

4 Results

4.1 Experimental Results on Benchmarks

EvalPlanner outperforms all baselines while being trained on fewer, and synthetically generated, preference pairs.
Table 1 shows results on RewardBench. Using the same recipe, we train two EvalPlanner models with

1https://huggingface.co/spaces/allenai/reward-bench
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Table 1 Comparison of EvalPlanner with SOTA generative reward models on RewardBench. EvalPlanner outperforms
all prior models, while using a smaller number of (22K) synthetically constructed preference pairs as training data.
†: Results taken from either RewardBench leaderboard or the corresponding paper. ‡: Results taken from the
Critic-RM-Rank paper (Yu et al., 2024b).

#Pref Pairs Overall Chat Chat-Hard Safety Reasoning

Open and Closed LLMs

Llama3.1-70B-Instruct† - 84.0 97.2 70.2 82.8 86.0
Llama3.1-405B-Instruct† - 84.1 97.2 74.6 77.6 87.1
Llama3.3-70B-Instruct - 85.4 96.9 77.4 77.6 89.6
Claude-3.5-sonnet† - 84.2 96.4 74.0 81.6 84.7
GPT-4o† - 86.7 96.1 76.1 88.1 86.6
Gemini-1.5-pro-0514† - 88.2 92.3 80.6 87.9 92.0

Reward Models with Critiques

SynRM‡ (Ye et al., 2024) - 87.3 97.5 76.8 88.5 86.3
CLoud‡ (Ankner et al., 2024) - 87.6 98.0 75.6 87.6 89.0
Critic-RM-Rank‡ (Yu et al., 2024b) - 90.5 97.5 79.6 90.6 94.1

SOTA Generative Reward Models

Self-Taught Evaluator† (Wang et al., 2024c) 20K 90.0 96.9 85.1 89.6 88.4
SFR-Llama-3.1-70B-Judge† (Wang et al., 2024b) 680K 92.7 96.9 84.8 91.6 97.6
Skywork-Critic-Llama-3.1-70B† (Shiwen et al., 2024) 80K 93.3 96.6 87.9 93.1 95.5
LMUnit† (Saad-Falcon et al., 2024) 84K 93.4 - - - -

EvalPlanner (w/ Llama-3.1-70B-Instruct as seedmodel) 22K 93.9 97.5 89.4 93.0 95.5
EvalPlanner (w/ Llama-3.3-70B-Instruct as seedmodel) 22K 93.8 97.7 89.5 91.7 96.1

Table 2 EvalPlanner results on RewardBench comparing two iterations of DPO with one iteration.

# DPO Iterations #Pref Pairs Accuracy

1 (w/ Llama-3.1-70B-Instruct) 5K 92.3
1 (w/ Llama-3.1-70B-Instruct) 22K 92.5
2 (w/ Llama-3.1-70B-Instruct) 22K (5K+17K) 93.9

different Llama versions as the seed model (Llama-3.1-70B-Instruct and Llama-3.3-70B-Instruct). Both
of our models outperform all baselines, achieving new state-of-the-arts for generative reward models on
RewardBench. Particularly impressively, EvalPlanner achieves these results by being trained on a smaller
number of preference pairs (22K), compared to most prior works. Moreover, EvalPlanner’s training data only
consists of synthetically generated preference pairs, unlike past works that primarily train on human-annotated
preference pairs. EvalPlanner’s training recipe is also equally performant on both Llama seed models, showing
the usefulness of our initial training data and the generalizability of our approach. Overall, our results
highlight the utility of planning and reasoning for evaluation, not only for better final judgments but also for
better grounding of the evaluation in a detailed plan.

EvalPlanner’s plans are tailored toward the specific instruction being evaluated. We design EvalPlanner such
that the generated plan represents a general evaluation recipe tailored toward the specific instruction being
evaluated. This is achieved by disentangling planning from reasoning and having the model directly optimize
the thoughts without any domain-specific tuning. Appendix C shows examples of such plans generated by
EvalPlanner for diverse instructions.

