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ABSTRACT

State-of-the-art retrieval models typically address a straightforward search sce-
nario, where retrieval tasks are fixed (e.g., finding a passage to answer a specific
question) and only a single modality is supported for both queries and retrieved
results. This paper introduces techniques for advancing information retrieval with
multimodal large language models (MLLMs), enabling a broader search scenario,
termed universal multimodal retrieval, where multiple modalities and diverse re-
trieval tasks are accommodated. To this end, we first study fine-tuning an MLLM
as a bi-encoder retriever on 10 datasets with 16 retrieval tasks. Our empirical
results show that the fine-tuned MLLM retriever is capable of understanding chal-
lenging queries, composed of both text and image, but underperforms a smaller
CLIP retriever in cross-modal retrieval tasks due to modality bias from MLLMs.
To address the issue, we propose modality-aware hard negative mining to mit-
igate the modality bias exhibited by MLLM retrievers. Second, we propose to
continually fine-tune the universal multimodal retriever to enhance its text re-
trieval capability while maintaining multimodal retrieval capability. As a result,
our model, MM-Embed, achieves state-of-the-art performance on the multimodal
retrieval benchmark M-BEIR, which spans multiple domains and tasks, while also
surpassing the state-of-the-art text retrieval model, NV-Embed-v1, on MTEB re-
trieval benchmark. Finally, we explore to prompt the off-the-shelf MLLMs as the
zero-shot rerankers to refine the ranking of the candidates from the multimodal re-
triever. We find that through prompt-and-reranking, MLLMs can further improve
multimodal retrieval when the user queries (e.g., text-image composed queries)
are more complex and challenging to understand. These findings also pave the
way to advance universal multimodal retrieval in the future. We release the model
weights at: https://huggingface.co/nvidia/MM-Embed.

1 INTRODUCTION

Information retrieval is crucial for a variety of downstream tasks, such as question answer-
ing (Kwiatkowski et al., 2019), fact-checking (Thorne et al., 2018), and retrieval-augmented gener-
ation (Lewis et al., 2020). Existing state-of-the-art retrievers often focus on narrow scenarios. For
example, LLM-based retrievers (Wang et al., 2023; Lee et al., 2024; Meng et al., 2024; Moreira
et al., 2024) are limited to text-to-text retrieval tasks, where both the query and the retrieved results
are text-only. Recent work on multimodal retrieval (Zhang et al., 2024; Jiang et al., 2024) focuses on
specific tasks and assumes a homogeneous document format. However, in real-world applications,
documents and queries often consist of diverse formats or modalities, such as text, images, and in-
terleaved text and images. To advance information retrieval and support broader search scenarios,
this work explores the use of multimodal LLMs (MLLMs; Dai et al., 2024; Liu et al., 2023a; 2024)
for universal multimodal retrieval, accommodating diverse user-instructed tasks with multimodal
queries and documents, as illustrated in Figure 1.

∗Sheng-Chieh Lin did this work during an internship at NVIDIA. Correspondence to: Sheng-Chieh Lin
⟨s269lin@uwaterloo.ca⟩, Wei Ping ⟨wping@nvidia.com⟩.

1

ar
X

iv
:2

41
1.

02
57

1v
1 

 [
cs

.C
L

] 
 4

 N
ov

 2
02

4

https://huggingface.co/nvidia/MM-Embed


MM-Embed

Find an image caption describing the following everyday image.

Find a day-to-day image that looks similar to the provided image. 

Retrieve a day-to-day image that aligns 
with the modification everyday image.

Take out the spoon and put 
some whipped everyday image.

Find a product description for the fashion item in the image.

Find a fashion image that aligns with the 
reference image and style. 

Is black and different graphic 
and is black with white 

Provide a news-related caption for the displayed image.

Retrieve a Wikipedia paragraph that provides an 
answer to the given query about the image.

Retrieve a Wikipedia image-description pair that 
provides evidence for the question of this image.

What is this building?

Text + Image

Image

Text

Find me an everyday image that matches the given caption. A child holding a flowered umbrella and petting a yak.

Find a product description for the fashion item in the image. Blue zip through textured jacket.

What is the elevation difference 
between King Arthur Castle and 
Elaine Castle?

Retrieve passages from Wikipedia that provide answers to the following question.

Find a Wikipedia image that answers this question.

Find questions that have the same meaning as the input question

Instruction Query

1.
2.
3.
4.
5.

6.
7.

8.

9.
10.
11.
12.
13.

Task

Candidates

  
Q:         

A:  

Does the answer correctly answer the 
question? True or False

What is this building?

The building is …

Prompt for reranking

True: 0.7

False: 0.3

Relevance score

Zero-Shot 
Reranking

Figure 1: Illustration of universal multimodal retrieval, where diverse tasks with instructions, queries
and documents with multimodal formats are supported. In this work, we explore to fine-tune
MLLM-based universal multimodal retriever, MM-Embed, and prompt an MLLM for reranking.

We first explore to fine-tune MLLM-based bi-encoder retrievers with instructions as a guide (Asai
et al., 2023) on 16 multimodal retrieval tasks from M-BIER (Wei et al., 2023). We find that MLLM-
based retrievers significantly outperform CLIP-based retrievers in the challenging tasks, where in-
terleaved text–image queries are given, such as visual question answering and composed image re-
trieval (tasks 3 and 7 in Figure 1). However, MLLM-based retrievers underperform in cross-modal
retrieval tasks due to the modality bias from MLLMs. That is, given a text-based query with the
instruction to retrieve an image (e.g., task 9 in Figure 1), an MLLM-based retriever tends to retrieve
a relevant text-only rather than documents with images, especially when we improve the MLLM-
based retriever’s text retrieval capability. To address the issue, we propose modality-aware hard
negative mining in Section 4.1.1 and continual text-to-text retrieval fine-tuning in Section 4.1.2. Our
final retriever, coined MM-Embed, is the first state-of-the-art universal multimodal retriever while
maintaining competitive text-to-text retrieval performance across diverse tasks.

