arXiv:2408.06567v1 [cs.CL] 13 Aug 2024

AQUILAMOE: EFFICIENT TRAINING FOR MOE MODELS WITH
SCALE-UP AND SCALE-OUT STRATEGIES

Bo-Wen Zhang, Liangdong Wang, Ye Yuan, Jijie Li, Shuhao Gu, Mengdi Zhao, Xinya Wu, Guang Liu;
Chengwei Wu, Hanyu Zhao, Li Du, Yiming Ju, Quanyue Ma, Yulong Ao, Yingli Zhao, Songhe Zhu, Zhou Cao,
Dong Liang, Yonghua Lin, Ming Zhang, Shunfei Wang, Yanxin Zhou, Min Ye, Xuekai Chen, Xinyang Yu,
Xiangjun Huang, Jian Yang!

Beijing Academy of Artificial Intelligence (BAAI)

School of Computer Science, Peking University
MetaX-Tech

ABSTRACT

In recent years, with the rapid application of large language models across various fields, the scale of
these models has gradually increased, and the resources required for their pre-training have grown
exponentially. Training an LLM from scratch will cost a lot of computation resources, while scaling
up from a smaller model is a more efficient approach and has thus attracted significant attention. In this
paper, we present AquilaMoE, a cutting-edge bilingual 8*16B Mixture of Experts (MoE) language
model that has 8 experts with 16 billion parameters each and is developed using an innovative training
methodology called EfficientScale. This approach optimizes performance while minimizing data
requirements through a two-stage process. The first stage, termed Scale-Up, initializes the larger
model with weights from a pre-trained smaller model, enabling substantial knowledge transfer and
continuous pretraining with significantly less data. The second stage, Scale-Out, uses a pre-trained
dense model to initialize the MoE experts, further enhancing knowledge transfer and performance.
Extensive validation experiments on 1.8B and 7B models compared various initialization schemes,
achieving models that maintain and reduce loss during continuous pretraining. Utilizing the optimal
scheme, we successfully trained a 16B model and subsequently the 8*16B AquilaMoE model,
demonstrating significant improvements in performance and training efficiency.

Keywords Mixture of Experts - Efficient Training - Model Initialization - Continuous Pretraining

1 Introduction

Language models have become a cornerstone of modern natural language processing (NLP) systems, driving applications
such as machine translation, conversational agents, text summarization, and question answering [1} [2]. Recent
advancements in large language models (LLMs) like GPT-3, BERT, and TS5 have demonstrated remarkable proficiency
across numerous tasks, highlighting the importance of pretraining on large-scale datasets to achieve state-of-the-art
results [3, 4]. Despite their success, traditional dense models face significant challenges in scalability and efficiency,
particularly as parameter sizes increase.

Mixture of Experts (MoE) models have emerged as a promising solution to these challenges. By dynamically selecting
different subsets of model parameters (experts) for various inputs, MoE architectures can scale to a much larger number
of parameters without a corresponding increase in computational cost [Sl]. This selective activation mechanism allows
MOoE models to achieve higher performance while maintaining computational efficiency. However, training such
large-scale MoE models presents significant challenges, including the vast amounts of data and computational power
required.

*Project Lead, the corresponding author, contact 1iuguang@baai.ac.cn
"Full authorship contribution statements appear at the end of the document.

liuguang@baai.ac.cn

AquilaMoE: Efficient Training for MoE Models with Scale-Up and Scale-Out Strategies

Training large-scale models, including MoE architectures, involves several critical challenges. Traditional training
methods require enormous amounts of data, which can be resource-intensive and time-consuming to collect and process.
The computational cost is substantial, requiring high-performance hardware such as GPUs or TPUs, and significant
energy consumption, making it challenging for many institutions with limited resources to train and deploy such models.
Additionally, training large models from scratch can take weeks or even months, delaying experimentation and iteration.
Ensuring that the model efficiently learns and generalizes well is also challenging, as poor initialization and inefficient
training strategies can lead to suboptimal performance and wasted resources.

