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Abstract

This paper introduces an approach for training o1-like RAG models that retrieve and
reason over relevant information step by step before generating the final answer.
Conventional RAG methods usually perform a single retrieval step before the
generation process, which limits their effectiveness in addressing complex queries
due to imperfect retrieval results. In contrast, our proposed method, CoRAG
(Chain-of-Retrieval Augmented Generation), allows the model to dynamically
reformulate the query based on the evolving state. To train CoRAG effectively, we
utilize rejection sampling to automatically generate intermediate retrieval chains,
thereby augmenting existing RAG datasets that only provide the correct final
answer. At test time, we propose various decoding strategies to scale the model’s
test-time compute by controlling the length and number of sampled retrieval chains.
Experimental results across multiple benchmarks validate the efficacy of CoRAG,
particularly in multi-hop question answering tasks, where we observe more than
10 points improvement in EM score compared to strong baselines. On the KILT
benchmark, CoRAG establishes a new state-of-the-art performance across a diverse
range of knowledge-intensive tasks. Furthermore, we offer comprehensive analyses
to understand the scaling behavior of CoRAG, laying the groundwork for future
research aimed at developing factual and grounded foundation models.
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(a) Test-time scaling behavior of CoRAG.

Where did the star of Dark Hazard study?

What was the name of the star of Dark Hazard?
Edward G. Robinson

Where did Edward G. Robinson go to college?
No relevant information found.

What college did Edward G. Robinson attend?
City College of New York.

City College of New York
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(b) An example of CoRAG in action.

1 Introduction

Retrieval-augmented generation (RAG) [18] is one of the core techniques in enterprise applications,
necessitating the integration of large foundation models with proprietary data sources to produce
responses that are both grounded and factual. Conventionally, foundation models are trained on
large-scale datasets comprising trillions of tokens and remain frozen post-deployment. Nonetheless,
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these models frequently struggle to memorize long-tail factual knowledge or may hallucinate false
claims, resulting in unreliable responses in real-world scenarios. RAG mitigates this challenge by
augmenting the generation process with retrieved information, thereby improving the trustworthiness
of model-generated content and facilitating the incorporation of up-to-date information.

Contemporary RAG systems typically employ a sequential pipeline of retrieval and generation,
wherein the retrieved information serves as additional input to the generative model. The effectiveness
of RAG systems predominantly relies on the quality of the retrieved information. Retrieval models are
engineered for efficiency to ensure scalability to large corpora. For instance, dense retrievers [16, 33]
commonly utilize a bi-encoder architecture to compress documents and queries into fixed-size vector
representations. This architectural choice permits the use of fast approximate nearest neighbor
search algorithms but simultaneously constrains the expressive capacity of retrieval models to handle
complex queries. Furthermore, in multi-hop reasoning tasks, it is often unclear what information
should be retrieved initially; decisions must be made based on the progressively evolving state of the
reasoning process.

To break the bottleneck of retrieval quality, we propose a framework that dynamically retrieves
relevant information and plans subsequent retrieval steps based on the current state. By adjusting
the number of retrieval steps at test time, our model can explore various aspects of the query
and experiment with different query rewriting strategies when the retriever does not yield useful
information. This paradigm mirrors the human problem solving process, where we iteratively seek
information to address complex questions.

Rather than solely relying on the model’s in-context learning capability [39] or distillation from
proprietary models [1], we advocate for explicitly training language models to retrieve step by step.
To this end, we utilize rejection sampling [40, 4] to augment existing RAG datasets with intermediate
retrieval chains. Open-source language models are then fine-tuned on these augmented datasets using
standard next-token prediction objectives. To examine the scaling behavior of our model, we propose
various test-time decoding strategies, including greedy decoding, best-of-N sampling, and tree search.
Diverse decoding strategies and hyperparameter configurations can be employed to control test-time
token consumption and the frequency of retriever calls.

Our empirical evaluation demonstrates that CoRAG substantially surpasses strong baselines in QA
tasks that require multi-hop reasoning, where retrievers frequently struggle to recall all necessary
information in a single retrieval step. Across diverse decoding strategies, the Pareto frontier approxi-
mately adheres to a log-linear relationship between total token consumption and model performance,
although the coefficients differ across datasets.

On the KILT benchmark [25], which encompasses a more diverse array of tasks, new state-of-the-art
scores are achieves on the hidden test set for nearly all tasks. Additionally, we uncover that CoRAG
exhibits varied scaling behaviors across different task types. For datasets such as NQ [17], where
state-of-the-art retrievers already achieve high recall, the benefits of test-time scaling are often
marginal. This suggests the potential for dynamically allocating test-time compute based on the
complexity of the query and the quality of the retriever. Upon further analysis, we find that CoRAG
can effectively decompose complex queries and perform flexible query reformulation to improve the
quality of the generated responses. It also shows robustness against retrievers of varying quality. We
posit that CoRAG represents a promising avenue for future research in the RAG domain, with the
potential to mitigate hallucination in model-generated content.