Finally, we explore to prompt MLLMs as zero-shot rerankers. Surprisingly, we find that the zero-
shot MLLM-based rerankers can further boost retrieval accuracy in the tasks, where user queries
are interleaved text–image and more challenging to understand. For example, in the composed
image retrieval dataset, CIRCO (Baldrati et al., 2023), the zero-shot rerankers are able to refine the
ranked lists and significantly boosts the accuracy (mAP@5) over 7 points from the existing state-
of-the-art composed-image retriever (Zhang et al., 2024) and our universal multimodal retrievers.
This finding indicates that there is still room for improvement in such challenging tasks in order
to tackle universal multimodal retrieval. Also, knowledge distillation from zero-shot or few-shot
MLLM-based rerankers to retrievers is a promising direction.

We summarize our contributions as follows: i) We present a study on applying MLLMs to universal
multimodal retrieval. ii) We are the first to build MLLM-based universal multimodal retrievers.
Notably, our MM-Embed, initialized from the existing best-performing text retriever (NV-Embed-
v1; Lee et al., 2024), not only achieves state-of-the-art results in universal multimodal retrieval
benchmark, M-BEIR (Wei et al., 2023), but also surpasses NV-Embed-v1 in text-to-text retrieval
tasks on MTEB. iii) We are the first work to explore prompting MLLMs for zero-shot reranking.
With a zero-shot MLLM-based reranker, we are able to boost the ranking accuracy over 7 points
upon state-of-the-art retrievers in the composed image retrieval task, CIRCO (Baldrati et al., 2023).

We organize the rest of the paper as follows. We discuss related work in § 2. We introduce the
definition of universal multimodal retrieval in § 3 and present the proposed method in § 4. We report
experiment results in § 5 and conclude the paper in § 6.
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2 RELATED WORK

Instruction-Aware Dense Representation Learning. Asai et al. (2023) is the first work to iden-
tify the implicit search intent behind each retrieval task and propose to fine-tune a retriever to learn
diverse retrieval tasks with handwritten task instructions. Su et al. (2023) and existing state-of-the-
art LLM-based text embedding models (Wang et al., 2023; Meng et al., 2024; Lee et al., 2024) adopt
this approach to broader tasks beyond text retrieval, such as text classification and clustering. Re-
cently, Wei et al. (2023) propose a universal multimodal retrieval dataset, M-BEIR, and find that
instruction-aware dense retrieval fine-tuning is crucial to tackle universal multimodal retrieval.

Vision-Language Models for Multimodal Retrieval. With the advance of pre-trained vision-
language models (Radford et al., 2021; Li et al., 2022), research focus shifts from single-modal (Ba-
jaj et al., 2016; Fu et al., 2023) to cross-modal (Lin et al., 2014; Han et al., 2017; Liu et al., 2021a)
or more complex multimodal retrieval tasks (Liu et al., 2021b; Wu et al., 2021; Baldrati et al., 2023).
However, the aforementioned tasks assume homogeneous modality for queries and documents, lim-
iting its application. Liu et al. (2023c) take one step further to tackle the retrieval scenario involving
candidate pool with heterogeneous modalities but still limit to single retrieval task.

Wei et al. (2023) extend the study to a more general scenario, where retrievers are required to deal
with queries, candidate pool in heterogeneous modalities and diverse retrieval tasks. However, the
study is limited to CLIP-based retrievers and ignores important text-to-text retrieval tasks, such as
fact checking (Thorne et al., 2018) and entity retrieval (Hasibi et al., 2017). While Koukounas et al.
(2024) aim to fine-tune a CLIP-based retriever with both strong text-to-text and multimodal retrieval
capability, they only consider simple multimodal retrieval tasks: image-caption retrieval (Young
et al., 2014; Lin et al., 2014). Concurrent to our work, Jiang et al. (2024) propose to fine-tune
MLLMs on NLI dataset (Bowman et al., 2015) and demonstrate their transferability to multimodal
retrieval. In this paper, we are the first to study how to fine-tune an MLLM-based universal mul-
timodal retriever while maintaining strong text-to-text retrieval capability. Also, we are the first to
explore prompting MLLMs as zero-shot rerankers in diverse multimodal retrieval tasks.

3 UNIVERSAL MULTIMODAL RETRIEVAL

Following the framework of Lin et al. (2021), we formulate the task of retrieval as follows: given
a query q, the goal is to retrieve a ranked list of candidates {c1, c2, · · · ck} ∈ C to maximize some
ranking metrics, such as nDCG, where C is the collection of documents. In this work, we bor-
row the setting of universal multimodal retrieval from Wei et al. (2023), where user queries and
candidates may consist of a text, image or interleaved text–image; i.e., q ∈ {qtxt, qimg, (qtxt, qimg)};
c ∈ {ctxt, cimg, (ctxt, cimg)}. Additionally, there are multiple search intents behind a search query,
which can be elaborated by task-specific instructions (Asai et al., 2023). For example, in task 1 and
2 of Figure 1, given the same image as a query, the search intent is to find an image caption and
similar image, respectively. Thus, in universal multimodal retrieval, given a multimodal query and
task instruction inst, we aim to retrieve a list of candidates from a pool of multimodal documents to
maximize a specified ranking metric. Note that we only consider text and image in this work while
more modalities, such as audio and video can be included, which we leave for future work.

4 METHOD

In this section, we describe our approach to universal multimodal retrieval by leveraging multimodal
LLMs (MLLMs). In Section 4.1, we first fine-tune an MLLM-based retriever to project multimodal
user queries, along with task instructions, into the same semantic space as multimodal documents,
enabling k-nearest neighbor search (Johnson et al., 2021). In Section 4.2, we present our method for
using MLLMs to rerank the top-k candidates retrieved by the universal multimodal retriever.

