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Abstract
Large Language Models (LLMs) have revolutionized the field of Natural Language Processing thanks to their
ability to reuse knowledge acquired on massive text corpora on a wide variety of downstream tasks, with minimal
(if any) tuning steps. At the same time, it has been repeatedly shown that LLMs lack systematic generalization,
which allows to extrapolate the learned statistical regularities outside the training distribution. In this work, we
offer a systematic benchmarking of GPT-4, one of the most advanced LLMs available, on three algorithmic
tasks characterized by the possibility to control the problem difficulty with two parameters. We compare the
performance of GPT-4 with that of its predecessor (GPT-3.5) and with a variant of the Transformer-Encoder
architecture recently introduced to solve similar tasks, the Neural Data Router. We find that the deployment
of advanced prompting techniques allows GPT-4 to reach superior accuracy on all tasks, demonstrating that
state-of-the-art LLMs constitute a very strong baseline also in challenging tasks that require systematic generalization.
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1. Introduction

In very recent years, Large Language Models
(LLMs) have become ubiquitous in natural lan-
guage processing applications, thanks to their high
degree of flexibility which allows to apply them on
downstream tasks either directly or with limited
amount of adaptation (Brown et al., 2020). At the
same time, since their first appearance it has been
shown that LLMs struggle in reasoning tasks re-
quiring several thinking steps to arrive to the final
answer. In this work, we focus on a specific subset
of such tasks, namely algorithmic reasoning tasks,
in which the problem samples can be automatically
generated. These problems can be solved with rel-
atively simple algorithms, and their complexity can
be fully characterized in terms of the parameters
used in the procedure that generated the problem
instances. While LLMs are typically used to solve
tasks that require processing unstructured natural
language, studying their capacity to solve algorith-
mic reasoning problems can shed lights on their
current limitations and therefore contribute to im-
prove their design or prompting techniques.

Here, we consider three algorithmic tasks shar-
ing the same general structure, but with different
degrees of complexity. All tasks require to simplify
a formula up to a minimal form. Formulas belong
to three different domains: operations on list of in-
tegers (adapting the pre-existing ListOps dataset
by Nangia and Bowman, 2018), arithmetic, and
algebra. In all tasks the data distribution can be
parameterized by the number of nested operations
and the number of operands for each operation

appearing in the formulas.
In order to benchmark the ability of GPT-4 to

solve this sort of problems, we take into account
seven different prompting techniques that have
been recently proposed to solve reasoning tasks
with LLMs. In the case of the two most advanced
prompting methods, we further compare the perfor-
mance of GPT-4 with that of its predecessor (GPT-
3.5). As an additional baseline, we also evaluate
the performance of a recently proposed variant of
the Transformer-Encoder architecture: the Neural
Data Router (Csordás et al., 2022b), which has
been specifically designed to solve reasoning prob-
lems consisting of formulas that require to be itera-
tively simplified.

We find that all models fail to solve the algorith-
mic problems we consider when they are generated
using deeply nested formulas, with three or more
operands for each operation. We also observe that
prompting techniques that lead the model to explic-
itly produce intermediate reasoning steps result in
higher accuracy, especially in the case of arithmetic.
Furthermore, analyzing in detail the impact of each
prompting method on the capacity of GPT-4 to gen-
eralize systematically, we find that the performance
of the model improves mainly on formulas with low
levels of complexity in terms of number of operands
and nesting depth.

2. Related works

Generalization in Transformers. The characteri-
zation of generalization capabilities in Transformer-
based architectures has been an active research
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area in the past few years. One major research
stream deals with out-of-distribution generalization,
for example by investigating the capability of Trans-
formers to achieve good performance on samples
longer than those seen during training (Anil et al.,
2022; Jelassi et al., 2023). Another major research
topic is the study of compositional (also called sys-
tematic) generalization in Transformers (Hupkes
et al., 2020), which investigates their capability to
learn elementary solution procedures and compose
them to solve more complex problems.

One element that has been shown critical to im-
prove out-of-distribution generalization is the kind
of Positional Encodings used in the Transformer. In
particular, label-based encodings (Li and McClel-
land, 2022) extended out-of-distribution generaliza-
tion in simple synthetic tasks, and similar work pro-
vided further experimental support for such method
(Ruoss et al., 2023). A systematic empirical study
comparing the length generalization performance
of decoder-only Transformers using several differ-
ent kinds of positional encodings has been recently
presented by Kazemnejad et al. (2023). Another
element which has been found to influence the ca-
pacity of Transformers to generalize on problem
lengths is the compostion of the training set, which
has been studied by Nam et al. (2022) on Sudoku
puzzles, by Patel et al. (2022) on the SCAN dataset,
and by Jelassi et al. (2023) on arithmetic sum and
multiplication.

Other work studied the impact of simple architec-
tural choices (Csordás et al., 2021; Ontañón et al.,
2022), including positional encodings, on the com-
positional generalization capability of Transformers.
In (Csordás et al., 2022a) the authors present an
extension of the CTL task designed to test models
on unseen compositions of known functions.

Prompting methods for systematic reasoning.
A hot topic in Large Language Models is the design
of effective prompting techniques. (Anil et al., 2022)
offers a general comparison of different methods to
improve out-of-distribution generalization in LLMs,
including prompting techniques and fine-tuning.

Several approaches have explored the idea to
let LLMs use the context – including their own out-
put – to improve their reasoning and generalization
capability. A simple yet effective way to implement
this idea is Chain-of-Thought prompting (Wei et al.,
2022), which has been further studies in scenar-
ios with limited availability of prompting rationales
(Zelikman et al., 2022). In such case, the authors
show that it is possible to boost performance by iter-
atively fine-tune the models on effective rationales
produced by the models’ themselves.