Several strategies have been proposed to address these challenges. For instance, the Net2Net method accelerates
learning via knowledge transfer, allowing the seamless transition of knowledge from smaller to larger networks, which
shows significant acceleration in image classification task [6]. The StackBERT method improves training efficiency
by progressively increasing model depth and capacity [7]]. The bert2BERT approach focuses on reusing pre-trained
language models to initialize new models, promoting efficiency and reusability [8]]. It expands both the width and depth
of the smaller model and finally saves nearly half of the pre-training consumption of language models. The primary
motivation behind developing AquilaMoE is to introduce an efficient training framework, EfficientScale, which reduces
data and computational requirements while enhancing overall model performance. Our approach leverages the strengths
of MoE architectures and introduces innovative techniques to improve training efficiency and effectiveness.

In this paper, we introduce AquilaMoE, a bilingual 8*16B Mixture of Experts language model that has 8§ experts with 16
billion parameters each and is developed using the EfficientScale methodology. This approach optimizes performance
and minimizes data needs through a two-stage process. The first stage, Scale-Up, leverages the weights of a pre-trained
smaller model to initialize the larger model, enabling substantial knowledge transfer and continuous pretraining with
significantly less data compared to traditional from-scratch training. The second stage, Scale-Out, uses a pre-trained
dense model to initialize the MoE experts, further enhancing knowledge transfer and performance.

Through extensive validation experiments on 1.8B and 7B models, we compared various initialization schemes to
achieve models that maintain and further reduce loss during continuous pretraining. Based on these findings, we utilized
the optimal initialization scheme to successfully train a 16B model and subsequently the 8%16B AquilaMoE model,
demonstrating significant advancements in model performance and training efficiency.

2 Methodology

The EfficientScale pipeline is designed to efficiently train a large-scale Mixture of Experts (MoE) model by leveraging
knowledge transfer from smaller models. The process involves three main phases: Preparation, Scale-Up, and Scale-Out.
Each phase plays a crucial role in ensuring effective knowledge transfer and continuous learning, resulting in a highly
optimized MoE model.

2.1 Preparation Phase

The preparation phase involves training a small dense model and preparing the datasets required for subsequent phases.
This phase ensures that the initial model has sufficient transferable knowledge and that the data is ready for effective
training and validation.

* Model Training: Train a small dense model from scratch on a substantial amount of tokens or use an already
pre-trained small model. This step ensures the model has accumulated sufficient transferable knowledge to
serve as a robust starting point.

* Data Preparation: Collect, clean, and preprocess the training and validation datasets. This step involves
managing large datasets to ensure they are suitable for training and validation purposes.

 Validation Setup: Develop both training and validation datasets to monitor the model’s performance during
subsequent phases. Continuous tracking of the language model’s loss on the validation dataset is essential to
ensure the initialized models retain transferred knowledge and can learn new information effectively.

2.2 Scale-Up Phase

The Scale-Up phase involves two critical steps: initializing the weights of a larger dense model using the smaller model
and performing continuous pretraining to ensure effective knowledge transfer and model enhancement. We use the
bert2BERT][8]] method to initialize the large model and propose the AKI-Pro method, improving bert2BERT-AKI from
depth expansion and group query attention.

AquilaMoE: Efficient Training for MoE Models with Scale-Up and Scale-Out Strategies

Figure 1: An example of FPI on an MLP layer.

2.2.1 Weight Initialization Strategies

The weights of the small dense model are used to initialize a larger dense model. There are two strategies proposed
in bert2BERTI[8]]: Function Preserving Initialization(FPI) and Advanced Knowledge Initialization(AKI). Both the
original and our experiments in Section [3.2.T]show that AKI performs better. Besides, recent research[9]] shows that it
is better to use interpolation instead of stacking when expanding the depth, which is more stable for continuous training.
Moreover, the original AKI method is not suitable for Group Query Attention (GQA), so we modify the transformation
of the weights in attention blocks to fit GQA. Finally, we have AKI-Pro as our initialization method. Below we will
introduce the three initialization methods, starting with a review of the first two approaches in bert2BERT, followed by
our improvements.

