Al for Science

SEAB October 26, 2023

Bill Dally

Chief Scientist and SVP of Research, NVIDIA Corporation Adjunct Professor of CS and EE, Stanford

Deep Learning was Enabled by GPUs

Deep Learning is Gated by GPUs

AI IN SCIENCE & ENGINEERING

Physics & Data - No Traditional Solver

Physics - Traditional Solver (Speed is a limitation)

DEEP LEARNING IN SCIENTIFIC PROBLEMS

Modulus is an SDK to build and deploy ML/DL applications for Physical Systems

MULTI-PHYSICS SIMULATION

Conjugate Heat Transfer - No Training Data

Fluid Temperature

Solid Temperature

FourCastNetv2: NVIDIA's Global Weather Simulator.

Fully data-driven weather prediction.

• Scope Global, Medium Range

Model Type
Full-Model AI Surrogate

• Architecture Spherical Fourier Neural Operators

• Resolution: 25km

• Training Data: ERA5 Reanalysis

• Initial Condition GFS / UFS

• Speedup vs NWP 5000x

Power Savings O(10⁴)

INVERSE PROBLEM

Finding Unknown Coefficients of a PDE: Heat Sink

Fluid Heat Convection:

$$0 = \nabla \cdot (D_{fluid} \nabla \theta_{fluid}) - \nabla \cdot (U \theta_{fluid})$$

$$D_{fluid} = \frac{k_{fluid}}{\rho_{fluid}c_{pfluid}}$$

Solid Heat Conduction:

$$0 = \nabla \cdot (k_{solid} \nabla \theta_{solid})$$

$$D_{solid} = \frac{k_{solid}}{\rho_{solid}c_{psolid}}$$

Interface Conditions:

$$k_{solid}(N \cdot \nabla \theta_{solid}) = k_{fluid}(N \cdot \nabla \theta_{fluid})$$

 $\theta_{solid} = \theta_{fluid}$

Results:

Property	OpenFOAM (True)	Modulus (Predicted)
Kinematic Viscosity (m^2/s)	1.00×10^{-2}	1.03×10^{-2}
Thermal Diffusivity (m^2/s)	2.00×10^{-3}	2.19×10^{-3}

Summary

- Deep learning was enabled by hardware and is paced by hardware
 - 1000x performance in last decade
- DL has a many roles in science
 - Simulation
 - Inverse problems (data interpretation)
 - Learned behavior (e.g., protein folding)
- FourCastNet
 - 5000x speed of ECMWF ICON model
 - Comparable accuracy
- LLMs can increase productivity of scientific process
- DL should be a major element of every scientist's toolbox