2 Related Work

Retrieval-Augmented Generation (RAG) integrates information retrieval techniques with generative
models to enhance the quality and factual accuracy of generated content [18, 19]. By equipping
LLMs with the ability to browse the web [24], RAG systems can access real-time data, thereby
providing responses that are both up-to-date and grounded. The relevance and quality of the retrieved
information are pivotal for the efficacy of RAG systems. A substantial body of recent research
has concentrated on developing better general-purpose text embeddings [16, 33]. Nevertheless,
text embeddings frequently face limitations in addressing complex queries due to their reliance on
fixed-size vector representations for efficiency purposes.

2



To mitigate this constraint, contemporary research has extended the conventional paradigm of
a single retrieval step followed by generation, advancing to multi-step iterative retrieval and
generation [5]. FLARE [12] prompts an LLM to actively determine when and what to retrieve
during the generation process. ITER-RETGEN [28] proposes to interleave retrieval-augmented
generation with generation-augmented retrieval, demonstrating enhancements in multi-hop QA
tasks. Similarly, IRCoT [31] employs a chain-of-thought methodology, which recursively refines
the reasoning thought for subsequent retrieval steps. Self-RAG [1] empowers LLMs to adaptively
retrieve, generate, and critique through self-reflection, thus improving factual accuracy and citation
precision in open-domain QA and long-form generation tasks. Auto-RAG [38] utilizes heuristic rules
and exact answer matching to construct intermediate retrieval steps, yet its performance remains
significantly below that of state-of-the-art models. In this study, rather than exclusively on few-shot
prompting or distillation from proprietary models, we propose a novel approach to explicitly train
LLMs to iteratively retrieve and reason over relevant information.

Scaling Test-time Compute Instead of prompting LLMs to directly generate the final answer, Chain-
of-Thought (CoT) [34] demonstrates that letting the model to think step by step can drastically
improve the performance on mathematical reasoning tasks. Tree-of-Thought (ToT) [37] extends
the idea of CoT by adopting a tree structure, allowing the model to explore the search space more
comprehensively. To further enhance the reasoning capabilities of LLMs, STaR [40] proposes to
leverage bootstrapping techniques to generate intermediate states for training. OpenAI o1 [11]
conducts large-scale reinforcement learning and exhibits promising test-time scaling behaviors on
advanced reasoning datasets, but the technical details are not publicly available. A drawback of these
methods is the increased token consumption, which consequently increases the response latency.

In the realm of RAG, test-time compute can be increased by retrieving more documents or performing
additional retrieval steps. LongRAG [13] posits that RAG performance can be enhanced by integrating
long-context LLMs with more retrieved documents. In contrast, IterDRAG [39] empirically examines
the test-time scaling law through few-shot prompting and iterative retrieval for up to 5M tokens. A
concurrent work Search-o1 [20] combines the open-source QwQ model [35] with active search from
Bing, achieving competitive results on knowledge-intensive tasks. Our work extends the study of
test-time scaling in RAG to a targeted fine-tuning paradigm under diverse decoding strategies.

3 Methodology

The CoRAG framework is illustrated in Figure 1. In this section, we describe the key components
of CoRAG, including retrieval chain generation through rejection sampling, model training with
augmented datasets, and strategies for scaling test-time compute.

3.1 Retrieval Chain Generation

Most RAG datasets only come with a query Q and the corresponding final answer A, without
providing intermediate retrieval steps. We propose an automated method for generating retrieval
chains through rejection sampling. Each sampled chain consists of a sequence of sub-queries
Q1:L = {Q1, Q2, . . . , QL} and the corresponding sub-answers A1:L, where L is a predetermined
maximum chain length. The sub-query Qi = LLM(Q<i, A<i, Q) is generated by sampling an LLM
based on the query Q and the preceding sub-queries and sub-answers. To generate the sub-answer Ai,
we first retrieve the top-k most relevant documents D(i)

1:k using a text retriever with Qi as the search
query, and subsequently prompt an LLM to yield the answer Ai = LLM(Qi, D

(i)
1:k). This procedure

is iterated until the chain reaches the maximum length L or Ai matches the correct answer A.

To assess the quality of a retrieval chain, we calculate the log-likelihood of the correct answer
log P(A|Q,Q1:L, A1:L) conditioned on the chain information. The retrieval chain with the highest
log-likelihood score is selected to augment the original QA-only dataset.

3.2 Training

Each training instance in the augmented dataset is represented as a tuple (Q,A,Q1:L, A1:L), accom-
panied by the corresponding top-k retrieved documents for the query Q and each sub-query. We
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Figure 1: Overview of CoRAG. Rejection sampling is utilized to augment QA-only datasets with
retrieval chains. Each chain starts with the original query, followed by a sequence of sub-queries and
sub-answers. An open-source LLM is then fine-tuned to predict the next action based on the current
state. During inference, multiple decoding strategies are available to control the test-time compute.

fine-tune an LLM on the augmented dataset using the standard next-token prediction objective within
a multi-task learning framework.

The model is simultaneously trained on three tasks: next sub-query prediction, sub-answer prediction,
and final answer prediction. We employ the same prompt templates as utilized in the retrieval chain
generation process, with the exception that we also incorporate the top retrieved documents D1:k for
the original query Q as input for the final answer prediction task.