4.1 FINE-TUNING MULTIMODAL LLMS FOR UNIVERSAL MULTIMODAL RETRIEVAL

We fine-tune an MLLM-based retriever parameterized by θ (i.e., ηθ) under the guidance of task-
specific instructions, aiming to capture the implicit intents behind retrieval tasks. Specifically, given
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a user query qi with the specified task instruction insti and its relevant and negative candidates, c+i
and c−i , we minimize the InfoNCE loss (Gutmann & Hyvärinen, 2010):

NCE = − 1

|B|

|B|∑
i=1

log
exp (ηθ(insti, qi) · ηθ(c+i )/τ)∑

c′∈DB
exp(ηθ(insti, qi) · ηθ(c′)/τ)

, (1)

where DB = (c+1 , c
−
1 , · · · , c

+
|B|, c

−
|B|) includes all the positive and negative documents for all the

queries in the mini batch B, ηθ(·) ∈ Rd is a normalized vector and τ is the temperature.

4.1.1 MODALITY-AWARE HARD NEGATIVE MINING

Prior work (Karpukhin et al., 2020; Xiong et al., 2021; de Souza P. Moreira et al., 2024) has demon-
strated that hard negative mining significantly improves representation learning for text-to-text re-
trieval. In the previous retrieval setting, where the corpus consists of documents with a homogeneous
modality, a document is considered a hard negative if it lacks the required information but is still
retrieved by a model. However, in the scenario of universal multimodal retrieval, where the corpus
contains documents involving diverse modalities, the users’ desired modality as specified in task
instructions (i.e., text, image or interleaved text–image) should be taken into consideration. For ex-
ample, as shown in Figure 1, the first and second users issue the same query along with different
instructions, requiring the documents to be in the format of text and image, respectively. To address
this, we propose modality-aware hard negative mining to guide models in retrieving candidates that
meet both the users’ information needs and their preferred modality.

Specifically, we first fine-tune an MLLM-based retriever using random negatives; i.e., DB =
(c+1 , · · · , c

+
|B|). The fine-tuned model is denoted as M rand. For each query qi and its associated

instruction insti in the training set, we generate two types of negatives from the top-50 candidates
retrieved by M rand: i) negatives with incorrect modality (C1

i ), where the candidate ranks higher
than the labeled positive but has a different modality from the desired one, and ii) negatives with
unsatisfactory information (C2

i ), where the candidate ranks lower than k′ but has the same desired
modality. Note that setting k′ to a small number may include false positives while setting k′ to
large number would make the negative samples too easy. Thus, in our experiment, following the
prior work (Chen et al., 2022; Lin et al., 2023), we set k′ = 45. While training, given the query qi
with the associated instruction insti, we generate a triplet, ((insti, qi), c+i , c

−
i ), by sampling hard

negative c−i from either C1
i or C2

i with the same probability. We denote the models fine-tuned with
modality-aware hard negatives as M hard. We refer readers to Fig. 2 in the Appendix for examples of
both types of negative samples.

4.1.2 CONTINUAL TEXT-TO-TEXT RETRIEVAL FINE-TUNING

Since text-to-text retrieval remains one of the most commonly used retrieval tasks, we further fine-
tune M hard on diverse public text-to-text retrieval tasks, including MS MARCO (Bajaj et al., 2016),
HotpotQA (Yang et al., 2018), Natural Question (Kwiatkowski et al., 2019), PAQ (Lewis et al.,
2021), StackExchange (Stack-Exchange-Community, 2023), Natural Language Inference (Bowman
et al., 2015), SQuAD (Rajpurkar et al., 2016), ArguAna (Wachsmuth et al., 2018), BioASQ (Nentidis
et al., 2023), FiQA (Maia et al., 2018), and FEVER (Thorne et al., 2018). As these datasets do not
contain negative samples, we employ the fine-tuned LLM-based retriever (NV-Embed-v1; Lee et al.,
2024) to mine hard negatives in our experiments (see de Souza P. Moreira et al. (2024) for details).

During the continual fine-tuning stage, we uniformly sample triplets from both the universal mul-
timodal and text-to-text retrieval training data. Note that for each query qi in universal multimodal
retrieval training data, we use M hard to mine the second-type hard negatives C2

i again. Since no
first-type hard negatives (i.e., C1

i = ∅) are mined by M hard, we retain the first-type hard negative
mined by M rand.

4.2 PROMPTING MULTIMODAL LLMS FOR RERANKING

Prior work (Sun et al., 2023; Jin et al., 2024) has demonstrated that instruction fine-tuned LLMs
can be prompted to rerank candidates in text-to-text retrieval tasks. In this work, we prompt
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LLaVa-Next (Liu et al., 2024) to further rerank the top-10 retrieved candidates by universal mul-
timodal retrievers. Following the approach in Nogueira et al. (2020), we frame the reranking
task as a series of true-false questions. Specifically, given a query and retrieved candidate, we
prompt LLaVa-Next to determine whether the retrieved candidate satisfies the given query by an-
swering “True” or “False”. For example, in the image caption retrieval (task 1 in Figure 1),
given an image query, qimg, and a retrieved text-based candidate, ctxt, we use the below prompt:
“< qimg >\nCaption:< ctxt >\nDoes the above daily life image match the caption? True or False”.
Additionally, in the visual question answering retrieval (task 7 in Figure 1), given a visual question,
<Qry image><Qry text>, and a retrieved text-based candidate, <Doc text>, we use the below
prompt: <Qry image>\nQuestion:<Qry text>\nAnswer:<Doc text>\nDoes the answer correctly
answer the question? True or False. We refer readers to Table 13 in the Appendix for the specific
prompts used in different multimodal retrieval tasks.

To compute relevance scores, we apply the Softmax operation over the logits of the “True” and
“False” tokens, using the probability of the “True” token as the relevance score for reranking. Our
preliminary study in Section 5.3.3 shows that zero-shot MLLM-based rerankers mainly improve
the tasks, where queries are interleaved text–image, such as composed image retrieval and visual
question answering as shown in the tasks 3, 5,7 and 8 of Figure 1.