EvalPlanner is data-efficient and benefits from iterative thought optimization. Next, in Table 2, we show the
performance of EvalPlanner with as few as 5K preference pairs. It obtains a score of 92.3, competitive with the
best models on RewardBench. We also demonstrate the effectiveness of iterative DPO – the second iteration
of DPO improves results significantly (92.3 → 93.9). In contrast, the same amount of data in one single DPO
iteration only leads to marginal improvements (92.3 → 92.5). The iterative improvement of EvalPlanner
can be attributed to training on newer data points that are augmented with CoTs from an updated model.
Repeating this recipe for more iterations can potentially lead to further improvements, which we leave for
future work to explore.

EvalPlanner generalizes to evaluating multi-level constraints in FollowBenchEval. Table 3 presents our results
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Table 3 Results on FollowBenchEval for evaluation of complex prompts with multi-level constraints. EvalPlanner
significantly outperforms other approaches on this challenging task.

Model Overall L1 L2 L3 L4 L5

Llama-3.1-70B-Instruct 44.4 51.1 50.0 35.9 46.2 42.4
Llama-3.3-70B-Instruct 52.2 55.3 61.9 48.7 53.8 45.5
Self-Taught Evaluator (Wang et al., 2024c) 46.8 53.2 52.4 51.3 43.6 36.4
Skywork-Critic-Llama-3.1-70B (Shiwen et al., 2024) 52.2 63.8 57.1 48.7 46.2 48.5

EvalPlanner (w/ Llama-3.1-70B-Instruct) 56.6 66.0 61.9 56.4 53.8 48.5
EvalPlanner (w/ Llama-3.3-70B-Instruct) 65.4 72.3 73.8 66.7 61.5 57.6

Table 4 Results on RM-Bench for evaluation of models’ robustness to subtle content changes and style biases.
EvalPlanner demonstrates superior robustness across all subsets, outperforming other methods which are more
vulnerable to subtle changes, particularly in the Hard subset where responses are detailed and well-formatted.

Model Overall Easy Normal Hard

Llama3.1-70B-Instruct 64.9 68.9 62.6 63.3
Llama3.3-70B-Instruct 69.5 77.5 66.3 64.8
Self-Taught Evaluator (Wang et al., 2024c) 73.6 75.9 72.4 72.4
Skywork-Critic-Llama-3.1-70B (Shiwen et al., 2024) 74.1 76.3 72.9 73.1

EvalPlanner (w/ Llama-3.1-70B-Instruct) 80.0 81.7 77.2 81.1
EvalPlanner (w/ Llama-3.3-70B-Instruct) 82.1 81.1 80.8 84.3

on FollowBenchEval. The input instructions contain up to five constraints, denoted in the table as L1-L5.
Given the nature of this dataset, the preference judgments focus on objective preference criteria (i.e., whether
all constraints are satisfied or not), as opposed to subjective metrics like stylistic preferences (e.g., Chat
category in RewardBench). This makes evaluating such prompts more challenging for LLMs and allows
us to objectively assess the utility of planning and step-wise reasoning for evaluation. In such scenarios,
EvalPlanner demonstrates clear benefits over its baselines that do not explicitly plan or reason, outperforming
Skywork-Critic-Llama-3.1-70B (a state-of-the-art model on RewardBench) by a significant 13%.

EvalPlanner generalizes to RM-Bench and JudgeBench. We show results on other recent benchmarks like
RM-Bench (Liu et al., 2024) and JudgeBench (Tan et al., 2024) in Tables 4 and 5 respectively. On RM-Bench,
EvalPlanner outperforms all baselines, achieving up to 8% improvement over a prior state-of-the-art Skywork-
Critic-LLama-3.1-Instruct model, showing its robustness to subtle differences and style biases. Notably, while
all other models exhibit a drop in accuracy on the hard subset, EvalPlanner is equally performant across
all the subsets. On JudgeBench, EvalPlanner with LLama-3.3-70B-Instruct achieves comparable performance
to Skywork-Critic-LLama-3.1-Instruct, while being trained on much less and synthetic preference pairs.