Other work has further built on the idea of lever-
aging the models outputs to solve reasoning prob-
lems: Nye et al. (2021) introduced the idea of a
scratchpad, i.e. an arbitrary sequence of intermedi-

ate tokens which usually follows a specific format-
ting and that can be used by the model to more
explicitly elaborate the problem before producing
the answer. More recently, Zhou et al. (2022) intro-
duced Algorithmic Prompting, a method by which
highly-detailed solution procedures for arithmetic
problems are provided to the model in a few-shot
regimen. A more general case of scratchpad has
been presented by Lanchantin et al. (2023), al-
lowing LLMs to produce intermediate outputs also
while receiving the input, mimicking a note-taking
behavior. Finally, Zhou et al. (2023) showed that
reasoning in LLMs can be improved by iteratively
prompting the models to first decompose a prob-
lem into sub-problems, solve each sub-problem
separately, and then gradually compose the final
solution.

3. Reasoning Tasks

Reasoning tasks such as solving school-level math
word problems, commonsense reasoning or algo-
rithmic reasoning have always been one of the
hardest class of tasks for Large Language Mod-
els. Such problems necessitate several ‘thinking
steps’ to arrive at the final solution, which usually
needs to be derived from intermediate calculations.

The machine learning community has proposed
a variety of tasks specifically designed to study the
ability of neural architectures to generalize in a sys-
tematic and compositional way (Lake and Baroni,
2018; Liska et al., 2018; Kim and Linzen, 2020).

Inspired by these tasks, we consider the general
problem of iteratively simplifying a formula. We
consider a problem framework in which it is pos-
sible to generate synthetic formulas with different
levels of complexity, which can be characterized
by two parameters: the maximum nesting depth
of any operation in a formula (Nesting), and the
maximum number of operands involved in each op-
eration (Operands). Given its generality, this prob-
lem framework can be applied to different domains
where nested formulas with an arbitrary number
of operands can be defined. We thus define three
tasks with different levels of complexity: operations
on lists of integers, arithmetical operations and al-
gebraic operations.

By varying the values of the Nesting and
Operands parameters, we could define an arbitrary
number of data splits for each task, each featuring
a different level of difficulty. In our experiments,
we consider the nine data splits which result from
taking the values in the Cartesian product of the
sets N = {2, 3, 4} and O = {2, 3, 4}, represent-
ing values of the Nesting and Operands parame-
ters, respectively. In Table 1 we report, as a refer-
ence, examples of formulas from the arithmetic task
which have been drawn from the nine data splits



2 Operands 3 Operands 4 Operands
Nesting 2 ((-21+47)*

(38*-69))
(-73-(33*54)+55) ((-28+32)-(28-11+65)+(13+53)-(-15*20))

Nesting 3 (57*((5+1)+
(-79+60)))

(((35-2+12)-
94+(62*-30))+
((-97*-75)-
(-10*-53)+9)-74)

(((-6-41-91-80)-(-31*-22)-(-54*84)-(0+77))+
((-77-27)-77-86-96)+(91+20+(-3+3-30)+
(-41-65+6+89))-((-83-23+50)+34-(-93+4-15-8)-
(35*-26)))

Nesting 4 (-35*(((27*53)+
(-43*-51))+
((-19*81)+
(42*66))))

((((-86+25)
-(-87+76-8)-
(17-93+19))+
((-22-79-17)+
72+4)+(-80-(-96*
-15)-64))-32-36)

(((-66+(-52*51)+43-(-62+69+81+38))-
((97*83)+86-41-85)-((91+8+89)+
(-15+33+99)+12+(-6-53+18))-
(-48-(64+77+36+69)+(-56+12-80)-
27))+(((-74+7)+(49+96-4)-(20-1)-(72-5-
78))-(16+69+(59-61+80+9)+(78+60+3))-
(46+(19+10-48+14)+(61*-4)+(0+86+40-4))+
(-53-79+(31*-94)-68))+(-16+81+71+
(-55-41+(-12*-73)-32))+(84-74+((13-27+17-
90)-(15+75+93)+(54+37-62)+(71-23+46-4))-
((61+14)-(-32-87)+(68-22-25)-(14*-7))))

Table 1: Examples of inputs of the arithmetic task for the nine data splits considered. The complexity of
formulas can be manipulated by increasing the number of operands for each operation and by increasing
the depth of nesting points, which can occur several times in the same formula.

used throughout the experiments. As the examples
show, a formula can be nested in several points
of its structure, meaning that there can be multiple
non-nested operations which can be simplified at
any time.

3.1. ListOps
The ListOps dataset (Nangia and Bowman, 2018)
was proposed as a simple benchmark to assess
the capacity of neural networks to evaluate nested
expressions having parse trees of different depths.
The original task included four simple operations
(minimum, maximum, sum modulo 10 and median),
which are applied to lists of single-digit integers.
The final solution of a problem is always a single-
digit integer. For example, one instance of the prob-
lem might be [MIN[MAX24567][SM10293]213]
having as a unique solution the number 1. In or-
der to adapt this dataset to the problem framework
described above, we extend the problem definition
by making it possible to specify also the number of
operands appearing in the operations, other than
the operations’ nesting depth. At the same time,
we slightly simplified the problem by considering
only three operations: minimum, maximum and
sum modulo 10.