5 EXPERIMENTS

5.1 DATASETS AND MODELS

Multimodal Retrieval Dataset. We evaluate models’ universal multimodal retrieval capability
using M-BEIR dataset (Wei et al., 2023), which is constructed from 10 datasets with 16 diverse
multimodal retrieval tasks across 4 domains listed in Table 8 (in the Appendix).1 We train our
models on the M-BEIR 1.1M training queries and evaluate models’ effectiveness on the 190K test
queries. Following the global evaluation setting of M-BEIR dataset, for each query, candidates are
retrieved from a merged candidate pool of 5.6M multimodal documents spanning all 10 datasets.
We report the averaged Recall@5 (R@5) as retrieval accuracy across all test queries in each dataset,
except for Fashion200K and FashionIQ, where we report Recall@10 (R@10). We refer readers to
Wei et al. (2023) for more details on the construction of M-BEIR dataset.

Text-to-Text Retrieval Dataset. While M-BEIR contains WebQA dataset for text-to-text re-
trieval evaluation, we conduct a more comprehensive text-to-text retrieval evaluation using MTEB
dataset (Muennighoff et al., 2023). Specifically, we evaluate our models on 15 diverse text retrieval
datasets.2 Following the established procedure, we report the averaged nDCG@10 across the 15
text retrieval datasets. Note that unlike in M-BEIR, where candidates are retrieved from a merged
pool across all tasks, in the MTEB retrieval tasks, we retrieve candidates from separate corpora for
each task.

Backbone Model Choices. In this work, we utilize two representative backbones of vision–
language models to build universal multimodal retrievers, CLIP (Radford et al., 2021) and LLaVa-
Next (Liu et al., 2024). For CLIP, we initialize from CLIP-large model and employ the best-
performing modeling approach from Wei et al. (2023), denoted as CLIPSF.3 This method fuses
input image and text features by separately encoding each input (query or document) image and text
into separate vectors, which are then summed to create a fused vector (Liu et al., 2023c).

LLaVa-Next (Liu et al., 2024) is a multimodal LLM (MLLM), which integrates a CLIP image en-
coder, LLM and a vision–language MLP projector to align image features to the input embedding
space of the LLM. We use LLaVa-Next with Mistral 7B (Jiang et al., 2023) as the backbone LLM.4
We experiment with three variants: (1) LLaVa-E: the <eos> token embedding is used to aggregate
information from the multimodal input, a method commonly employed in prior work for text re-
trieval (Wang et al., 2023; Ma et al., 2024b); (2) LLaVa-P: the MLLM is prompted to summarize

1https://huggingface.co/datasets/TIGER-Lab/M-BEIR
2The 15 retrieval datasets in MTEB are derived from public datasets in BEIR (Thakur et al., 2021), excluding

BioASQ, Signal-1M, TREC-NEWS, Robust04.
3https://huggingface.co/openai/clip-vit-large-patch14
4https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf
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Table 1: Main results. Following Wei et al. (2023), we report R@5 for all the datasets, except for Fashion200K
and FashionIQ, where we report R@10. The tasks of single-modal and multi-modal queries denote tasks 1–5
and 6–8, respectively. For MTEB text retrieval (Muennighoff et al., 2023), we report nDCG@10 averaged from
15 retrieval tasks (detailed in Appendix Table 9).

Task Dataset M rand M hard
MM-Embed

CLIPSF LLaVa-E LLaVa-P NV-Embed-v1 CLIPSF LLaVa-P NV-Embed-v1

1. qtxt → cimg
VisualNews 43.8 33.2 34.2 32.1 42.7 39.7 41.1 41.0
MSCOCO 72.0 69.3 70.8 64.6 69.2 73.8 72.7 71.3
Fashion200K 16.4 13.5 13.3 10.4 19.7 17.4 18.6 17.1

2. qtxt → ctxt WebQA 83.2 88.6 88.8 92.1 88.2 93.6 95.6 95.9

3. qtxt → (cimg, ctxt)
EDIS 46.5 55.9 56.6 55.1 54.2 68.8 69.8 68.8
WebQA 76.0 80.3 81.6 81.3 80.1 84.9 84.8 85.0

4. qimg → ctxt
VisualNews 39.5 32.4 33.3 30.4 40.6 39.4 41.4 41.3
MSCOCO 91.0 91.8 92.2 90.3 88.5 89.5 88.9 90.1
Fashion200K 17.2 13.9 14.7 13.2 20.0 17.5 19.9 18.4

5. qimg → cimg NIGHTS 31.6 31.8 30.7 30.4 31.9 31.8 31.1 32.4

6. (qimg, qtxt) → ctxt OVEN 40.4 37.9 39.1 36.3 40.9 42.9 42.6 42.1
InfoSeek 26.1 31.0 32.9 33.3 27.6 37.2 35.8 42.3

7. (qimg, qtxt) → cimg FashionIQ 24.2 27.4 27.0 26.0 21.7 25.8 26.6 25.7
CIRR 43.2 48.1 45.4 45.3 38.3 49.5 50.8 50.0

8. (qimg, qtxt) → (cimg, ctxt)
OVEN 60.9 61.6 62.6 61.7 61.6 63.9 63.5 64.1
InfoSeek 45.9 50.3 50.0 53.4 47.1 54.4 53.5 57.7

M-BEIR Avg.
All 47.4 47.9 48.3 47.2 48.3 51.9 52.3 52.7
Single-modal Qry 51.7 51.0 51.6 50.0 53.5 55.6 56.4 56.1
Multi-modal Qry 40.1 42.7 42.8 42.7 39.5 45.6 45.5 47.0

MTEB Text Retrieval Avg. - - - - - 46.4 49.7 60.3∗

∗ ranked top-5 on MTEB retrieval task leaderboard. NV-Embed-v1 (Lee et al., 2024) scores 59.36 in MTEB retrieval task.

each multimodal query (or document) input in one word, using embedding for the last token to
encode multimodal input;5 (3) NV-Embed-v1: The LLM from LLaVa-Next is replaced by the fine-
tuned LLM-based text retrieval model NV-Embed-v1 (Lee et al., 2024) while all other components
(i.e., image encoder and vision–language MLP projector) remain unchanged.6 Note that the back-
bone of NV-Embed-v1 is Mistral 7B. The instructions for LLaVa-E (or NV-Embed-v1) and LLaVa-P
are illustrated in Table 11 and 12 (in the Appendix), respectively. For reranking experiments, we
also utilize LLaVa-Next with Mistral 7B and the prompts are listed in Table 13 (in the Appendix).