Lsub_query = − log P(Qi|Q,Q<i, A<i), i ∈ [1, L]

Lsub_answer = − log P(Ai|Qi, D
(i)
1:k), i ∈ [1, L]

Lfinal_answer = − log P(A|Q,Q1:L, A1:L, D1:k)

The cross-entropy loss is computed only for the target output tokens. As we reuse the prompt
templates for both data generation and model training, a fine-tuned model can be utilized for the next
round of rejection sampling in an iterative manner.

3.3 Test-time Scaling

Given a trained CoRAG model, we propose several decoding strategies to control the trade-off
between model performance and test-time compute. The test-time compute is measured by the
total number of token consumptions, excluding the retrieval costs. Unlike previous approaches that
consider only prompt tokens [39] or generated tokens [11], we account for both. To simplify further
discussion, the prompt tokens are treated equally as the generated tokens, despite prompt tokens
typically being less expensive due to prefix caching and computation parallelism of the prefilling
stage.

Greedy Decoding This strategy utilizes greedy decoding to generate L sub-queries and their corre-
sponding sub-answers sequentially. The final answer is generated using the same prompt template as
employed during the training phase.

Best-of-N Sampling This method involves sampling N retrieval chains with a temperature 0.7,
subsequently selecting the best chain to generate the final answer. As the ground truth answer is not
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available at test time, we instead calculate the conditional log-likelihood of “No relevant information
found” as a penalty score for each chain. The retrieval chain with the lowest penalty score is chosen.

Tree Search We implement a breadth-first search (BFS) variant with retrieval chain rollouts. At each
step, the current state is expanded by sampling several sub-queries. For each expanded state, we
perform multiple rollouts, and then compute the average penalty score of these rollouts. The state
with the lowest average penalty score is retained for further expansion.

To control the test-time compute, the maximum length of the retrieval chain L can be adjusted across
all decoding strategies. For best-of-N sampling, the number of sampled chains N offers an alternative
option to scale the test-time compute. In tree search, the number of rollouts and expansion size are
two additional hyperparameters.

4 Experiments

4.1 Setup

Data and Evaluation We evaluate CoRAG utilizing two sets of benchmarks: (1) a collection of
multi-hop QA datasets, including 2WikiMultihopQA [7], HotpotQA [36], Bamboogle [26], and
MuSiQue [30]; (2) the KILT benchmark [25], which encompasses a broad spectrum of knowledge-
intensive tasks. The multi-hop QA datasets serve to evaluate the model’s capacity to perform
multi-hop reasoning, whereas the KILT benchmark assesses the framework’s ability to generalize
across more diverse tasks. For each training dataset, we prompt the open-source Llama-3.1-8B-
Instruct model to perform rejection sampling, unless specified otherwise. We utilize E5-large [32]
as the text retriever for intermediate retrieval steps. The retrieval corpus is the English Wikipedia
provided by KILT, comprising approximately 36 million passages [23]. The selected retrieval chains
are employed to augment the original QA-only datasets for subsequent model training.

Regarding evaluation metrics, we report the exact match (EM) and F1 scores [27] for the multi-hop
QA datasets. For the KILT benchmark, we submit the model’s predictions to the official evaluation
server and report the downstream metrics on the hidden test set. To adhere to the leaderboard
submission policy, we report public validation set results when conducting ablation studies on the
KILT benchmark.

Model Training We conduct full-parameter fine-tuning on the augmented datasets, initializing from
the Llama-3.1-8B-Instruct checkpoint. Two separate models are trained: one for the multi-hop
QA datasets and another for the KILT benchmark. The compiled multi-hop QA dataset comprises
125k training instances, whereas the KILT benchmark includes 660k instances after sub-sampling.
The model is fine-tuned for 1 epoch with a maximum sequence length of 3k tokens. For the KILT
benchmark, we fine-tune an E5-Mistral retriever [33] and a RankLLaMA re-ranker [22] on the
respective training set to boost the ranking quality.

Further implementation details are provided in Appendix A.

4.2 Main Results

Multi-hop QA In Table 1, we present a comparative analysis of CoRAG-8B against several models,
including few-shot Llama-3.1-8B-Instruct [4], GPT-4o [9], Self-RAG-7B [1], ITER-RETGEN [28],
DRAG, IterDRAG [39], and Search-o1-32B [20]. For a fair comparison, we also include a fine-
tuned Llama-8B baseline utilizing the E5-large retriever, which is fine-tuned on the same datasets
as CoRAG-8B but without retrieval chain augmentation. CoRAG-8B substantially surpasses all
baselines, with the exception of the Bamboogle dataset, despite being based on a weaker LLM
compared to Search-o1-32B and IterDRAG. Conversely, we recognize that fine-tuning on multi-hop
QA datasets creates an advantage for CoRAG-8B, compared to the few-shot setting for DRAG and
IterDRAG.