3.2. Arithmetic
The second type of task consists in finding the fi-
nal value of an arithmetic expression where the
operators involved are sum, subtraction and multi-
plication, and operands are integers in the interval
(−100, 100). To keep the problem complexity at a

reasonable level and focus on the capacity of the
model to solve a complex problem by applying sim-
ple solution steps recursively, each intermediate
value obtained in the solution process was taken
modulo 100.

3.3. Algebra
We finally adopted the general problem structure
to the domain of symbolic mathematics, consid-
ering a subset of algebraic expressions in which
all formulas can be reduced to a minimal form,
i.e. either a single number, a monomial, or a bi-
nomial. We automatically generate algebraic ex-
pressions consisting of sums and subtractions be-
tween monomials. Each monomial can contain
up to four variables and has a numerical coeffi-
cient in the range (−100, 100). For example, the
formula (((30xy+33xy)+ (−80xy+62xy))− 62xy)
is sampled from the data split parameterized by
(N = 3, O = 2) and its simplified form is −17xy.

4. Models and Methods

In the following sections, we briefly describe the
prompting techniques we used to probe GPT mod-
els, as well as the structure of the Neural Data
Router (Csordás et al., 2022b) and the minimal
modifications we have made to adapt the architec-
ture to the problems at hand.

4.1. Prompting techniques
In the following, we present the prompting tech-
niques involved in this study. Examples of each



prompting technique on the three tasks are reported
in paragraph 10.2 in the Appendix.

4.1.1. Zero-shot

This prompting technique simply consists in giving
the problem description as input to the model and
directly asking for the result. The question is for-
matted in such a way that the output of the model
will be constrained to the desired format and can
thus be easily parsed.

4.1.2. Role assignment

We also experiment with a variant of the Zero-shot
prompting technique in which we assign a role to
the agent. Following recent findings (Kong et al.,
2023) which suggest that specifying the agent’s
field of expertise could improve the accuracy of its
answers, we input the sentence “You are a brilliant
mathematician” before giving the model the actual
problem description.

4.1.3. Few-shot

One of the abilities that had a big impact on the pop-
ularization of LLMs is their capacity to learn from
examples at inference time, a technique called ‘few-
shot’ or ‘in-context’ learning (Brown et al., 2020).
In this case, we prompt the models by providing
a list of three examples of solved formulas before
asking to solve the actual problem. The formulas
are sampled from three data splits described by
the following values of the Nesting and Operands
parameters: (N = 1, O = 2), (N = 2, O = 2) and
(N = 2, O = 3). In the examples, the formulas are
solved directly, i.e. without showing intermediate
solution steps to the model.

4.1.4. Chain-of-Thought

One of the most general and effective techniques
that have been recently proposed to elicit reason-
ing in Large Language Models is Chain-of-Thought
(CoT) prompting (Wei et al., 2022). When prompted
following this method, the model receives a set of
examples showcasing the solution of a given rea-
soning problem, where each example explicitly in-
cludes the intermediate solution steps required to
get to the final answer.

In our case, we experiment with two different
kinds of CoT prompting: in the first one, named
‘Symbolic Chain-of-Thought’, we provide the solu-
tion examples to the model exclusively in a symbolic
form, that is, as a chain of equalities. In the second
case, named ‘Verbal Chain-of-Thought’, each in-
termediate step is also described with English text,
suggesting the model a motivation for taking that
simplification step and encouraging it to mimic the

same verbalization behavior when producing the
answer to the actual problem.

4.1.5. Zero-shot Chain-of-Thought

Zero-shot Chain-of-Thought prompting (Kojima
et al., 2022) is a technique which has been pro-
posed to obtain similar results as the ones ob-
tained with Chain-of-Thought prompting, without
the need to carefully engineer prompts with exam-
ples demonstrating the solution steps. The model
is prompted directly with the problem it needs to
solve, as well as with the first words of the answer:
“Let’s think step-by-step”. The output generated
by the model is then collected and used to prompt
the model a second time to get the final answer in
the correct format, now eliciting the output with the
usual formula: “So, the final answer is:”.

4.1.6. Self-consistency

Reasoning problems are different from other prob-
lems that can be tackled with generative models,
in that they always have a unique solution (at least
semantically, i.e. not taking into account the dif-
ferent ways in which a solution can be written, for
example in the case of algebraic expressions). Nev-
ertheless, there could be multiple reasoning paths
that lead to the correct solution, varying not only
formally, but also substantially – as in, for example,
theorem proving. Starting from this premise, Wang
et al., 2023 advocate for self-consistency in Large
Language Models’ outputs when solving reasoning
tasks. The basic idea is that the performance of
the model might improve if we prompt the model
several times, and consider the answer that was
generated more frequently and therefore, one might
say, with more confidence.

We apply the self-consistency prompting method
in combination with Zero-shot CoT prompting. To
limit the consumption of credits to query the Ope-
nAI API, we prompted the model only 5 times for
each input, rather than 40 times as done in the
original work. We note, therefore, that the models
performance might further improve raising the num-
ber of prompts per input, and thus the confidence
in the selected answer. However, even with such a
small number of outputs, we can already observe
the effectiveness of this prompting technique.

4.2. Neural Data Router

The Neural Data Router (Csordás et al., 2022b)
has recently been proposed as a modification of
the Encoder module in the Transformer architecture
(Vaswani et al., 2017) with the specific goal of solv-
ing problems where applying the same resolution
step iteratively (such as solving a sub-expression



in a complex formula) can lead to the final solu-
tion. The modifications introduced in this model
are conceived to allow systematic generalization
on such problems. The first one, named ‘copy gate’,
is a mechanism that allows the model to entirely
skip the computation in the self-attention and feed-
forward blocks of an Encoder layer, and directly
transmit the input to the following layer. The sec-
ond mechanism, called ‘geometric attention’, is a
modification of self-attention designed to facilitate
the focus on the closest match of any token, thus
allowing to consider only a narrow region of the
input sequence which should ideally correspond to
the part of formula to be solved.