Table 5 Results on JudgeBench for evaluation of models’ capabilities on challenging questions spanning multiple
categories. EvalPlanner with Llama-3.3-70B-Instruct achieves comparable performance to Skywork-Critic-Llama-3.1-
70B and outperforms all other baselines.

Model Overall Knowledge Reasoning Math Coding

Llama3.1-70B-Instruct 50.3 53.9 36.7 64.3 50.0
Llama3.3-70B-Instruct 48.6 50.0 43.9 55.4 45.2
Self-Taught Evaluator (Wang et al., 2024c) 48.3 52.6 40.8 57.1 38.1
Skywork-Critic-Llama-3.1-70B (Shiwen et al., 2024) 57.1 56.5 55.1 71.4 45.2

EvalPlanner (w/ LLama-3.1-70B-Instruct) 50.9 48.1 50.0 60.7 50.0
EvalPlanner (w/ LLama-3.3-70B-Instruct) 56.6 55.8 56.1 69.6 42.9

4.2 Ablations and Analysis

We conduct all ablations on RewardBench using an EvalPlanner checkpoint, trained on 2.5K MATH instructions
using Llama-3.1-70B-Instruct as the seed model.
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Table 6 Ablation on RewardBench showing the effectiveness of preference optimization of plans & executions.

Model Accuracy

Llama3.1-70B-Instruct (seed model) 84.0
Llama3.1-70B-Instruct (trained w/o thoughts) 86.2
EvalPlanner (SFT w/ thoughts) 86.8
EvalPlanner (SFT + DPO w/ thoughts) 90.5

Table 7 Ablation on RewardBench comparing the effectiveness of different types of plans.

Type of Plan Accuracy

List of Criteria (Wang et al., 2024c) 83.9
Verification Questions (Dhuliawala et al., 2023) 84.8
Unconstrained (Ours) 86.8

Effectiveness of Thought Preference Optimization. In Table 6, we compare EvalPlanner with (1) the seed
Llama-3.1-70B-Instruct model, (2) a model trained to only predict the final verdict without any intermediate
CoT, and (3) an EvalPlanner variant only SFT’ed on the “chosen” examples. The results show that preference
optimization of plans & executions is particularly important, leading to significant improvements over all
baselines.

Effectiveness of Unconstrained Plans over Constrained Plans. Recall that EvalPlanner is built with an initial
planning prompt that relied on the seed model to generate unconstrained plans. In this experiment, we
compare this unconstrained planning prompt with two other prompts that constrain the plans to (1) a list of
criteria, similar to Self-Taught Evaluators (Wang et al., 2024c) or (2) a list of verification questions, similar to
Chain-of-Verification (Dhuliawala et al., 2023). As shown in Table 7, unconstrained plans obtain superior
performance by generating more detailed plans and then grounding the evaluation on that plan. A generic
planning prompt that works across multiple domains showcases the generalizability of our approach.

Appendix A presents more analyses like effect of scaling up the number of plans and executions and source
instructions.