The Bamboogle dataset comprises only 125 instances, resulting in considerable variance in perfor-
mance across different runs. Certain questions within Bamboogle necessitate access to knowledge
more recent than the Wikipedia dump used for retrieval. Systems like Search-o1-32B, which rely on
commercial search engines, possess an advantage in this regard.
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Table 1: Results on multi-hop QA datasets. We report the performance of CoRAG-8B using various
decoding strategies and retrieval chain lengths L. The “Few-shot w/o Retrieval” configuration utilizes
only QA pairs without retrieval augmentation. Both DRAG and IterDRAG are based on Gemini 1.5
Flash [29], while Search-o1-32B is based on QwQ [35] and the Bing Search API.

2WikiQA HotpotQA Bamboogle MuSiQue

EM F1 EM F1 EM F1 EM F1

Few-shot w/o Retrieval
3-shot Llama-3.1-8B-Inst. 27.6 32.1 20.8 28.8 17.6 21.3 3.4 9.7
3-shot GPT-4o 39.5 47.3 38.2 51.2 49.6 61.5 15.8 27.2

w/ Retrieval
3-shot Llama-3.1-8B-Inst. 30.7 39.9 34.1 46.6 28.0 37.3 7.7 15.4
3-shot GPT-4o 49.0 56.2 45.8 59.4 53.6 63.8 15.7 25.8
Self-RAG-7B 12.2 24.1 16.6 29.4 5.6 16.8 4.6 13.2
ITER-RETGEN 35.5 47.4 45.1 60.4 40.0 50.7 26.1 42.0
DRAG (32k) 45.9 53.7 46.9 60.3 48.8 59.2 15.4 26.0
IterDRAG (32k) 44.3 54.6 38.3 49.8 46.4 56.2 12.5 23.1
Search-o1-32B 58.0 71.4 45.2 57.3 56.0 67.8 16.6 28.2
Fine-tuned Llama-8B w/ E5large 55.1 60.7 50.3 63.5 40.8 53.7 17.4 28.1

CoRAG-8B (Ours)
▷ L=1, greedy 56.5 62.3 50.1 63.2 37.6 51.4 18.6 29.3
▷ L=6, greedy 70.6 75.5 54.4 67.5 48.0 63.5 27.7 38.5
▷ L=6, best-of-4 71.7 76.5 55.3 68.5 51.2 63.1 28.1 39.7
▷ L=6, tree search 71.7 76.4 55.8 69.0 48.8 64.4 29.0 40.3
▷ L=10, best-of-8 72.5 77.3 56.3 69.8 54.4 68.3 30.9 42.4

Table 2: The downstream results on the hidden test set of the KILT benchmark. All scores are sourced
directly from the official leaderboard, with the exception that “RA-DIT 65B” is from the original
paper [21]. ∗: “Previous Best” refers to the highest score for each task on the public KILT leaderboard
as of January 10, 2025.

System Entity Linking Slot Filling Open QA Fact

AIDA WnWi WnCw T-REx zsRE NQ HoPo TQA FEVER

KILT-RAG 72.6 48.1 47.6 59.2 44.7 44.4 27.0 71.3 86.3
SEAL - - - 83.6 74.6 53.7 40.5 70.9 89.5
Atlas-11B 90.6 - - 85.1 80.8 61.3 50.6 84.0 93.5
RA-DIT 65B 80.5 - - 72.8 78.1 43.5 36.6 72.8 86.9
FiD with RS - - - 85.2 83.7 61.2 39.1 84.6 92.2
Previous Best∗ 90.6 87.4 71.2 87.7 85.3 62.3 50.6 84.6 93.5
CoRAG-8B (Ours) 93.9 88.2 76.7 88.0 87.2 63.1 60.6 88.3 93.1

KILT Benchmark We present several strong systems on the KILT benchmark in Table 2, including
KILT-RAG [25], SEAL [2], Atlas-11B [10], RA-DIT 65B [21], and FiD with RS [8]. For submission
to the KILT leaderboard, we choose the best decoding configuration for each task based on the public
validation set. The results of different decoding strategies are detailed in Appendix Table 5. Our
CoRAG-8B model achieves a new state-of-the-art performance across all tasks, with the exception of
FEVER, where it marginally trails behind a larger model with 11B parameters.

4.3 Scaling Test-Time Compute

In alignment with OpenAI o1 [11], our model allows for scaling test-time compute to potentially
achieve better performance without updating model weights. There are multiple ways to control
the test-time compute. In Figure 2, we concentrate on two factors: the retrieval chain length L and
the number of sampled chains N for best-of-N sampling. Greedy decoding is a special instance of
best-of-N sampling with N = 1 and the temperature set to 0.
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Figure 2: Scaling test-time compute on multi-hop QA datasets. The Pareto frontier is in the form of
y = a× log(x+ b) + c fitted on the Pareto optimal points. A point is considered Pareto optimal if
no other point achieves a higher EM score with less token consumption. The metric “# Avg. Tokens”
represents the average number of tokens consumed per test instance, summing up both the prompt
and generated tokens.