The model was originally tested on three tasks:
ListOps (Nangia and Bowman, 2018), Composi-
tional Table Lookup (CTL) (Liska et al., 2018), and
arithmetic formulas with single-digit operands and
intermediate values taken modulo 10.

In the original work, the final result could be col-
lected in the first or last position of the encoded se-
quence, since these problems always have single-
digit integers as targets. This no longer holds in our
case, as the algorithmic problems we consider can
have a solution containing more than one token.
We thus adapted the model by modifying the mech-
anism of collection of the final result, considering
a window at the beginning of the final sequence
produced by the encoder which is as large as the
expected target.

For all tasks, we include in the training set ex-
amples drawn from the data defined by the param-
eters values (N = 1, O = 1), (N = 1, O = 2),
(N = 2, O = 2) and (N = 2, O = 3). The training
sets are balanced across the four different data
splits and include 400, 000 samples for all tasks.

We select the model’s hyperparameters repro-
ducing the search procedure described in the
original work. We define two validation sets:
an in-distribution validation set which mirrors the
composition of the training set, and an out-of-
distribution validation set which includes sam-
ples from more difficult splits, represented by
the parameters (N = 2, O = 4), (N = 3, O = 2),
(N = 3, O = 3), (N = 3, O = 4), (N = 4, O = 2),
(N = 4, O = 3) and (N = 4, O = 4). Both valida-
tion sets are balanced across data splits and in-
clude 1, 000 samples per data split, following the
same model selection protocol used in the origi-
nal work. We select the best performing model
on the out-of-distribution validation set applying
the Bayesian hyperparameter search tool provided
by the Weights and Biases MLOps platform1 to
optimize the following hyperparameters: learning
rate, number of encoder layers, dimensionality of
the hidden state, number of heads, weight decay,
dropout, attention dropout and size of the hidden

1https://wandb.ai

ListOps Arithmetic Algebra
GPT-3.5

Zero-shot CoT 0.44 0.32 0.19
Self consistency 0.56 0.35 0.26

GPT-4
Zero-shot 0.33 0.04 0.10
Zero-shot role 0.42 0.06 0.18
Few-shot 0.46 0.08 0.19
Symbolic CoT 0.48 0.14 0.24
Verbal CoT 0.58 0.29 0.25
Zero-shot CoT 0.71 0.49 0.39
Self-consistency 0.79 0.58 0.52

NDR 0.54 0.38 0.24

Table 2: Average performance of all models and
prompting methods on both in-distribution and out-
of-distribution test splits, measured in terms of per-
centage accuracy. “Zero-shot role” refers to the
Zero-shot prompting method where the agent was
assigned a role. The best performance for each
task is highlighted in bold.

feed-forward layer. The parameter ranges used
in the hyperparameters search procedure are the
same reported in the original work.

It should be noted that the scenarios in which we
probed this model can be considered more chal-
lenging than the ones considered in the original
work. Indeed, we used a smaller training set for
the ListOps task (the original training set included
formulas with nesting depth up to 5), and we con-
sidered more complex arithmetic expressions, as
well as algebraic expressions on which the model
was never tested before.

5. Results

In this section, we present the performance
achieved by all models on the three algorithmic
tasks. We also analyze the factors that might de-
termine their success or failure, taking into account
the characteristics of each task, the different level of
complexity of the nine data splits, and the features
of the prompts we used for GPT models.

In the case of GPT-3.5, we tested the model
version called gpt-3.5-turbo available via the
OpenAI API at the time of writing.

We test all models on test sets composed of
100 samples for each data split we consider, thus
summing up to 900 samples for each task. The
performance of all models is measured in terms
of response accuracy: the output produced by
the model is considered correct only if it exactly
matches the target. The only exception is in the
Algebra task, for which we relax this requirement
and consider as correct also outputs that are se-
mantically equivalent to the target, but written in

https://wandb.ai


a different form. To carry out such semantic com-
parison between output and target, we employ the
SymPy Python library2 for symbolic mathematics.

A summary of the performance of all models
and prompting methods on the test splits is re-
ported in Table 2. We can generally observe that
none of the considered models or prompting meth-
ods were able to perfectly solve the problems at
hand, demonstrating that systematic generalization
is challenging for this sort of algorithmic problems.

Figure 1 shows the performance of the Neu-
ral Data Router, GPT-3.5 and GPT-4 using Self-
consistency prompting in a blown-out format, which
allows to inspect the performance of all models on
each data split. We observe that all models achieve
higher performance on simpler data splits, and that
performance degrades more or less smoothly as
the problem complexity (i.e., depth of formula and
number of operators) increases.

In the following, we examine the performance
of the Neural Data Router comparing it to that of
the two versions of GPT. Then, we consider the
effectiveness of the seven prompting methods on
each task, as well as their impact on the capacity
of LLMs to apply solution strategies that generalize
systematically to complex problems.

5.1. Neural Data Router
Figure 2 shows how accuracy and loss of the best
Neural Data Router configuration resulting from the
hyperparameters search evolve during training. It
is interesting to note that while the performance
on the in-distribution validation set grows steadily,
reaching more than 85% accuracy on all tasks, the
performance on the out-of-distribution validation
set grows much more slowly, becoming almost con-
stant when learning starts to converge on the train-
ing set. The wide gap between the loss curves
on the two validation sets shows that the model
overfits the in-distribution split on all tasks, failing
to generalize to more difficult samples.