Function Preserving Initialization (FPI): This strategy is firstly proposed in Net2Net[6] to expand the intermediate
dim of an MLP layer. Bert2BERT]8] enhances the Net2Net method to FPI, which enables it to expand the hidden
dims(i.e. input and output dims). It is applied in training language models in bert2BERT and can expand the width of
a smaller model to a larger model, getting the same output with the same input. With the FPI, the larger model can
get the transferred knowledge from the smaller model. The basic idea behind FPI is that when expanding the dims, it
makes both the input and output tensor concatenate a copy of the smaller tensor, as illustrated in Figure[T} For an MLP
layer with two linear mappings in the example: y = U "Wz, the input and output dims are 2, and the intermediate
dim is 3. Suppose we want to expand this block to that with 3 as input and output dims, and 4 as intermediate size,
then there are three steps. (1) Input Dim Expansion FPI copies the input neurons from left to right and splits the
corresponding weights to the new input neurons. (2) Output Dim Expansion For the expansion of the output in the
upsampling linear weights, FPI also makes the new hidden neurons copy from the original ones. (3) MLP Expansion
Expand the downsampling linear weights the same as the upsampling weights, and finally, the new output neurons of
this MLP layers are also the copy from the smaller ones, which makes the block can be stacked as layers. The weights
W'’ = FPI (W) are transformed as follows:

W1 %

>

’ 7 —

W1 =W 3% 5)
'w,*,4 = 'w,*,l

Most modules of a transformer block can be transformed the same as an MLP layer, including embedding layers and

QKYV projections. For the MHA module, each attention head should be seen as a neuron, and then the head number can

be expanded as before. Notably, the output of the LN modules will not be the same when the new dimension is not an

integer multiple of the old one, but this will not hurt a lot on the final loss.

Advanced Knowledge Initialization (AKI): As shown in both Net2Net[6] and bert2BERT][S]], the symmetry from the
FPI will hinder the model convergence. Specifically, if we have a linear layer y = wix + waz, where x,y € R, and
w1 = wy When initializing the weights, the gradient and the value of these two weights will always be the same, which
makes the effective number of parameters for this linear layer only 1. So AKI is proposed to break the symmetry with
expanding width based on not only the weights of the same layer but also the upper layer in the smaller model. Take a

model with two MLP blocks as an example:
YL = U(I)TW(I)Tw7y2 = U<2)TW(2)Ty17ma Y1,Y2 € Rz 2
W(1,2) c R2><3 U(1,2) c RSXZ ()

FPI expands W1 as FPI (W(l)) = [wi(l); w;(l); w:;(l); wll(l) , while AKI uses the output expansion of next

layer: AKI (W(l)) = {w:’l(l); w;(l); w;(l); w'l(z)} . Inspired by the observation that neighboring layers have similar

functions, AKI breaks the symmetry and keep the knowledge from the smaller models. Moreover, FPI can’t expand the
depth, so bert2BERT uses the stacking method to expand the model depth proposed by StackBERT [[7]].

AKI-Pro: Our proposed improvement on AKI further refines weight initialization from two aspects: depth growing
method and GQA compatibility.

AquilaMoE: Efficient Training for MoE Models with Scale-Up and Scale-Out Strategies

Transformer Transformer
Layer 3 Layer 3
Copy
Transformer Transformer
Layer 2 Layer 3
Transformer Transformer
Layer 1 Layer 2
Copy Copy
Transformer Transformer Transformer
Layer 3 Layer 3 Layer 2
Transformer Transformer Transformer
Layer 2 Layer 2 Layer 1
Copy
Transformer Transformer Transformer
Layer 1 Layer 1 Layer 1
Stacking Source Model Interpolation

Figure 2: Comparison of different growing methods: stacking and interpolation.

* Depth Growing Method: We use interpolation in the depth growth to make the continuous training more
stable, following the recent research [9]. The stacking method just copies the layers of the source model to the
top. For the source model with L, layers: {W;|l € [0, L)} and target model with Ly layers: {W/|l € [0, L1)},
stacking method can be formed as W, = W(mod 1,)- However, the output space of the last layer does
not match the input space of the first layer, which can make the continuous training unstable. Based on
the observation of similar functionality in neighboring layers, recent research[9]] improves this by using
interpolation, which can be formulated as below:

l*L2
L,

Figure 2] shows an example when Ly = 3, L, = 6. We show the comparison of validation losses and training
curves after the depth growth with different methods in Section[3.2.1]

* GQA Compatibility: The original AKI method only supports MHA in transformer models. We adapt AKI
for Group Query Attention models. To be specific, under the constraint that the number of groups in the GQA
of the source model and the target model are consistent, we expand the output of the attention heads inside
each group. Each group can be seen as a separate MHA block with common KV projection weights, and the
expansion operator is the same as MHA.

Wi =1])

2.2.2 Continuous Pretraining Process

The scaled-up dense model undergoes continuous pretraining on a substantial amount of tokens. This phase ensures the
successful transfer of knowledge and allows the model to acquire additional information from the data, enhancing its
overall performance and capability.