We observe that increasing the retrieval chain length L results in substantial performance improve-
ments when L is small, but the gains diminish as L increases. This observation aligns with the
intuition that longer chains can encapsulate more reasoning steps and allows for trial-and-error
exploration of various query rewriting strategies. Several examples are provided in Appendix Table 8.
Conversely, increasing N for best-of-N sampling yields mixed effects depending on the dataset. For
the most challenging dataset, MuSiQue, in terms of EM score, a larger N enhances performance,
whereas for the less challenging dataset, 2WikiMultihopQA, a smaller N suffices. We defer the
further exploration of tree search to future work, as it is considerably more computationally expensive
than greedy decoding and best-of-N sampling.

The Pareto frontier between the EM score and token consumption approximately follows a log-linear
trajectory for up to 128k tokens, although the scaling behavior varies across different datasets. This
observation assists practitioners in making informed decisions regarding the allocation of test-time
compute based on the quality requirements. It is important to note that we make several simplifications
in this scaling study, such as treating the prompt tokens equivalently to the generated tokens and
ignoring the retrieval costs. A more rigorous analysis could take these factors into account.

5 Analysis

5.1 Iterative Rejection Sampling

Our framework facilitates self-improvement through iterative training, akin to the iterative rejection
sampling employed in LLM post-training [4]. By utilizing the same prompt templates for both
data generation and model training, a trained CoRAG model can generate new sets of retrieval
chains. However, the results in Table 3 are mixed, showing performance improvements on the
2WikiMultihopQA dataset but slight declines on other datasets. This indicates that instruction-tuned
LLMs already possess a strong ability to generate high-quality retrieval chains.
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Table 3: Ablation study results. “Iterative training” employs a trained CoRAG model for another
round of rejection sampling. “Weak-to-strong Generalization” utilizes weaker LLMs for retrieval
chain generation while using stronger LLMs (Llama-3.1-8B-Inst.) for training. “Different Retrievers”
replaces the text retriever at test time.

2WikiQA HotpotQA Bamboogle MuSiQue

EM F1 EM F1 EM F1 EM F1

CoRAG-8B (L=6, greedy) 70.6 75.5 54.4 67.5 48.0 63.5 27.7 38.5
▷ iterative training 72.2 76.9 53.4 66.5 45.6 60.9 26.6 37.6

Weak-to-strong Generalization
w/ Llama-3.2-1B-Inst. 59.3 64.2 50.3 63.6 40.8 51.6 22.3 32.7
w/ Llama-3.2-3B-Inst. 69.9 74.0 53.9 67.3 45.6 59.8 25.2 36.0

Different Retrievers
E5-base w/o chain-of-retrieval 53.1 58.9 47.9 61.1 38.4 52.7 15.8 26.4
▷ L=6, best-of-4 70.8 75.4 53.0 66.2 47.2 59.8 26.3 37.6

BM25 w/o chain-of-retrieval 49.1 55.3 46.9 60.3 36.8 48.6 14.3 24.8
▷ L=6, best-of-4 62.6 67.7 51.6 64.7 37.6 52.5 23.5 33.0

5.2 Robustness and Generalization

Different Retrievers We further investigate the influence of various text retrievers at test time. Instead
of using the E5-large dense retriever, we substitute it with two weaker alternatives in a plug-and-play
fashion: E5-base and BM25. Across all datasets, we observe consistent performance gains when
investing more test-time compute, although stronger retrievers continue to outperform in terms of
absolute performance. Orthogonal efforts to enhance the quality of text retrievers are likely to further
boost the performance of CoRAG.

Weak-to-strong Generalization Due to the need of repeated sampling and autoregressive generation,
the retrieval chain generation process costs more GPU hours than the model training. To mitigate
this cost, one strategy is to employ weaker LLMs for retrieval chain generation and subsequently
fine-tune stronger LLMs on the augmented datasets, similar to the weak-to-strong generalization
setting [3].

The results in Table 3 demonstrate that utilizing Llama-3B achieves very close performance compared
to the 8B model, whereas Llama-1B exhibits a noticeable performance drop. Manual inspection
reveals that the 1B model frequently struggles to follow the given instructions, resulting in sub-optimal
retrieval chains. Employing weaker LLMs also lowers the barrier to adopting more computationally
expensive tree search strategies during data generation, which show great potential in mathematical
reasoning tasks [6].

5.3 Does Chain-of-Retrieval Always Help?
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Figure 3: Scaling test-time compute across three datasets from the KILT benchmark. We report
scores on the public validation set.
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Multi-hop QA datasets are specifically designed to evaluate complex reasoning capabilities and are
expected to benefit from the chain-of-retrieval mechanism. Table 1 presents empirical evidence
supporting this assertion. In contrast, for tasks that a single retrieval step is typically sufficient,
the advantage tends to be marginal, as demonstrated in Figure 3. Datasets such as NQ [17] and
TriviaQA [15] are known for their (mostly) single-hop nature. This phenomenon implies that decoding
strategies should be adaptive based on the complexity of the query. Additional results on the full
KILT benchmark are listed in Appendix Table 5, where similar observations for other task types also
hold.

5.4 Learning to Stop at Test Time
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Figure 4: Learning to stop at test time. Larger
logit bias values result in earlier stopping. L = 6
correspond to always performing 6 retrieval steps,
while L = 0 indicate no intermediate retrieval
steps.