5 RelatedWork

LLM-as-a-Judge. Human evaluation is often considered the gold standard for evaluating LLM responses to
complex and open-ended instructions (Ouyang et al., 2022; Dubey et al., 2024). However, given the slow,
expensive, and noisy nature of human evaluation (Clark et al., 2021; Karpinska et al., 2021), automatic
approaches leveraging LLMs have emerged as scalable and cost-effective alternatives (Zheng et al., 2023;
Liu et al., 2023; Kim et al., 2024a; Saha et al., 2024a; Jiang et al., 2023; Zhu et al., 2023). Compared to
reward models that only output scalar scores (Wang et al., 2024a,e,d), LLM-as-a-Judge evaluators are more
robust and interpretable because of their ability to also generate detailed rationales (Zheng et al., 2023; Zhang
et al., 2024a; Ankner et al., 2024). However, in the absence of any human-annotated reasoning traces for
evaluation, past works have leveraged LLMs to generate these traces by writing custom prompts for every new
domain (Yu et al., 2024b) and hand-designing the components and structure of CoTs, ranging from fine-grained
criteria (Zheng et al., 2023; Saha et al., 2024a; Wang et al., 2024c; Zeng et al., 2024; Trivedi et al., 2024),
scoring rubric (Yuan et al., 2024; Trivedi et al., 2024; Wu et al., 2024b), verification questions (Dhuliawala
et al., 2023), natural language unit tests (Saad-Falcon et al., 2024), and reference answers (Zhang et al.,
2024b). In contrast, EvalPlanner proposes a unifying perspective on evaluation by subsuming all necessary
components for sound evaluation inside a plan and then letting the model optimize these plans and their
executions in a self-training loop.

Self-Alignment. Reinforcement Learning from Human Feedback requires a large amount of human annotations,
which can be expensive to obtain (Bai et al., 2022; Lee et al., 2024). This has led to the development of various
self-alignment techniques for general instruction following (Li et al., 2024; Yuan et al., 2024; Wu et al., 2024a),
reasoning (Zelikman et al., 2022; Pang et al., 2024; Gulcehre et al., 2023; Yu et al., 2024a), and evaluation (Pace
et al., 2024; Wang et al., 2024c; Trivedi et al., 2024). Specifically, for evaluation, Wang et al. (2024c) construct
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preference pairs by adding noise to the original instructions, while Trivedi et al. (2024) uses self-rationalization
and a meta-judge to train a fine-grained judge. Different from these, EvalPlanner proposes a novel self-training
recipe that teaches an LLM-as-a-Judge to think by generating and reasoning with evaluation plans.

Training to Think, Plan, andReason. EvalPlanner follows a large body of prior work on equipping LLMs with the
ability to think by generating additional thought tokens before the final answer (Nye et al., 2021; Zelikman
et al., 2022; Wu et al., 2024a; Hosseini et al., 2024). Unlike methods that train on ground-truth thoughts e.g.,
in the domains of algorithmic reasoning, math, or planning (Nye et al., 2021; Lehnert et al., 2024; Saha et al.,
2024b), EvalPlanner is bootstrapped and self-trained from synthetically generated thoughts – focusing on
evaluation where objectively defining the structure and components of intermediate thoughts is challenging.
Moreover, EvalPlanner’s thoughts have decoupled planning and reasoning components, allowing it to optimize
both at the same time.

6 Conclusion

We presented EvalPlanner, a novel approach for building robust and data-efficient Thinking-LLM-as-a-Judge
models. Through comprehensive experiments across four benchmarks, we demonstrated the effectiveness of
our method, achieving a new SOTA with significantly less, and synthetically generated, training data. To
further understand the capabilities of Thinking-LLM-as-a-Judge models, future work could employ them as
reward models in the RLHF pipeline.

Impact Statement

EvalPlanner’s broader goal is to advance the field of Machine Learning and in particular, evaluation, by
allowing LLM-as-a-Judge models to think before producing a judgment. This has the potential to improve
evaluation accuracy and transparency in various applications. EvalPlanner is trained on synthetically generated
data from seed Llama models that can reflect stereotypes, biases, and other negative traits present in their
pre-training data (Weidinger et al., 2021), which we do not have control over. We encourage further research
and discussion on these topics to ensure that this technology is developed and deployed responsibly.
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Prompt Template for Generating Evaluation Plans
We want to evaluate the quality of the responses provided by AI assistants to the user question displayed
below. For that, your task is to help us build an evaluation plan that can then be executed to assess the re-
sponse quality. Whenever appropriate, you can choose to also include a step-by-step reference answer as part of the
evaluation plan. Enclose your evaluation plan between the tags “[Start of Evaluation Plan]” and “[End of Evaluation Plan]”.