Retriever Training Details. For each backbone, we start from fine-tuning M rand with random
negatives; i.e., DB = (c+1 , · · · , c

+
|B|) in Eq. 1. The fine-tuned model is denoted M rand. For CLIP

backbone, following (Wei et al., 2023), we fine-tune CLIPSF for 20 epochs with learning rate 1e−5.
For LLaVa-Next backbone, we fine-tune models for 2 epochs with learning rate 1e−4. Note that for
LLaVa-Next backbone, we only fine-tune the vision–language projector and LoRA (r = 8, α = 64)
added on the language model. At the stage of fine-tuning M hard with hard negatives, we mine the
two types of hard negatives following Section 4.1.1 using each retriever. Then, we fine-tune each
retriever using its own mined hard negatives with the same training procedure as the first stage; i.e.,
DB = (c+1 , c

−
1 , · · · , c

+
|B|, c

−
|B|) in Eq. 1. We fine-tune models with the batch size of 128 × 8 and

64 × 8 when using random and hard negatives, respectively. When GPU memory is not enough
for the designated batch size, we use gradient accumulation. Note that we initialize retriever using
the pre-trained model rather than M rand. We denote the models fine-tuned with random and hard
negatives M rand(·) and M hard(·), respectively. We refer readers to the Appendix A.1 for more detail.

To enhance text-to-text retrieval capability, we continuously fine-tune M hard(NV-Embed-v1) with
learning rate 2e−5 using the mixture of training data from M-BEIR and public text retrieval datasets
aforementioned in Section 4.1.2 for 4.5K steps. The final model is coined MM-Embed.

5.2 MAIN RESULTS

Universal Multimodal Retrieval. Table 1 reports the retrieval accuracy of different retrievers. In
M-BEIR evaluation, we observe that when fine-tuning with random negatives, LLaVa-P achieves
the highest overall retrieval effectiveness. This result indicates that LLaVa-P effectively aggregates
multimodal input information into a single word representation. While MLLM-based retrievers
outperform CLIPSF on tasks involving multi-modal queries, they still lag behind CLIPSF on tasks

5We refer readers to Table 12 in the Appendix for the prompt and more detail from the prior work (Zhuang
et al., 2024; Jiang et al., 2024).

6https://huggingface.co/nvidia/NV-Embed-v1
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with single-modal queries, especially in cross-modality retrieval; i.e., tasks 1 and 4. In addition,
NV-Embed-v1 reaches the best text-to-text retrieval accuracy on WebQA task2.

Observing from the models fine-tuned with hard negatives, MLLM-based retrievers show significant
retrieval accuracy improvements, particularly in tasks involving single-modal queries. On the other
hand, CLIPSF does not show similar improvement. This could attribute to the fact that CLIP has
been well pre-trained for cross-modal retrieval whereas MLLM-based retrievers, fine-tuned with
contrastive learning objective for only 2 epochs, may still be underfitting. Fine-tuning with hard
negatives accelerates contrastive learning of MLLM-based retrievers.

Table 2: Retrieval analysis on MSCOCO. M.A.@1 denotes the modality ac-
curacy of the top-1 candidate.

Task Metric M rand M hard

CLIPSF LLaVa-E LLaVa-P NV-Embed-v1 CLIPSF LLaVa-P NV-Embed-v1

1.
R@1 42.6 33.9 41.7 14.1 45.8 50.7 49.8
R@5 72.0 69.3 70.8 64.6 69.2 73.8 72.7
M.A.@1 92.6 79.9 91.0 42.1 98.3 100.0 100.0

4.
R@1 72.3 73.0 73.4 69.3 63.8 72.7 72.4
R@5 91.0 91.8 92.2 90.3 88.5 89.5 88.9
M.A.@1 98.7 99.2 99.8 96.3 94.2 100.0 100.0

Table 2 reveals another
factor contributing to the
lower retrieval accuracy of
MLLM-based retrievers for
single-modal queries: text
retrieval bias. This issue
is particularly obvious for
NV-Embed-v1. We com-
pare models’ retrieval ac-
curacy on text–image and
image–text retrieval (tasks 1 and 4) on MSCOCO. The comparison shows that M rand(LLaVa-E) and
M rand(NV-Embed-v1) exhibit significant lower modality accuracy (M.A.@1) than M rand(CLIPSF) in
the text-to-image retrieval task. Most erroneous top-1 retrieved candidates from the MLLM-based
retrievers are relevant texts rather than images (see Figure 2 in the Appendix). This result indicates
that MLLM-based retrievers have a bias toward relevant text rather than images. This issue can be
mitigated by our proposed modality-aware hard negative mining.

Finally, we observe that M hard(NV-Embed-v1) outperforms M hard(LLaVa-P) in text-to-text retrieval
tasks (i.e., WebQA task 2 and MTEB); however, compared to the original NV-Embed-v1 (Lee et al.,
2024), the score on MTEB retrieval tasks drops almost 10 points. After continual fine-tuning (de-
tailed in Section 4.1.2), the final model, MM-Embed, not only surpasses NV-Embed-v1 in MTEB but
also maintains strong multimodal retrieval capability. We attribute the improvement in text-to-text
retrieval to the effective hard negatives mined by NV-Embed-v1 aforementioned in Section 4.1.2.
Notably, continual fine-tuning significantly enhances multimodal retrieval performance in InfoSeek
(col 8 vs 7 in Table 1), highlighting its effectiveness in improving the model’s ability to handle
knowledge-intensive multimodal retrieval tasks.

Table 3: Experiments of zero-shot reranking on
tasks 6–8 from M-BEIR.

Task Dataset M hard (NV-Embed-v1) MM-Embed

Ret. Rerank Ret. Rerank

6. OVEN 42.6 44.3 42.1 43.5
InfoSeek 35.8 37.1 42.3 43.1

7. FashionIQ 26.6 20.0 25.7 19.0
CIRR 50.8 48.6 50.0 48.2

8. OVEN 63.5 65.8 64.1 65.9
InfoSeek 53.5 54.5 57.7 57.3

Table 4: Experiments of zero-shot reranking on com-
posed image retrieval task, CIRCO (Baldrati et al., 2023).