Considering the detailed performance of the
model represented in Figure 1, we observe
that, in the case of Arithmetic and Algebra, the
model generalizes better on formulas with more
operands than seen during training (data split
(N = 2, O = 4)), rather than in the case of more
deeply nested formulas (data splits (N = 3, O = 2)
and (N = 4, O = 2)). Since the training set in-
cludes examples of a ‘base case’ and an ‘in-
duction step’ for both parameters (respectively,
(N = 1, O = 2) and (N = 2, O = 2) for Nesting,
(N = 2, O = 2) and (N = 2, O = 3) for Operands),
this could indicate that it is easier to learn a gen-
eralization step when the complexity of a formula

2https://www.sympy.org
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Figure 1: Performance of the Neural Data Router,
GPT-3.5 and GPT-4 using Self-consistency prompt-
ing on the test splits. Values represent output accu-
racy in percentage: the performance of all models
and prompting methods clearly decreases on data
splits of higher complexity.

increases in terms of number of operands, rather
than in terms of nesting depth.

Table 2 shows the overall performance of the
model, including both in-distribution and out-of-
distribution test splits. While the model does not
achieve the best performance overall, it is relevant
to observe that its average performance is compet-
itive with that of GPT-3.5 on all tasks. Further com-
paring the performance of the two models on each
data split reported in Figure 1, we observe that the
Neural Data Router achieves a better performance
on harder data splits on the ListOps task. There-
fore, while the overall performance of the model on
this task is lower, this result suggests that in simple
scenarios the mechanisms built in the NDR allow
to learn a solution process that can generalize bet-
ter than a large, general-purpose model such as
GPT-3.5.

5.2. Prompting methods and tasks

As reported in Table 2, on all tasks the best per-
formance was achieved by GPT-4 using the Self-
consistency prompting method. More generally,
prompting techniques that require (or encourage)

https://www.sympy.org
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Figure 2: Accuracy and loss of the Neural Data Router during training on the three algorithmic tasks. Val.
IID and Val. OOD refer to in-distribution and out-of-distribution validation sets, respectively. The model
overfits the in-distribution split on all tasks, failing to generalize to more difficult samples.

GPT-4 to reason explicitly were more effective: in
all cases, the best performance obtained by prompt-
ing methods that ask the model to directly provide
the answer (either with or without solution exam-
ples) is significantly lower than that achieved by
Self-consistency prompting. At the same time, it
is interesting to note that by just contextualizing
the role of the agent (Zero-shot role prompting)
we can improve the model’s accuracy in all tasks,
compared to Zero-shot prompting.

Comparing Chain-of-Though prompts with sym-
bolic solution steps and verbalized solutions steps,
we found that asking the model to spell-out the rea-
soning process significantly improved the perfor-
mance on the ListOps and Arithmetic tasks, while
it had limited impact on the Algebra task. Fur-
thermore, we can see that the task for which CoT
prompting is more useful is clearly Arithmetic, with
a gain in accuracy up to +40% compared to Few-
shot prompting. While it is hard to single out a
single reason why a given prompting method could
be more effective in one particular task, we conjec-
ture that Arithmetic could particularly benefit from
the explicit formulation of solution steps due to the
considerable difficulty of computing the product be-
tween two-digits integers, which for a Large Lan-
guage Model is probably the hardest elementary
operation present in our datasets.

5.3. Prompting methods and
generalization

Taking into account the performance of GPT-4 on
the nine different data splits considered for each
task, we can make some considerations on the
capacity of different prompting methods to enable

systematic generalization.
We show in Figure 3 the performance gain from

each prompting method compared to the Zero-shot
baseline, measured in terms of difference in per-
centage accuracy. We observe that, in general,
the performance gains resulting from the prompt-
ing techniques that lead the model to make explicit
reasoning steps are concentrated in the data splits
with low levels of complexity. The performance gain
on data splits parameterized with (N = 3, O = 4),
(N = 4, O = 3) and (N = 4, O = 4) is generally
less evident.

As previously noted, this general tendency is
more evident on Arithmetic, where the performance
gains deriving from prompting methods that pro-
duce explicit reasoning are greater overall. On
the other hand, the performance gain from such
prompting methods is more evenly spread across
data splits in the case of ListOps, for which the GPT-
4 performance on simple splits is already quite high
even using Zero-shot prompting, as shown in Table
2 (see also paragraph 10.1 in the Appendix).

Overall, this suggests that the prompting meth-
ods we considered gradually improve the perfor-
mance of GPT-4 on the problems at hand by in-
creasing the model’s effectiveness on simple prob-
lem instances, but they do not trigger the emer-
gence of a solution mechanism that can lead to
systematic generalization.

6. Conclusion

In this work, we investigated the effectiveness of a
variety of LLMs prompting methods on three algo-
rithmic tasks designed to analyse how systematic
reasoning capabilities might emerge in relation to
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Figure 3: Performance gain measured as percentage accuracy resulting from each prompting method
on GPT-4 compared to Zero-shot baseline. The accuracy gains from the best prompting methods are
concentrated in simpler data splits, especially on Arithmetic.

an increase in problem complexity. We also com-
pared the performance of state-of-the-art LLMs with
that of a much simpler neural architecture, the Neu-
ral Data Router, specifically designed to solve al-
gorithmic problems characterized by a recursive
structure.