2.3 Scale-Out Phase

The scale-out phase involves transforming the large dense model into a Mixture of Experts (MoE) model. This phase
includes initializing the MoE model’s weights and performing continuous pretraining to refine the model’s knowledge
and performance.

* MoE Weight Initialization: Aquila-MoE is initialized using Sparse Upcycling [10, [11]]. The dense model
checkpoint obtained from the Aquila dense model undergoes a transformation where each MLP layer is
replaced by an MoE layer. These new MoE layers are exact replicas of the original MLP layers from the dense
checkpoint. The router parameters are randomly initialized following a normal distribution with a mean of 0
and a variance of 0.02.

* Continuous Pretraining of MoE: During both training and inference, two out of eight experts are activated
for each token, resulting in approximately 30B activated parameters. To prevent training collapse, additional

AquilaMoE: Efficient Training for MoE Models with Scale-Up and Scale-Out Strategies

load balancing loss [12]] and max z-loss [[13}14] are applied to the final training objective. The auxiliary loss
and max z-loss are multiplied by 0.001 and 0.01, respectively, to ensure a balanced distribution of tokens
assigned to different experts and a stable training trajectory.

By following this structured approach, EfficientScale enables efficient training of large-scale models through systematic
preparation, scaling up, and scaling out. This methodology leverages pre-trained smaller models to reduce data and
computational requirements while ensuring efficient knowledge transfer and continuous learning. The result is a highly
optimized MoE model capable of performing complex tasks with enhanced efficiency and performance.

3 Experiemnts

3.1 Datasets Description

We constructed a bilingual pretraining dataset of 4TB tokens in both Chinese and English. This dataset includes
webpages, arXiv papers, encyclopedic data, books, codes, and QA pairs. It covers a wide range of high-quality open-
source pretraining data such as RedPajama-Data- V2, falcon-refinedweb, C4, |Pile, WuDaoCorporaText, Chinese WebText,
etc. The above open-source data underwent language filtering to retain only Chinese and English texts, heuristic
refinement to remove low-quality content, deduplication to maintain uniqueness, domain-specific filtering for relevance,
data quality checks, removal of toxic and explicit content, and finally, data mixing in specified proportions.

3.2 [Experimental Setups and Results
3.2.1 Scale-up Validation

For the scale-up experiment, we used a 1.3B Aquila2 E] architecture model as the baseline. This model was scaled up to
a 7B model using two different methods: FPI and AKI. Additionally, a 7B model was trained from scratch to serve as
a control. All three 7B models were trained using the same hyperparameters and on the same dataset for a specified
number of steps. We use M (24, 2048) to denote the 1.3B model with 24 layers and 2048 hidden dimensions and use
M (32,4096) to denote the 7B model. We first calculated the validation loss of models with different initializations.
The results are shown in Table We check the loss of an intermediate model M (24, 4096) without doing depth growth.
We got exactly the same loss as the original model using FPI. Moreover, we found that with interpolation, both FPI and
AKI have lower initial losses.

The loss convergence for the training process is shown in Figure[3] The experimental results indicate that the 7B models
initialized using the FPI and AKI methods exhibited significantly lower loss values compared to the 7B model trained
from scratch. Furthermore, these models converged at a notably faster rate. Consistent with findings in the paper [8]],
our results also demonstrate that the AKI method surpasses FPI in performance after a certain number of steps.

Table 1: Validation losses of different initialization methods.

Method \ M (24,4096) \ M (32,4096)
M (24,2048) (Original) \ 2.97

Random - 12.22
FPI (Stacking) 2.97 4.30
FPI (Interpolation) 2.97 3.31
AKI (Stacking) - 9.56
AKI-Pro (Interpolation) - 7.81

3.2.2 Scale-out Validation

For the scale-out validation experiment, we trained a 1.8B model from scratch with a training data volume of 3.6T
tokens. These models were then scaled out to 8%1.8B configurations, followed by continuous pretraining with an
additional 400B tokens. The respective model configurations and training hyperparameters are detailed in Table [3] We
analyzed the loss convergence on the training set with the results depicted in Figure]

Based on the results of the aforementioned validation experiments, we verified the effectiveness of both scale-up and
scale-out approaches on smaller-sized models. Specifically, we trained a model from scratch with a size of 7B, and