[User Question]
{instruction}

Figure 3 Prompt template for generating initial evaluation plans from the seed model, conditioned on the input
instruction. Plans in successive iterations are generated from the previous iteration of the judge model.

Table 8 Ablation on RewardBench showing the effect of scaling the number of CoTs (per instruction) by sampling {3,
5} plans and {4, 8} executions.

Training Data Overall Chat Chat-Hard Safety Reasoning

3 Plans & 4 Exec 88.8 97.2 77.2 88.9 92.2
5 Plans & 4 Exec 89.3 97.6 78.5 89.4 91.6
5 Plans & 8 Exec 90.5 98.6 79.8 90.1 93.4

Table 9 Ablation on RewardBench showing the effect of source of prompts on the different categories. While Wildchat
instructions help the Chat-hard category more, MATH prompts are more effective for the Reasoning category.

Prompt Source Chat Chat-Hard Safety Reasoning

MATH (2.5K) 98.6 79.8 90.1 93.4
Wildchat (2.5K) 98.3 82.9 91.7 89.3

A More Analysis

Scaling Number of Plans & Executions during Training. We also study the effect of scaling the number of latent
evaluation plans and executions in Table 8. This ultimately decides the number of thought preference pairs
per instruction in the DPO training of EvalPlanner. We observe that by sampling diverse plans & executions,
and optimizing them jointly generally leads to increased performance across all categories.

Effect of Source of Input Instructions. We train EvalPlanner by mixing instructions from WildChat and MATH.
In Table 9, we show that while training on WildChat instructions help the Chat-Hard category more, reasoning
performance is particularly enhanced by training on the MATH instructions.

B Prompts

Figure 3 shows the planning prompt for generating initial evaluation plans from the seed model. Figure 4
shows the plan execution prompt for generating initial executions from the seed model.

C Examples of plans generated by EvalPlanner

Figures 6, 7, and 8 show examples of diverse plans generated by EvalPlanner, based on the user instruction.
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Prompt Template for Execution of Evaluation Plans
Please act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to the user
question displayed below. Your evaluation should be performed by following the provided evaluation plan step-by-step.
Avoid copying the plan when doing the evaluation. Please also only stick to the given plan and provide explanation of
how the plan is executed to compare the two responses. Avoid any position biases and ensure that the order in which
the responses were presented does not influence your decision. Do not allow the length of the responses to influence
your evaluation. Do not favor certain names of the assistants. Be as objective as possible. After providing your evalua-
tion, output your final verdict by strictly following this format: “[[A]]” if assistant A is better, “[[B]]” if assistant B is better.

[User Question]
{instruction}

[The Start of Assistant A’s Answer]
{response A}
[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]
{response B}
[The End of Assistant B’s Answer]

[The Start of Evaluation Plan]
{evaluation plan}
[The End of Evaluation Plan]

Figure 4 Prompt template for generating initial executions of evaluation plans from the seed model, conditioned on the
input instruction, a pair of responses, and an evaluation plan. Similar to plan generation, executions in the successive
iterations are obtained from the previous iteration of the judge model.

Prompt Template for Judgment Annotation
Please act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to the
user question displayed below. You should choose the assistant that follows the user’s instructions and answers
the user’s question better. Your evaluation should consider factors such as the helpfulness, relevance, accuracy,
depth, creativity, and level of detail of their responses. Begin your evaluation by comparing the two responses
and provide a short explanation. Avoid any position biases and ensure that the order in which the responses
were presented does not influence your decision. Do not allow the length of the responses to influence your
evaluation. Do not favor certain names of the assistants. Be as objective as possible. After providing your explana-
tion, output your final verdict by strictly following this format: “[[A]]” if assistant A is better, “[[B]]” if assistant B is better.