Instead of always performing L retrieval steps,
we explore a model variant that learns to stop
at test time. After each retrieval step, the model
is prompted to predict whether the information
gathered thus far suffices to answer the query.
Note that this prompt itself also incurs token
consumption and additional cost. The decoding
space is constrained to two tokens: “Yes” and

“No”. If the decoded output is “Yes”, no further
sub-queries are generated. By adjusting the logit
bias of the “Yes” token, we can control the early
stopping behavior.

During the training phase, an additional loss
term is added for the stop prediction task. The
target output is “Yes” if the current retrieval
chain encompasses the prefix that maximizes
the likelihood of the final answer, and “No” oth-
erwise. The associated prompt template is in
Appendix Section C.

In Figure 4, we illustrate how the performance
varies along with the token consumption on the
MuSiQue dataset. While early stopping can
save some amount of token quota, it comes at the cost of performance degradation. The optimal
configuration depends on the dataset characteristics and the quality expectations.

6 Conclusion

In this work, we introduce CoRAG, a framework that teaches LLMs to conduct iterative retrieval
and reasoning to answer complex queries. The intermediate retrieval chains are automatically
generated via rejection sampling, thereby alleviating the need for manual annotation. At test time,
we offer multiple decoding strategies to manage the trade-off between performance and compute.
Our experiments demonstrate that CoRAG-8B achieves state-of-the-art performance on both multi-
hop QA datasets and the KILT benchmark, surpassing many baselines built with larger LLMs. A
comprehensive analysis is conducted to understand its scaling behavior and generalization capability.
In the future, we intend to extend CoRAG to more challenging and economically valuable RAG tasks,
advancing towards building factual and trustworthy AI systems.
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A Implementation Details

Rejection Sampling For each training instance, we sample up to 16 retrieval chains, with the
maximum length randomly selected from the interval [1, 5]. The sampling temperature is set to 0.7
for sub-query generation and 0 for sub-answer generation. Chain generation is terminated if the
sub-answer matches the correct answer or if the average conditional log-likelihood of the correct
answer exceeds −0.05. For each sub-query, we utilize the E5-large retriever 1 to retrieve the top-5
most relevant documents from the KILT version of the Wikipedia corpus [23]. This corpus comprises
36 million passages.

Table 4: Hyperparameters for training CoRAG.

Multi-hop QA KILT Benchmark

Initialization Llama-3.1-8B-Instruct
Learning rate 5× 10−6 10−5

Batch size 256 1024
Epoch 1 1
Warmup steps 100 100
# Training samples 125k 660k
# Retrieved passages 20 20
Max sequence length 3072 3072

1https://huggingface.co/intfloat/e5-large-v2
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Multi-Hop QA Training Hyperparameters The training set is the union of the 2WikiMultihopQA,
HotpotQA, and MuSiQue datasets, comprising a total of 125k samples. The Bamboogle dataset,
consisting of only 125 questions, is reserved for evaluation only. Additional hyperparameters are
detailed in Table 4. To balance the three loss terms in Section 3.2, we set a sample ratio of 0.2 for
both the sub-query and sub-answer generation tasks; this ratio is also applied to the KILT training.

KILT Training Hyperparameters We utilize the official training set of the KILT benchmark,
omitting the ELI5 and WoW datasets due to the lack of reliable evaluation metrics. To balance the
task distribution, we only select 100k samples for large datasets like T-REx and Zero-Shot RE. In
accordance with the benchmark’s guidelines, we also add 100k samples from the BLINK dataset for
entity linking.

Rather than using off-the-shelf retrievers, we fine-tune an E5-Mistral retriever following Wang et al.,
and a RankLLaMA re-ranker following Ma et al.. We adhere to the exact training hyperparameters
outlined in the original papers, except that the training data is replaced with the KILT training set.
For training the RankLLaMA re-ranker, the backbone is initialized with the Llama-3-8B-Base model,
as opposed to Llama-2, to enhance performance. Retrieval and re-ranking scores are presented in
Table 6.

All training jobs are conducted using 8 A100 GPUs. The multi-hop QA task requires less than 6
hours of training, whereas the KILT training takes approximately 30 hours. When submitting to
the KILT leaderboard, we select the optimal decoding strategy for each task based on validation set
performance.

Decoding Strategies In the context of best-of-N sampling, the temperature is set to 0.7 for sub-query
generation. For sub-answer generation and final answer prediction, the temperature is always set to 0
across all decoding strategies. Regarding tree search, we set the expansion size to 4 and the number
of rollouts to 2. Given that tree search incurs a significantly higher token consumption compared
to other decoding strategies, we limit the rollouts to a maximum of 2 steps for each expansion. To
avoid the model from generating repetitive sub-queries endlessly, any generated sub-query identical
to previous ones is discarded.

Evaluation For multi-hop QA tasks, we evaluate the performance using the exact match (EM) and
F1 scores [16]. For Self-RAG-7B, we reproduce the results utilizing the FlashRAG [14] toolkit with
the official checkpoint released by the authors.