Model Ret. Rerank
MagicLens (Zhang et al., 2024) 24.9 32.4
E5-V (Jiang et al., 2024) 19.1 31.0
M rand(CLIPSF) 12.7 31.6
M hard (LLaVa-P) 29.0 37.9
M hard (NV-Embed-v1) 32.4 40.9
MM-Embed 32.3 39.9

Zero-Shot Reranking. Table 3 reports the reranked results from the top-10 retrieved candidates
of M hard(NV-Embed-v1) and MM-Embed on the tasks involving multi-modal queries. We observe
accuracy improvements in visual question answering retrieval tasks (i.e., OVEN and InfoSeek), but
no improvement on composed image retrieval tasks (i.e., FashionIQ and CIRR). However, as shown
in Table 8 (in the Appendix), compared to OVEN and InfoSeek, FashionIQ and CIRR only have one
relevance label per query. We hypothesize that there may be additional relevant positives that are
not labeled. We refer readers to Figure 3 in the Appendix for case studies.

We conduct experiments on the composed image retrieval dataset with high-quality human annota-
tions, CIRCO (Baldrati et al., 2023) validation set, consisting of 219 queries and 123K candidates in
total. On average, 4.2 positives are labeled by humans per query. Table 4 reports mAP@5 for various
retrievers and their reranking results. We directly use the models and code provided by the authors
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to get the results of MagicLens (Zhang et al., 2024)7 and E5-V (Jiang et al., 2024)8 retrievers. For
our retrievers fine-tuned on M-BEIR, M rand(CLIPSF), M hard(LLaVa-P), M hard(NV-Embed-v1) and
MM-Embed, we directly use the same instructions as CIRR in M-BEIR for query encoding. We
first observe that our MLLM-based retrievers outperform MagicLens and E5-V. More importantly,
reranking upon the top-10 retrieved candidates from the different retrievers significantly improves
mAP@5 by at least 7 points. The result demonstrates the effectiveness of prompting an MLLM as a
reranker in composed image retrieval tasks.

5.3 ABLATION STUDIES

5.3.1 IS FINE-TUNING WITH INSTRUCTION NECESSARY?

Table 5: Ablation study on fine-tuning NV-Embed-v1 w/o (✗) and w/ (✓) instructions.

Task Dataset
zero-shot fine-tuning

CLIP LLaVa-P NV-Embed-v1 NV-Embed-v1

✗ ✗ ✗ ✓ ✗ ✓

1. qtxt → cimg
VisualNews 40.9 11.7 15.3 17.4 33.1 38.7
MSCOCO 55.4 58.1 64.2 59.9 76.7 82.8
Fashion200K 8.9 2.4 4.2 3.2 12.3 15.6

4. qimg → ctxt
VisualNews 42.0 6.3 6.5 5.9 29.3 37.2
MSCOCO 79.6 66.8 70.6 68.2 88.9 93.0
Fashion200K 7.7 2.9 4.0 3.6 12.0 16.8

5. qimg → cimg NIGHTS 25.4 28.4 29.3 27.7 31.6 30.9

We fine-tune NV-Embed-v1 with random negatives on the M-BEIR subtasks listed in Table 5 and
evaluate models’ retrieval accuracy on the development queries from each subtask. Note that, for
simplicity, we encode only the corpus specific to each dataset, containing documents of the targeted
modality. For example, when evaluating retrieval accuracy for VisualNews task 1, we encode the
542K images from VisualNews (see Table 8 in the Appendix) as the index rather than the entire 5.6M
documents from M-BEIR. We also report CLIP and LLaVa-P (w/o instruction) zero-shot retrieval
effectiveness as a reference point.9

From Table 5, we observe that NV-Embed-v1, as a zero-shot MLLM-based retriever, outperforms
LLaVa-P and even competes CLIP in the tasks in Miscellaneous domain (i.e., MSCOCO and
NIGHTS). This result indicates that a fine-tuned MLLM-based text retriever is capable to perform
multimodal retrieval tasks (same finding in (Jiang et al., 2024)). Although incorporating task in-
structions with queries degrades the retrieval effectiveness (col 4 vs 3), the model fine-tuned with
instructions significantly outperforms the one fine-tuned without instructions (col 6 vs 5). This in-
dicates that task instructions can help elicit models’ task- or domain-specific knowledge for diverse
multimodal retrieval tasks.

5.3.2 EFFECTIVENESS OF CONTINUAL TEXT-TO-TEXT RETRIEVAL FINE-TUNING

In this section, we study the best strategy to enhance models’ capabilities in both multimodal and
text-to-text retrieval. We begin by fine-tuning NV-Embed-v1 on both training data for universal
multimodal retrieval and text-to-text retrieval (detailed in Section 4.1.2) for 2K steps. As shown in
Table 6, joint fine-tuning for both tasks allows the model to maintain its text retrieval capability (row
3 vs 1), although it results in a drop of over 2 points in multimodal retrieval accuracy (row 3 vs 2). In
contrast, consciously fine-tuning M hard(NV-Embed-v1) for addition 2K steps significantly boosts its
text-to-text retrieval capability with a slight drop of 0.8 points in multimodal retrieval (row 5 vs 4).10

This experiment shows that continuously fine-tuning a multimodal retriever to enhance its text-to-
text retrieval is more effective than fine-tuning a retriever on all the retrieval tasks simultaneously.
This finding suggests that a more optimized curriculum learning strategy (Bengio et al., 2009) could
further improve performance in universal multimodal retrieval, a direction we leave for future work.

7https://github.com/google-deepmind/magiclens
8https://github.com/kongds/E5-V
9We follow Jiang et al. (2024) to prompt LLaVa-Next to output one word embedding for each query and

document. i.e., <txt>\nSummary above sentence in one word:; <img>\nSummary above image in one word:.
10Note that MM-Embed in Table 1 is fine-tuned with the same condition with total 4.5K steps.
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Table 6: Ablation study to enhance model’s text-to-text retrieval capability.