We found that none of the models and prompting
methods could exhibit proper systematic general-
ization capacities. Although the performance of
the ad-hoc Neural Data Router model was competi-
tive with that of a general purpose language model
such as GPT-3.5, it turns out that more advanced
language models like GPT-4 currently represent
the state-of-the-art for solving this type of reason-
ing tasks, even on relatively complex problem in-
stances. By comparing the performance of the
different prompting methods, we found that explic-
itly producing reasoning steps in a verbal form can
generally improve model performance on all tasks.
However, our experiments also highlight the limita-
tions these prompting methods, showing that their
effectiveness could be limited for complex symbolic
reasoning problems.

While synthetic algorithmic problems are quite far
from the typical scenario of application of Large Lan-
guage Models, they are useful for precisely char-
acterizing the limitations of such models, as done
in the present work. Future work could extend our
analysis by expanding the set of prompting methods
considered, for example by including Least-to-Most
prompting (Zhou et al., 2023), which could in prin-
ciple be applicable to problems requiring to solve
nested formulas. Other nuances of prompts them-
selves could also be taken into account, such as
the phrasing used when contextualizing the agent

role, the number of exemplars provided in the few-
shot learning regimen, or the way rationales for
Chain-of-Thought prompting are constructed.

Researchers working on the design of prompting
techniques for Large Language Models could pro-
pose novel methods to improve the capacity of the
models to apply solution strategies that generalize
well on complex problem instances. More precisely,
future research could be dedicated to understand
the extent to which current limitations depend on
the ability to effectively retrieve and manipulate in-
formation in a very large context, a scenario which
could become more and more common in future
dialogue-based real-world applications of LLMs.

Another promising venue for future research
would be to design ad-hoc Transformer variants
that might promote the emergence of systematic
generalization on algorithmic problems, taking into
account both the role of architectural mechanisms
and the composition of the training distribution on
the models’ capacity to generalize.

7. Ethics statement

We do not recognize any ethical or legal issue re-
garding the data used in the present study, since
we have analyzed and processed only synthetic,
non-personal data.

While we acknowledge that an improper use of
Large Language Models can have a major impact
on society, for example potentially facilitating the
spread of misinformation, we do not foresee any se-
rious risk connected to the use of Large Language
Models in the domain of algorithmic reasoning.
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10. Appendix

10.1. Performance of other models and prompting methods
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10.2. Examples of prompts
10.2.1. ListOps

Prompt type Example
Zero-shot Q: MIN, MAX and SM are operators on lists of single-digit integers which

have the semantics of minimum, maximum and sum modulo 10, respectively.
Solve the following expression involving these operators:
[MIN[MAX[MIN68]8][MAX[SM23]6]].
A: The final result is (arabic numeral):

Zero-shot role Q: MIN, MAX and SM are operators on lists of single-digit integers which
have the semantics of minimum, maximum and sum modulo 10, respectively.
Solve the following expression involving these operators:
[MIN[MAX[MIN68]8][MAX[SM23]6]].
A: The final result is (arabic numeral):

Few-shot Q: MIN, MAX and SM are operators on lists of single-digit integers which
have the semantics of minimum, maximum and sum modulo 10, respectively.
Solve the following expression involving these operators: [MIN37].
A: [MIN37]=3.

Q: MIN, MAX and SM are operators on lists of single-digit integers which
have the semantics of minimum, maximum and sum modulo 10, respectively.
Solve the following expression involving these operators: [MAX[MIN41]2].
A: [MAX[MIN41]2]=2.

Q: MIN, MAX and SM are operators on lists of single-digit integers which have
the semantics of minimum, maximum and sum modulo 10, respectively. Solve
the following expression involving these operators: [SM[SM794][SM498]7].
A: [SM[SM794][SM498]7]=8.

Q: MIN, MAX and SM are operators on lists of single-digit integers which
have the semantics of minimum, maximum and sum modulo 10, respectively.
Solve the following expression involving these operators:
[MIN[MAX[MIN68]8][MAX[SM23]6]].

Symbolic CoT Q: MIN, MAX and SM are operators on lists of single-digit integers which
have the semantics of minimum, maximum and sum modulo 10, respectively.
Solve the following expression involving these operators: [SM73].
A: [SM73]= 0.

Q: MIN, MAX and SM are operators on lists of single-digit integers which
have the semantics of minimum, maximum and sum modulo 10, respectively.
Solve the following expression involving these operators: [SM[SM86]1].
A: [SM[SM86]1]= [SM41]= 5.

Q: MIN, MAX and SM are operators on lists of single-digit integers which
have the semantics of minimum, maximum and sum modulo 10, respectively.
Solve the following expression involving these operators:
[MIN[MAX243]4[MAX937]].
A: [MIN[MAX243]4[MAX937]]= [MIN[MAX243]49]= [MIN449]= 4.

Q: MIN, MAX and SM are operators on lists of single-digit integers which
have the semantics of minimum, maximum and sum modulo 10, respectively.
Solve the following expression involving these operators:
[MAX[SM[SM85][MIN84]][SM3[MIN40]]].



Verbal CoT Q: MIN, MAX and SM are operators on lists of single-digit integers which
have the semantics of minimum, maximum and sum modulo 10, respectively.
Solve the following expression involving these operators: [MIN82].
A: Let’s solve the following expression: [MIN82]. Simplifying the expression,
we get to the final result: 2

Q: MIN, MAX and SM are operators on lists of single-digit integers which have
the semantics of minimum, maximum and sum modulo 10, respectively. Solve
the following expression involving these operators: [MIN[SM56][MAX87]].
A: Let’s solve the following expression: [MIN[SM56][MAX87]]. Simplifying an
expression without nested parentheses, we get: [MIN[SM56]8]. Simplifying
the expression, it becomes: [MIN18] Taking an immediate solution step, we
get to the final result: 1.