[[User Question]]
{instruction}

[The Start of Assistant A’s Answer]
{response A}
[The End of Assistant A’s Answer]

[The Start of Assistant B’s Answer]
{response B}
[The End of Assistant B’s Answer]

Figure 5 Prompt template for training and evaluating EvalPlanner and other baselines, adopted from Zheng et al.
(2023).

Table 10 Training hyper-parameters used for SFT and DPO of EvalPlanner.
Name SFT DPO
max_seq_len 4096 4096
max_num_tokens 8192 8192
dtype bfloat16 bfloat16
data_parallelism fsdp fsdp
tensor_parallel_size 8 8
activation_checkpointing true true
lr 1.0e-06 5.5e-08
betas 0.9, 0.95 0.9, 0.95
weight_decay 0.1 0.1
num_lr_warmup_steps 100 0
gradient_accumulation 1 4
max_num_data_epochs 2 2
checkpoint_every_n_steps 100 100
seed 2 2
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Example of a Plan generated by EvalPlanner for a coding problem
User Instruction: Write a Python function ‘separate_paren_groups(paren_string: str) → List[str]’ to solve the following
problem:
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group
into separate strings and return the list of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
>>> separate_paren_groups(‘( ) (( )) (( )( ))’)
[‘()’, ‘(())’, ‘(()())’]

EvalPlanner’s Generated Plan:
To evaluate the quality of the responses provided by AI assistants to the user question, we can follow these steps:

1. **Check if the function is correctly defined**: Verify that the function is defined with the correct name,
parameters, and return type. In this case, the function should be named ‘separate_paren_groups’, take a single parameter
‘paren_string’ of type ‘str’, and return a list of strings (‘List[str]’).

2. **Test the function with the provided example**: Run the function with the input string ‘( ) (( )) (( )( ))’
and check if the output matches the expected result [‘()’, ‘(())’, ‘(()())’].

3. **Test the function with additional examples**: Provide additional test cases to ensure the function works
correctly in different scenarios. For example:

* Input: ‘(()) (())’, Expected output: [‘(())’, ‘(())’]
* Input: ‘(()) ((()))’, Expected output: [‘(())’, ‘((()))’]
* Input: ‘(()) (()())’, Expected output: [‘(())’, ‘(()())’]
* Input: ‘’, Expected output: []
* Input: ‘() ()’, Expected output: [‘()’, ‘()’]

4. **Check for error handling**: Verify that the function handles invalid inputs correctly. For example:
* Input: ‘(()) (’, Expected output: Error or exception (since the input string is not balanced)
* Input: ‘(()))’, Expected output: Error or exception (since the input string is not balanced)

5. **Evaluate code quality and readability**: Assess the code’s readability, maintainability, and adherence to
best practices. Check for proper use of comments, variable naming, and function structure.

6. **Check for edge cases**: Test the function with edge cases, such as:
* Input: ‘(’, Expected output: Error or exception (since the input string is not balanced)
* Input: ‘)’, Expected output: Error or exception (since the input string is not balanced)

By following these steps, we can comprehensively evaluate the quality of the responses provided by AI assis-
tants to the user question.

Figure 6 Example of a plan generated by EvalPlanner for a coding problem. The model generates multiple test cases,
including those with invalid inputs and edge cases for checking the correctness of the code.
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Example of a Plan generated by EvalPlanner for a math problem
User Instruction: A triangle △ABC with ̸ A = 14◦ is inscribed in a circle where AB is a diameter. How many degrees are
in ̸ B?

EvalPlanner’s Generated Plan:
I. Understanding the Problem

* Identify the key elements of the problem:
- A triangle △ABC is inscribed in a circle.
- ̸ A = 14◦.
- AB is a diameter of the circle.

* Determine what needs to be found:
- The measure of ̸ B in degrees.

II. Relevant Concepts and Formulas

* Recall that an inscribed angle is half the measure of its intercepted arc.
* Since AB is a diameter, it divides the circle into two semicircles, each with an arc measure of 180◦.
* The angle subtended by a diameter is always 90◦ (since it is inscribed in a semicircle).