Initialization Training data M-BEIR∗ BEIR∗
Multimodal Text-to-Text

NV-Embed-v1
- - - 62.9
✓ ✗ 54.3 51.7
✓ ✓ 52.2 63.0

M hard (NV-Embed-v1) - - 56.4 51.7
✓ ✓ 55.6 63.1

∗ For M-BEIR, we evaluate on the tasks with single-modality queries
(i.e., tasks 1–5) while for BIER, we evaluate on 7 tasks: ArguAna,
FiQA, NFCorpus, Quora, SCIDOCS, SciFact and TREC-COVID.

5.3.3 STUDY ON PROMPTING MLLMS FOR RERANKING

Table 7: Reranking study on top-10 retrieved candidates from
M rand(CLIPSF) on M-BEIR development query set.

Task Dataset Ret. Rerank

7B 34B

1. qtxt → cimg
VisualNews 44.2 38.8 42.5
MSCOCO 72.0 68.0 69.7
Fashion200K 17.8 14.7 15.6

2. qtxt → ctxt WebQA 78.2 79.2 82.9

3. qtxt → (cimg, ctxt)
EDIS 48.3 46.5 47.4
WebQA 78.2 67.7 68.3

4. qimg → ctxt
VisualNews 37.4 29.3 29.8
MSCOCO 91.0 87.3 89.0
Fashion200K 17.3 9.9 12.0

5. qimg → cimg NIGHTS 32.1 29.4 32.7

6. (qimg, qtxt) → ctxt OVEN 40.6 43.2 43.7
InfoSeek 25.6 28.4 29.0

7. (qimg, qtxt) → cimg FashionIQ 32.5 21.5 23.4
CIRR 52.4 54.1 54.2

8. (qimg, qtxt) → (cimg, ctxt)
OVEN 60.6 63.8 63.7
InfoSeek 45.3 48.7 50.5

In this section, we study the rerank-
ing effectiveness of MLLMs on all
the tasks in M-BEIR dataset. Specifi-
cally, for each development query, we
rerank the top-10 retrieved candidates
from M rand(CLIPSF). As shown in
Table 7, prompting LLaVa-Next for
reranking further boosts the ranking
accuracy in tasks 6–8, which involve
multimodal queries (except for Fash-
ionIQ). However, the reranking de-
grades accuracy in tasks 1–5 which
involve single-modal queries (except
for WebQA task 2). This trend per-
sists even after scaling the reranker
from 7B to 34B (col 3, 2 vs 1).11 We
hypothesize that it is challenging for
bi-encoder models to encode multi-
modal queries, such as visual ques-
tion answering and composed image
retrieval. Prompting an MLLM as a
reranker in a zero-shot or few-shot manner, or distilling the reranked results into a bi-encoder re-
triever is a promising solution.

6 CONCLUSION AND FUTURE WORK

In this paper, we present techniques for advancing information retrieval with multimodal large lan-
guage models (MLLMs). We first study fine-tuning MLLM-based retrievers to tackle a general
information retrieval scenario: universal multimodal retrieval, where models are required to deal
with diverse retrieval tasks, multimodal queries and documents. Our study shows that MLLM-based
retrievers exhibit modality bias in cross-modal retrieval tasks compared to CLIP-based retrievers. To
address the issue, we propose modality-aware hard negative mining, which significantly improves
our MLLM-based retrievers’ accuracy by 5 points in M-BEIR dataset, a benchmark for univer-
sal multimodal retrieval. Additionally, with our proposed continual fine-tuning, our MLLM-based
retriever, MM-Embed, is the first model to yield state-of-the-art retrieval accuracy in universal mul-
timodal retrieval tasks while maintaining strong text-to-text retrieval capability (ranked top-5 on
MTEB retrieval task leaderboard). Finally, we explore to prompt MLLMs as reranker in M-BEIR
tasks. We find that MLLMs can be used as zero-shot rerankers to further boost retrieval accuracy in
the challenging tasks, which require the understanding of multimodal queries, such as visual ques-
tion answering and composed image retrieval. For example, our zero-shot MLLM-based reranker
improves the retrieval accuracy upon the state-of-the-art retrievers by over 7 points in CIRCO.

11In the experiment, we use the model from https://huggingface.co/llava-hf/llava-v1.
6-34b-hf
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Our work also suggests two promising future directions: (1) Distilling our MLLM-based retriever,
MM-Embed, to smaller multimodal retrievers, such as CLIP (Radford et al., 2021) or BLIP (Li et al.,
2022); (2) Distilling MLLM-based reranker to retriever to further improve its retrieval capability in
tasks involving multimodal queries. In addition, recent work (Ma et al., 2024a; Faysse et al., 2024)
has demonstrated that MLLMs can be fine-tuned to tackle visual document retrieval tasks, which
could be integrated into universal multimodal retrieval.
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A APPENDIX

Table 8: M-BEIR dataset statistics.

Task Dataset Domain # Query # Relevance / Query # Candid.
Train Dev Test Train Dev Test

1. qtxt → cimg
VisualNews (Liu et al., 2021a) News 99K 20K 20K 1.0 1.0 1.0 542K
MSCOCO (Lin et al., 2014) Misc. 100K 24.8K 24.8K 1.0 1.0 1.0 5K
Fashion200K (Han et al., 2017) Fashion 15K 1.7K 1.7K 3.3 3.1 2.8 201K

2. qtxt → ctxt WebQA (Chang et al., 2022) Wiki 16K 1.7K 2.4K 2.0 2.0 2.0 544K

3. qtxt → (cimg, ctxt)
EDIS (Liu et al., 2023b) News 26K 3.2K 3.2K 2.6 2.6 2.6 1M
WebQA (Chang et al., 2022) Wiki 16K 1.7K 2.4K 1.4 1.4 1.4 544K

4. qimg → ctxt
VisualNews (Liu et al., 2021a) News 100K 20K 20K 1.0 1.0 1.0 537K
MSCOCO (Lin et al., 2014) Misc. 113K 5K 5K 5.0 5.0 5.0 25K
Fashion200K (Han et al., 2017) Fashion 15K 4.8K 4.8K 1.0 1.0 1.0 61K