For the KILT benchmark, we employ the official evaluation scripts provided by the organizers. For
Open QA tasks, the main evaluation metric is the EM score, while other task types are evaluated
using accuracy scores. The KILT benchmark also offers a variant of the evaluation protocol that
requires the model not only to generate the correct answer but also to provide the correct supporting
evidence. However, our method spreads the evidence documents across the retrieval chain, rendering
it challenging to conform to such an evaluation protocol.

B Additional Results

Table 5: Downstream results on the public validation set of the KILT benchmark.

System Entity Linking Slot Filling Open QA Fact

AIDA WnWi WnCw T-REx zsRE NQ HoPo TQA FEVER

CoRAG-8B (Ours)
▷ L=1, greedy 90.4 86.0 76.8 87.0 82.1 62.5 56.4 88.4 91.4
▷ L=6, greedy 92.7 87.4 75.8 86.6 83.8 63.2 59.1 88.6 93.8
▷ L=6, best-of-4 92.5 87.4 75.8 86.3 83.5 62.6 59.6 88.7 93.9
▷ L=6, tree search 91.8 86.8 75.5 86.4 83.0 62.4 59.9 88.9 93.9

Different Decoding Strategies on the KILT Benchmark In Table 5, we present the results of various
decoding strategies applied to the validation set of the KILT benchmark. Given that most tasks within
the KILT benchmark are much easier for strong dense retrievers compared to multi-hop QA, the
disparity in performance across different decoding strategies is less pronounced. This observation
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Table 6: Retrieval results (R-Precision) on the public validation set of the KILT benchmark. For
re-ranking, we use the top-100 candidates from the fine-tuned retriever as input.

System Entity Linking Slot Filling Open QA Fact

AIDA WnWi WnCw T-REx zsRE NQ HoPo TQA FEVER

Fine-tuned E5mistral 92.9 86.7 76.0 80.5 95.3 77.7 66.7 78.9 90.9
▷ w/ re-ranking 93.3 88.0 77.1 83.2 97.6 78.2 78.2 81.5 92.3

underscores the necessity of developing a system capable of adaptively selecting the optimal decoding
strategy to effectively balance the trade-off between performance and test-time compute.
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Figure 5: Scaling rejection sampling compute for training data generation. We vary the number of
sampled chains from 4 to 16 while maintaining all other hyperparameters fixed.

Scaling Compute for Training Data Generation Within our proposed framework, rather than
investing more compute at test time, we can scale the compute for retrieval chain generation during
rejection sampling. By increasing the number of sampled chains, we may identify better chains that
contribute to higher-quality training data. However, as illustrated in Figure 5, no definitive trend
emerges indicating that increasing the number of sampled chains always leads to better performance.
Conversely, the training loss consistently decreases as we scale up rejection sampling, suggesting that
the training data becomes less noisy and easier to fit. We hypothesize that the majority of sampled
chains are already of high quality and that LM fine-tuning exhibits considerable robustness to noisy
training data.

0.2 0.5 0.7 1.0 1.2 1.5
Temperature

70.0

70.5

71.0

71.5

72.0

72.5

EM

2WikiMultihopQA

L=6, best-of-4

0.2 0.5 0.7 1.0 1.2 1.5
Temperature

54.0

54.5

55.0

55.5

56.0

56.5
HotpotQA

L=6, best-of-4

0.2 0.5 0.7 1.0 1.2 1.5
Temperature

46

48

50

52

Bamboogle

L=6, best-of-4

0.2 0.5 0.7 1.0 1.2 1.5
Temperature

26.5

27.0

27.5

28.0

28.5

29.0

29.5

30.0
MuSiQue

L=6, best-of-4

Figure 6: Effects of varying the sampling temperature on multi-hop QA datasets.

Effects of Sampling Temperature In best-of-N sampling, the sampling temperature controls the
diversity and quality trade-off in the generated retrieval chains. A higher temperature results in more
diverse chains, albeit with the potential introduction of increased noise. Figure 6 illustrates the lack
of a consistent conclusion regarding the impact of sampling temperature on performance. For the
MuSiQue and HotpotQA datasets, a lower temperature generally yields superior results, whereas for
the 2WikiMultihopQA dataset, a medium temperature leads to the best performance. As a result, we
stick to a temperature of 0.7 for both rejection sampling and test-time decoding for simplicity.

Case Analysis Table 8 presents several model predictions on the validation set of the HotpotQA
dataset. We compare the performance of RAG without chain-of-retrieval against CoRAG. CoRAG
effectively decompose the complex multi-hop queries into a sequences of simpler sub-queries and
dynamically conducts query reformulation when the retrieved information proves unhelpful. In
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the fourth example, the model initially hallucinates some incorrect information but subsequently
self-corrects by verifying the poet’s name and country of origin through additional retrieval steps.

C Prompts

Table 7: Task descriptions for each dataset.