Q: MIN, MAX and SM are operators on lists of single-digit integers which have
the semantics of minimum, maximum and sum modulo 10, respectively. Solve
the following expression involving these operators: [MIN[MIN326]0[SM851]].
A: Let us recall the expression to be solved: [MIN[MIN326]0[SM851]]. By
solving a simple expression, we obtain: [MIN[MIN326]04]. Solving a
expression within a single pair of brackets, we get: [MIN204]. Taking an
immediate solution step, we get to the final result: 0.

Q: MIN, MAX and SM are operators on lists of single-digit integers which
have the semantics of minimum, maximum and sum modulo 10, respectively.
Solve the following expression involving these operators:
[MIN[MAX[MIN68]8][MAX[SM23]6]].

Zero-shot CoT Q: MIN, MAX and SM are operators on lists of single-digit integers which
have the semantics of minimum, maximum and sum modulo 10, respectively.
Solve the following expression involving these operators:
[MIN[MAX[MIN68]8][MAX[SM23]6]].
A: Let’s think step-by-step.

10.2.2. Arithmetic

Prompt type Example
Zero-shot Q: Solve the following arithmetic expression computing the modulo 100 of

each intermediate value if it’s positive, and the modulo -100 if it’s negative:
(-66-(-84*(-34+0))).
A: The final result is (arabic numerals):

Zero-shot role Q: Solve the following arithmetic expression computing the modulo 100 of
each intermediate value if it’s positive, and the modulo -100 if it’s negative:
(-66-(-84*(-34+0))).
A: The final result is (arabic numerals):



Few-shot Q: Solve the following arithmetic expression taking each intermediate value
modulo 100 if it’s positive, and modulo -100 if it’s negative: (51*39).
A: (51*39)=89.

Q: Solve the following arithmetic expression taking each intermediate value
modulo 100 if it’s positive, and modulo -100 if it’s negative:
((28*-53)*(-76*90)).
A: ((28*-53)*(-76*90))=60.

Q: Solve the following arithmetic expression taking each intermediate value
modulo 100 if it’s positive, and modulo -100 if it’s negative:
(40-54-(-33–97+-19)).
A: (40-54-(-33–97+-19))=-59.

Q: Solve the following arithmetic expression taking each intermediate value
modulo 100 if it’s positive, and modulo -100 if it’s negative:
(-66-(-84*(-34+0))).

Symbolic CoT Q: Solve the following arithmetic expression taking each intermediate value
modulo 100 if it’s positive, and modulo -100 if it’s negative: (-16*-37).
A: (-16*-37)= 92.

Q: Solve the following arithmetic expression taking each intermediate value
modulo 100 if it’s positive, and modulo -100 if it’s negative: ((87*-51)-(47*-6)).
A: ((87*-51)-(47*-6))= ((87*-51)–82)= (-37–82)= 45.

Q: Solve the following arithmetic expression taking each intermediate value
modulo 100 if it’s positive, and modulo -100 if it’s negative:
((-12–28-74)+-21+(76+-32+-87)).
A: ((-12–28-74)+-21+(76+-32+-87))= ((-12–28-74)+-21+-43)= (-58+-21+-43)=
-22.

Q: Solve the following arithmetic expression taking each intermediate value
modulo 100 if it’s positive, and modulo -100 if it’s negative:
(((-33-39)*(67*65))-22).

Verbal CoT Q: Solve the following arithmetic expression taking each intermediate value
modulo 100 if it’s positive, and modulo -100 if it’s negative: (-14*88).
A: Let us recall the expression to be solved: (-14*88). Simplifying the
expression, we get to the final result: -32

Q: Solve the following arithmetic expression taking each intermediate value
modulo 100 if it’s positive, and modulo -100 if it’s negative: ((92*26)*(-35*59)).
A: Let us recall the expression to be solved: ((92*26)*(-35*59)). Simplifying
the expression, it becomes: ((92*26)*-65) Solving a expression within a single
pair of brackets, we get: (92*-65). Simplifying the expression, we get to the
final result: -80

Q: Solve the following arithmetic expression taking each intermediate value
modulo 100 if it’s positive, and modulo -100 if it’s negative:
(83-(46+-5-54)-25).
A: We need to solve the following expression: (83-(46+-5-54)-25). Taking an
immediate solution step, we obtain: (83–13-25). As this expression is in a
simple form, we can get to the final result: 71

Q: Solve the following arithmetic expression taking each intermediate value
modulo 100 if it’s positive, and modulo -100 if it’s negative:
(-66-(-84*(-34+0))).



Zero-shot CoT Q: Solve the following arithmetic expression computing the modulo 100 of
each intermediate value if it’s positive, and the modulo -100 if it’s negative:
(((-33-39)*(67*65))-22).
A: Let’s think step-by-step.

10.2.3. Algebra

Prompt type Example
Zero-shot Q: Simplify the following algebraic expression, computing the modulo 100 of

the numerical coefficient of each intermediate value if it’s positive, and the
modulo -100 if it’s negative:
((-78*b*x*y+(+50*b*x*y+-22*b*x*y))+((-b*x+-57*b*x)+(-38*b*x+-99*b*x))). If
possible, factor by grouping the final result.
A: The final result is (algebraic expression):

Zero-shot role Q: Simplify the following algebraic expression, computing the modulo 100 of
the numerical coefficient of each intermediate value if it’s positive, and the
modulo -100 if it’s negative: (-85*a*y+((-98*a*x*y+2*a*x*y)+0*x*y*a)). If
possible, factor by grouping the final result.
A: The final result is (algebraic expression):

Few-shot Q: Solve the following algebraic expression taking the numerical coefficient of
each intermediate value modulo 100 if it’s positive, and modulo -100 if it’s
negative: (-55*b*x*y+-8*b*x). If possible, factor by grouping the final result.
A: (-55*b*x*y+-8*b*x)=-b*x*(55*y+8).