*https://github.com/FlagAI-Open/Aquila2

https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2
https://huggingface.co/datasets/tiiuae/falcon-refinedweb
https://huggingface.co/datasets/allenai/c4
https://huggingface.co/datasets/EleutherAI/pile
https://data.baai.ac.cn/details/WuDaoCorporaText
https://huggingface.co/datasets/CASIA-LM/ChineseWebText

AquilaMoE: Efficient Training for MoE Models with Scale-Up and Scale-Out Strategies

Table 2: Validation losses of the AquilaDense-16B initializations. M(32,4096) is 7B. M(40,5120) is 13B.
M (32,5120) and M (32, 8192) are for checking loss before depth growth.

Method | M(32,8192) | M(32,5120) | M (40,5120)
M(32,4096) (Original) | 1.85
FPI 1.85 1.96 2.24
AKI-Pro - - 7.90
6.0
3.4 —— Scratch
FPI 5.5

— AKI

3.24
5.0 4

3.01 a5

2.81 4.0

Loss

261 35
2.4

. . AL
2.2 2.5
2.0 \

15

2.04

1.8 - - - - - - - ,) y f y y y p ¥
0 2500 5000 7500 10000 12500 15000 17500 20000 0 500 1000 1500 2000 2500 3000 3500 4000

Consumed Tokens(B)
Figure 3: Comparison between the convergence of FPI Figure 4: Training loss of AquilaMoE.
and AKI methods.

pre-trained it on 3.6T tokens, resulting in AquilaDense-7B. Subsequently, we scaled it up to a model with a size of 16B
and further trained it on 1.2T tokens, yielding AquilaDense-16B. Finally, we scaled it out to 8*16B and trained it on
545B tokens, ultimately obtaining AquilaMoE. The configurations and training parameters of the models are presented
in Table[3l

4 Model Evaluation

4.1 Evaluation of Foundation Models

Following OpenCompassﬂ in the evaluation process, we use two types of evaluation methods: discriminant analysis
evaluation and generative evaluation. Discriminant analysis evaluation means combining the question with candidate
answers, calculating the perplexity of all combinations, and selecting the answer with the lowest perplexity as the
model’s final output. Generative evaluation uses the question as the model’s original input and leaves the answer area
blank for the model to complete subsequently.

The performance of AquilaDense-7B, AquilaDense-16B, and AquilaMoE(8*16B) models are presented in Table[d The
indicators ending in “ppl” represent discriminant analysis evaluation, while those ending in “gen” represent generative
evaluation.

Generally, as the model size increases, the scores tend to improve. For instance, AquilaDense-7B scores 7.81 on
GSMS8K-gen, while AquilaDense-16B scores 28.51. A similar trend also is observed in most other tasks. The
AquilaMoE models show improved performance in most tasks over AquilaDense-16B. For example, in the ARC-c-ppl
task, AquilaMoE scored 43.05 compared to 38.31 for AquilaDense-16B. These findings highlight the benefits of both
scaling up model parameters and implementing MoE architectures in improving model performance.

4.2 Evaluation of Fine-tuned Models

Table [5] presents the overall results of AquilaMoE-8*16B after fine-tuning across various benchmark datasets. The
performance is measured using generative evaluation, and the results are expressed as percentages.

*https://github.com/open-compass

AquilaMoE: Efficient Training for MoE Models with Scale-Up and Scale-Out Strategies

Table 3: Model configurations and training parameters for different models.

\ 1.8B 8*1.8B 7B (AquilaDense-7B) 16B (AquilaDense-16B) 8*16B (AquilaMoE)

Context Length 2048 2048 4096 4096 4096
QKYV Bias yes yes yes yes yes
Layers 24 24 32 40 40

Hidden Dim 2048 2048 4096 5120 5120

Intermediate Dim 5504 5504 14336 20480 20480
Heads Num 32 32 32 40 40

KV Group 32 32 32 8 8
Trained Tokens (B) | 3600 400 3600 1200 545
LR 1.20e-3 2.20e-4 1.20e-3 4.00e-4 1.50e-4
Batch Size 12M 12M 12M 12M 24M

Table 4: Overall evaluation results of AquilaDense and AquilaMoE(AquilaMoE-8*16B)

Model | AquilaDense-7B AquilaDense-16B AquilaMoE
ARC-c-ppl 37.63 38.31 43.05
ARC-e-ppl 56.08 522 65.61