Dataset Task Description
HotpotQA / 2WikiMulti-
hopQA

answer multi-hop questions

NQ answer natural questions from Google search

AidaYago 2 / WnWi / WnCw
/ Blink

link the mention surrounded by [START_ENT] and [END_ENT] to
the title of the correct Wikipedia page

FEVER verify if the claim is supported or refuted

T-REx / Zero-Shot RE given head entity and relation separated by [SEP], find the correct tail
entity, return the title of its Wikipedia page

Trivia QA answer trivia questions

MuSiQue / Bamboogle answer multi-hop questions

All prompts are listed in this section. Texts highlighted in blue denote placeholders to be filled in.
The “task description” field is dataset-specific, with corresponding values detailed in Table 7.

Prompt: Sub-query Generation

You are using a search engine to answer the main query by iteratively searching the web. Given the following
intermediate queries and answers, generate a new simple follow-up question that can help answer the main
query. You may rephrase or decompose the main query when previous answers are not helpful. Ask simple
follow-up questions only as the search engine may not understand complex questions.

## Previous intermediate queries and answers
{intermediate queries and answers}

## Task description
{task description}

## Main query to answer
{query}

Respond with a simple follow-up question that will help answer the main query, do not explain yourself or
output anything else.

Prompt: Intermediate Answer Generation

Given the following documents, generate an appropriate answer for the query. DO NOT hallucinate any
information, only use the provided documents to generate the answer. Respond “No relevant information
found” if the documents do not contain useful information.

## Documents
{retrieved documents}

## Query
{sub-query}

Respond with a concise answer only, do not explain yourself or output anything else.
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Prompt: Final Answer Generation

Given the following intermediate queries and answers, generate a final answer for the main query by
combining relevant information. Note that intermediate answers are generated by an LLM and may not
always be accurate.

## Documents
{retrieved documents}

## Intermediate queries and answers
{intermediate queries and answers}

## Task description
{task description}

## Main query
{query}

Respond with an appropriate answer only, do not explain yourself or output anything else.

Prompt: Learning to Stop

Given the following intermediate queries and answers, judge whether you have enough information to answer
the main query. If you believe you have enough information, respond with “Yes”, otherwise respond with
“No”.

## Intermediate queries and answers
{intermediate queries and answers}

## Main query
{query}

Respond with “Yes” or “No” only, do not explain yourself or output anything else.
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Table 8: Examples from the validation set of the HotpotQA dataset. For conciseness, all retrieved
documents at each step are omitted. Correct answers are highlighted in blue, while incorrect answers
are highlighted in red.

Query: What wrestling team is Mathew Thomas Rehwoldt a part of?

RAG without Chain-of-Retrieval
Final Answer: WWE ✗

CoRAG (Ours)
Sub-query 1: What is Mathew Thomas Rehwoldt’s profession?
Sub-answer 1: No relevant information found.
Sub-query 2: What is Mathew Thomas Rehwoldt’s name in the wrestling industry?
Sub-answer 2: Aiden English
Sub-query 3: What wrestling team is Aiden English a part of?
Sub-answer 3: The Vaudevillains
Final Answer: The Vaudevillains ✓

Query: How many months apart are Johan Mjällby and Neil Lennon in age?

RAG without Chain-of-Retrieval
Final Answer: two months ✗

CoRAG (Ours)
Sub-query 1: What is Johan Mjällby’s birthdate?
Sub-answer 1: 9 February 1971
Sub-query 2: What is Neil Lennon’s birthdate?
Sub-answer 2: 25 June 1971
Sub-query 3: What is the difference in months between 9 February 1971 and 25 June 1971?
Sub-answer 3: 4 months
Final Answer: 4 ✓

Query: Thomas Parker Sanborn was a model for the protagonist in the only novel by a poet originally from
what country?

RAG without Chain-of-Retrieval
Final Answer: Italian ✗

CoRAG (Ours)
Sub-query 1: What country is the poet originally from?
Sub-answer 1: Hungary, Romania, Switzerland, China, Ukraine, France, Turkey.
Sub-query 2: What is the name of the poet who wrote the only novel?
Sub-answer 2: Emily Brontë
Sub-query 3: What country is the poet who wrote the only novel originally from?
Sub-answer 3: United States
Sub-query 4: What is the name of the poet who wrote the only novel that Thomas Parker Sanborn was a model
for?
Sub-answer 4: George Santayana
Sub-query 5: What poet wrote the only novel that Thomas Parker Sanborn was a model for?
Sub-answer 5: George Santayana
Sub-query 6: What country is the poet George Santayana originally from?
Sub-answer 6: Spain.
Final Answer: Spain ✓

Query: Which university is further North, University of New Hampshire or Stony Brook University?

RAG without Chain-of-Retrieval
Final Answer: University of New Hampshire ✗

CoRAG (Ours)
Sub-query 1: What is the location of the University of New Hampshire?
Sub-answer 1: Durham, New Hampshire.
Sub-query 2: What is the location of Stony Brook University?
Sub-answer 2: Stony Brook, NY.
Sub-query 3: What is the latitude of Durham, New Hampshire?
Sub-answer 3: No relevant information found.
Sub-query 4: What is the latitude of Stony Brook, NY?
Sub-answer 4: No relevant information found.
Final Answer: University of New Hampshire ✗
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