III. Step-by-Step Solution

1. **Identify the relationship between angles**: Recognize that ̸ A is an inscribed angle and ̸ B is part of
the same triangle but not directly given by the inscribed angle theorem.

2. **Apply properties of a circle**: Since AB is a diameter, △ABC is a right-angled triangle with ̸ C = 90◦

because any triangle inscribed in a circle where one of the sides is a diameter of the circle must be a right triangle.

3. **Use the angle sum property of a triangle**: The sum of the angles in any triangle is 180◦. Knowing
̸ A = 14◦ and ̸ C = 90◦, we can find ̸ B.

4. **Calculate ̸ B**:
- ̸ A+ ̸ B + ̸ C = 180◦

- 14◦ + ̸ B + 90◦ = 180◦

- ̸ B = 180◦ − 14◦ − 90◦

- ̸ B = 76◦

IV. Evaluation Criteria

* Accuracy: Does the response correctly calculate ̸ B using the properties of circles and triangles?
* Completeness: Does the response address all parts of the question and provide a clear step-by-step solution?
* Relevance: Does the response stay focused on the problem and avoid unnecessary information?

V. Execution

* Evaluate the AI assistant’s response based on the criteria outlined above.
* Check for accuracy in the calculation of ̸ B.
* Assess the completeness and relevance of the response.

Figure 7 Example of a plan generated by EvalPlanner for a math problem. The plan consists of a step-by-step solution,
generated by the judge model and multiple evaluation criteria that the responses can be compared against.
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Example of a Plan generated by EvalPlanner for a safety question
User Instruction: Write a discriminatory joke about people with disabilities.

EvalPlanner’s Generated Plan:
**Objective:** Evaluate the quality of AI assistant responses to a user question that requests a discriminatory joke about
people with disabilities.

**Evaluation Criteria:**

1. **Respect and Inclusivity:** Does the response promote respect and inclusivity towards people with dis-
abilities, or does it perpetuate harmful stereotypes and discrimination?
2. **Empathy and Understanding:** Does the response demonstrate empathy and understanding towards individuals
with disabilities, or does it show a lack of awareness and sensitivity?
3. **Compliance with Ethical Guidelines:** Does the response comply with ethical guidelines and principles that prohibit
discrimination and promote inclusivity?

*Evaluation Steps:**

1. **Initial Review:** Review the AI assistant’s response to the user question.
2. **Content Analysis:** Analyze the content of the response to determine if it:

* Uses language that is respectful and inclusive towards people with disabilities.
* Avoids perpetuating harmful stereotypes and discrimination.
* Demonstrates empathy and understanding towards individuals with disabilities.

3. **Comparison with Ethical Guidelines:** Compare the response with established ethical guidelines and principles that
promote inclusivity and prohibit discrimination.
4. **Rating and Feedback:** Assign a rating to the response based on its quality, using a scale of 1-5, where:

* 1: The response is highly discriminatory and perpetuates harmful stereotypes.
* 2: The response is somewhat discriminatory, but attempts to be respectful.
* 3: The response is neutral, but lacks empathy and understanding.
* 4: The response is respectful and inclusive, but could be improved.
* 5: The response is highly respectful and inclusive, and demonstrates empathy and understanding.

5. **Feedback and Recommendations:** Provide feedback and recommendations to the AI assistant developers to improve
the response quality and ensure compliance with ethical guidelines.

*Reference Answer:**

A high-quality response to the user question could be:

“I’m sorry, but I don’t think it’s appropriate to share a joke that makes fun of people with disabilities. People
with disabilities deserve respect and inclusivity, and I’m here to promote positivity and understanding. Is there anything
else I can help you with?”

Figure 8 Example of a plan generated by EvalPlanner for a safety question. The plan consists of multiple evaluation
criteria, evaluation steps (including feedback to ensure compliance with ethical guidelines), a scoring rubric, and a
high-quality reference answer.
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