Hellaswag-ppl 67.49 71.62 73.94
GSMS8K-gen 7.81 28.51 54.51
HumanEval-gen 14.02 29.88 15.85
MMLU-ppl 46.47 57.11 61
Winograd-ppl 50.53 54.04 55.4
MATH-gen 1.32 4.24 10.4
MBPP-gen 15.6 36.4 37.2
DROP-gen 4.35 33.35 37.62
AGI Eval-gen 14.47 18.57 13.69
BBH-gen 34.51 41.45 46.04
NQ-gen 8.61 9.94 10.78
PIQA-ppl 76.71 79.22 80.3

4.3 Comparsion of Computational Efficiency

We present the details of the training process for both scale-up + scale-out and from-scratch approaches in Table [6]
The table lists the number of devices in the cluster, the GFLOPS per device, the model parameters size, the number of
trained tokens, the actual number of training tokens per day, the actual training time, and the actual training GFLOPS
for each phase.

The time savings factor is calculated by comparing the total training time of the from-scratch approach to the total
training time of the scale-up and scale-out approach. The formula is:

n
Zi:l Nlokens,i

. . Riokens/day, from scratch
Time Savings Factor = ————*onet

n Ntokens,i
=1 Rloksns/day K
Given the data:
360041200+545 213.80
. . o 25 _ OV
Time Savings Factor = 55 1200 L 55 higg 4.12
279 70 25 :

The computational power savings factor is calculated by comparing the total GFLOPS-days of the from-scratch approach
to the total GFLOPS-days of the scale-up and scale-out approach. The formula is:

S>oi_ 1 Niokens,i X GFLOPSfrom scratch
Rmkenslday. from scratch
n Nikens,s X GFLOPS;
=1 Riokensiday, i

Computational Power Savings Factor =

AquilaMoE: Efficient Training for MoE Models with Scale-Up and Scale-Out Strategies

Table 5: Overall results of AquilaMoE after fine-tuning.

Model AquilaMoE-8#16B-SFT

ARC-c 82.03
ARC-e 87.3
Hellaswag 75.08
GSMSK 71.27
NQ 21.39
TriviaQA 65.33
AGI Eval 13.61
Math 13.26
HumanEval 44.51
PIQA 81.72
OBQA 75.2
DROP 62.32
BoolQ 85.02
GPQA 25.76
C-Eval 57.99
MMLU 61.51
CMMLU 57.63
Winogrande 57.54

Table 6: Training details for scale-up and scale-out and from-scratch approaches, note that for preparation phase
different chip is used.

Approach/Phase \ Devices GFLOPS/Device Model Size (B) Trained Tokens (B) Training Tokens/Day (B)

Preparation Phase 480 989.5 7 3600 279
Scale-Up Phase 1024 240 16 1200 70
Scale-Out Phase 1024 240 32 545 25

From Scratch | 1024 240 32 5345 25

Given the data:
GFLOPS preparation = 480 x 989.5 = 475, 360

GFLOPS qje-up = 1024 x 240 = 245,760
GFLOPSqje-ont = 1024 x 240 = 245,760
GFLOPSfom scratcn = 1024 x 240 = 245,760

The computational power savings factor is:

5345><22545,760 52’ 5927 640 ~

_ — ~ 3.35
36002?;5,360 + 12OO><72045,760 + o45><§;15,760 1577057343

Computational Power Savings Factor =

The method proposed in this paper significantly reduces both the computational power and the time required for training.
By employing a scale-up and scale-out approach, we achieved a computational power savings factor of approximately
3.35 and a time savings factor of approximately 4.12.

Additionally, if we start with a pre-trained smaller model, the computational power and time required for the preparation
phase can be further reduced. This approach not only accelerates the training process but also lowers the overall
computational costs.

In summary, the proposed training methodology offers substantial improvements in efficiency. The combined scale-up
and scale-out approach, along with the potential use of pre-trained models, represents a significant advancement in the
optimization of training large-scale models.