Q: Solve the following algebraic expression taking the numerical coefficient of
each intermediate value modulo 100 if it’s positive, and modulo -100 if it’s
negative: ((-54*x*y+-68*x*y)+(-99*x*y++62*x*y)). If possible, factor by
grouping the final result.
A: ((-54*x*y+-68*x*y)+(-99*x*y++62*x*y))=-59*x*y.

Q: Solve the following algebraic expression taking the numerical coefficient of
each intermediate value modulo 100 if it’s positive, and modulo -100 if it’s
negative: ((+12*x*y+-
59*x*y++58*x*y)+(+36*x*y++13*x*y++93*x*y)+(+96*x*y+-55*x*y++73*x*y)).
If possible, factor by grouping the final result.
A: ((+12*x*y+-59*x*y++58*x*y)+(+36*x*y++13*x*y++93*x*y)+(+96*x*y+-
55*x*y++73*x*y))=+67*x*y.

Q: Solve the following algebraic expression taking the numerical coefficient of
each intermediate value modulo 100 if it’s positive, and modulo -100 if it’s
negative: (-85*a*y+((-98*a*x*y+2*a*x*y)+0*x*y*a)). If possible, factor by
grouping the final result.



Symbolic CoT Q: Solve the following algebraic expression taking the numerical coefficient of
each intermediate value modulo 100 if it’s positive, and modulo -100 if it’s
negative: (+39*a*b*y++15*a*b*x*y). If possible, factor by grouping the final
result.
A: (+39*a*b*y++15*a*b*x*y)= +3*a*b*y*(5*x+13).

Q: Solve the following algebraic expression taking the numerical coefficient of
each intermediate value modulo 100 if it’s positive, and modulo -100 if it’s
negative: (+21*x*y+(-26*x*y+-92*x*y)). If possible, factor by grouping the final
result.
A: (+21*x*y+(-26*x*y+-92*x*y))= (+21*x*y+-18*x*y)= +3*x*y.

Q: Solve the following algebraic expression taking the numerical coefficient of
each intermediate value modulo 100 if it’s positive, and modulo -100 if it’s
negative: ((+45*b*x++22*b*x+-47*b*x)+-62*b*x*y). If possible, factor by
grouping the final result.
A: ((+45*b*x++22*b*x+-47*b*x)+-62*b*x*y)= (+20*b*x+-62*b*x*y)=
-2*b*x*(31*y-10).

Q: Solve the following algebraic expression taking the numerical coefficient of
each intermediate value modulo 100 if it’s positive, and modulo -100 if it’s
negative:
((-78*b*x*y+(+50*b*x*y+-22*b*x*y))+((-b*x+-57*b*x)+(-38*b*x+-99*b*x))). If
possible, factor by grouping the final result.

Verbal CoT Q: Solve the following algebraic expression taking the numerical coefficient of
each intermediate value modulo 100 if it’s positive, and modulo -100 if it’s
negative: (+10*a*b*x*y+-23*a*b*x). If possible, factor by grouping the final
result.
A: The expression we need to solve is: (+10*a*b*x*y+-23*a*b*x). Simplifying
the expression and factoring by grouping, we get to the final result:
+a*b*x*(10*y-23)

Q: Solve the following algebraic expression taking the numerical coefficient of
each intermediate value modulo 100 if it’s positive, and modulo -100 if it’s
negative: (-8*a*x*y+(-38*a*x+-70*a*x)). If possible, factor by grouping the
final result.
A: Let us recall the expression to be solved: (-8*a*x*y+(-38*a*x+-70*a*x)). By
solving a simple expression, we obtain: (-8*a*x*y+-8*a*x). As this expression
is in a simple form, we can get to the final result factoring by grouping:
-8*a*x*(y+1)

Q: Solve the following algebraic expression taking the numerical coefficient of
each intermediate value modulo 100 if it’s positive, and modulo -100 if it’s
negative: (+31*a*b*y+(-50*a*b*x+-64*a*b*x+-46*a*b*x)). If possible, factor by
grouping the final result.
A: We need to solve the following expression:
(+31*a*b*y+(-50*a*b*x+-64*a*b*x+-46*a*b*x)). Taking an immediate solution
step, we obtain: (+31*a*b*y+-60*a*b*x). Taking an immediate solution step
and factoring by grouping, we get to the final result: -a*b*(60*x-31*y).

Q: Solve the following algebraic expression taking the numerical coefficient of
each intermediate value modulo 100 if it’s positive, and modulo -100 if it’s
negative:
((-78*b*x*y+(+50*b*x*y+-22*b*x*y))+((-b*x+-57*b*x)+(-38*b*x+-99*b*x))). If
possible, factor by grouping the final result.



Zero-shot CoT Q: Simplify the following algebraic expression, computing the modulo 100 of
the numerical coefficient of each intermediate value if it’s positive, and the
modulo -100 if it’s negative: (-85*a*y+((-98*a*x*y+2*a*x*y)+0*x*y*a)). If
possible, factor by grouping the final result.
A: Let’s think step-by-step.
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