AquilaMoE: Efficient Training for MoE Models with Scale-Up and Scale-Out Strategies

5 Conclusion and Future Work

We present AquilaMoE, a bilingual 8*16B mixture of experts (MoE) language model developed using the EfficientScale
training method. EfficientScale optimizes performance while significantly reducing data requirements through a
two-stage approach: Scale-Up and Scale-Out. Our contributions are as follows: 1) An effective training methodology
that achieves knowledge transfer and continuous pretraining with significantly reduced data and computational needs;
2) Innovative initialization strategies, such as Functional Progressive Initialization (FPI) and Approximate Knowledge
Integration (AKI), which demonstrate substantial loss retention and reduction during continual pre-training; 3) Success-
ful training of 16B and 8*16B AquilaMoE models using these initialization strategies, enhancing performance and
training efficiency. Future work involves exploring the scalability of larger MoE models, investigating cross-linguistic
knowledge transfer, developing new optimization techniques to further reduce training time and costs, fine-tuning for
specific application domains, and ensuring the robustness and generalization of MoE models across diverse datasets and
real-world applications.

Authorship

Language Foundation Model & Software Team, BAAI: Bo-Wen Zhang, Liangdong Wang, Jijie Li, Shuhao Gu,
Mengdi Zhao, Xinya Wu, Guang Liu (Project lead

Data Research Team, BAAI: Chengwei Wu, Hanyu Zhao, Li Du, Yiming Ju, Quanyue Ma

Al Framework Research and Development Team, BAAI: Yulong Ao (Infrastructure lead), Yingli Zhao, Songhe
Zhu, Zhou Cao, Dong Liang, Yonghua Lin

School of Computer Science, Peking University: Ye Yuarﬂ Ming Zhang
MetaX-Tech: Shunfei Wang, Yanxin Zhou, Min Ye, Xuekai Chen, Xinyang Yu, Xiangjun Huang, Jian Yang

References

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, FLukasz Kaiser, and
Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems, 2017.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020.

[4] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of
Machine Learning Research, 21(140):1-67, 2020.

[5] Dmitry Lepikhin, Yinhan Lee, Hao Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim Krikun, Noam Shazeer,
Zhifeng Chen, and Yonghui Chen. Gshard: Scaling giant models with conditional computation and automatic
sharding. arXiv preprint arXiv:2006.16668, 2021.

[6] Tiangi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge transfer. In
International Conference on Learning Representations (ICLR), 2016.

[7] Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang, and Tieyan Liu. Efficient training of bert by progressively
stacking. In International conference on machine learning, pages 2337-2346. PMLR, 2019.

[8] Cheng Chen, Yichun Yin, Lifeng Shang, Xin Jiang, Yujia Qin, Fengyu Wang, Zhi Wang, Xiao Chen, Zhiyuan
Liu, and Qun Liu. bert2BERT: Towards reusable pretrained language models. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Dublin, Ireland, May 2022.
Association for Computational Linguistics.

5The correspinding author, contact 1iuguang@baai .ac.cn,
SResponsible for the full design and implementation of the Scale-Up strategy. Main work done during his internship at BAAL

liuguang@baai.ac.cn

AquilaMoE: Efficient Training for MoE Models with Scale-Up and Scale-Out Strategies

[9] Yu Pan, Ye Yuan, Yichun Yin, Jiaxin Shi, Zenglin Xu, Ming Zhang, Lifeng Shang, Xin Jiang, and Qun Liu.
Preparing lessons for progressive training on language models. arXiv preprint arXiv:2401.09192, 2024.

[10] Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme Ruiz, Basil Mustafa, Joshua Ainslie,
Yi Tay, Mostafa Dehghani, and Neil Houlsby. Sparse upcycling: Training mixture-of-experts from dense
checkpoints. arXiv preprint arXiv:2212.05055, 2022.

[11] Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang, Yuxiang Huang,
Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models with scalable training strategies.
2024. URL https://doi. org/10.48550/arXiv, 2404.

[12] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter models with
simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1-39, 2022.

[13] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language modeling with
pathways. Journal of Machine Learning Research, 24(240):1-113, 2023.

[14] Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and William Fedus.
St-moe: Designing stable and transferable sparse expert models. arXiv preprint arXiv:2202.08906, 2022.

10

	Introduction
	Methodology
	Preparation Phase
	Scale-Up Phase
	Weight Initialization Strategies
	Continuous Pretraining Process

	Scale-Out Phase

	Experiemnts
	Datasets Description
	Experimental Setups and Results
	Scale-up Validation
	Scale-out Validation

	Model Evaluation
	Evaluation of Foundation Models
	Evaluation of Fine-tuned Models
	Comparsion of Computational Efficiency

	Conclusion and Future Work