5. qimg → cimg NIGHTS (Fu et al., 2023) Misc. 16K 2K 2K 1.0 1.0 1.0 40K

6. (qimg, qtxt) → ctxt OVEN (Hu et al., 2023) Wiki 150K 50K 50K 8.5 10.0 9.9 676K
InfoSeek (Chen et al., 2023) Wiki 141K 11K 11K 6.8 6.7 6.5 611K

7. (qimg, qtxt) → cimg FashionIQ (Wu et al., 2021) Fashion 16K 2K 6K 1.0 1.0 1.0 74K
CIRR (Liu et al., 2021b) Misc. 26K 2K 4K 1.0 1.0 1.0 21K

8. (qimg, qtxt) → (cimg, ctxt)
OVEN (Hu et al., 2023) Wiki 157K 14.7K 14.7K 17.8 17.5 17.7 335K
InfoSeek (Chen et al., 2023) Wiki 143K 17.6K 17.6K 9.1 7.5 7.5 481K

M-BEIR (Wei et al., 2023) 4 domains 1.1M 182K 190K 6.5 5.9 5.7 5.6M

Table 9: Detailed results on MTEB retrieval tasks.

Model AA CF CQ DB Fe FQ HQ MS NF NQ Qu SD SF T2 TC Avg.
NV-Embed-v1 (Lee et al., 2024) 68.2 34.7 50.5 48.3 87.8 63.1 79.9 46.5 38.0 71.2 89.2 20.2 78.4 28.4 85.9 59.4
M hard (LLaVa-P) 38.6 20.4 38.0 36.9 78.1 36.2 61.2 23.2 35.1 45.1 86.1 19.2 72.7 27.7 77.2 46.4
M hard (NV-Embed-v1) 37.2 30.8 44.0 44.3 86.4 45.5 70.6 34.2 37.4 49.7 86.9 13.9 64.1 23.5 76.7 49.7
MM-Embed 69.0 39.3 49.7 50.6 92.6 60.1 81.4 45.1 40.5 70.6 88.7 21.8 78.3 31.1 85.4 60.3
∗ Dataset Legend: AA=ArguAna, CF=Climate-FEVER, CQ=CQADupStack, DB=DBPedia, Fe=FEVER, FQ=FiQA,

HQ=HotpotQA, MS=MSMARCO, NF=NFCorpus, NQ=Natural Questions, Qu=Quora, SD=SCIDOCS, SF=SciFact,
T2=Touché-2020, TC=TREC-COVID

A.1 IMPLEMENTATION DETAILS

We implement our training and inference using Tevatron (Gao et al., 2023). For CLIP-based retriev-
ers, we follow all the settings from Wei et al. (2023). For MLLM-based retriever, we fine-tune
models with DeepSpeed Zero 2 (Rajbhandari et al., 2020) and gradient checkpointing. During
fine-tuning on M-BEIR training data, we set maximum length for queries and documents to 128.
While continual fine-tuning on both M-BEIR and text-to-text retrieval training data, we set maxi-
mum length for queries and documents to 128 and 512, respectively. All fine-tuning are conducted
on 8×80GB A100 GPUs. Note that image input only occupies single token length after being to-
kenized; however, each image will be converted to multiple image tokens. Thus, the actual input
length to MLLM is longer than the maximum length we set. To speed fine-tuning and inference for
MLLM-based retrievers, we only use the global image patches, which occupy 576 (24×24) image
tokens.

A.2 BASELINE REPRODUCING

Table 10: A comparison of M rand(CLIPSF) fine-tuned by us
and Wei et al. (2023).

Task Dataset M rand(CLIPSF)

Wei et al. (2023) Ours

M-BEIR Avg.
All 47.4 47.4
Single-modal Qry 52.5 51.7
multi-modal Qry 39.1 40.1

Since we implement our fine-tuning
and inference following the setting
from Wei et al. (2023), our fine-tuned
M rand(CLIPSF) should be equal to
CLIPSFfrom Wei et al. (2023). In Ta-
ble 10, we compare the results from
our fine-tuned M rand(CLIPSF) and the
checkpoint provided by the authors.12

12https://huggingface.co/TIGER-Lab/UniIR/blob/main/checkpoint/CLIP_SF/
clip_sf_large.pth
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Table 11: NV-Embed-v1 (and LLaVa-E) instructions for M-BEIR and MTEB, which are from Wei et al.
(2023) and Lee et al. (2024), respectively. For all the candidates, we use the prompt to generate the embedding:
< cimg >\n< ctxt ><eos>.

Task Dataset M-BEIR task instruction

1. qtxt → cimg
VisualNews Identify the news-related image in line with the described event.\nQuery: < qtxt ><eos>
MSCOCO Find me an everyday image that matches the given caption.\nQuery: < qtxt ><eos>
Fashion200K Based on the following fashion description, retrieve the best matching image.\nQuery: < qtxt ><eos>

2. qtxt → ctxt WebQA Retrieve passages from Wikipedia that provide answers to the following question.\nQuery: < qtxt ><eos>

3. qtxt → (cimg, ctxt)
EDIS Find a news image that matches the provided caption.\nQuery: < qtxt ><eos>
WebQA Find a Wikipedia image that answers this question.\nQuery: < qtxt ><eos>

4. qimg → ctxt
VisualNews Find a caption for the news in the given photo.\nQuery: < qimg ><eos>
MSCOCO Find an image caption describing the following everyday image.\nQuery: < qimg ><eos>
Fashion200K Find a product description for the fashion item in the image.\nQuery: < qimg ><eos>

5. qimg → cimg NIGHTS Find a day-to-day image that looks similar to the provided image.\nQuery: < qimg ><eos>

6. (qimg, qtxt) → ctxt OVEN Retrieve a Wikipedia paragraph that provides an answer to the given query about the image.\nQuery: < qimg >\n< qimg ><eos>
InfoSeek Retrieve a Wikipedia paragraph that provides an answer to the given query about the image.\nQuery: < qimg >\n< qimg ><eos>

7. (qimg, qtxt) → cimg FashionIQ Find a fashion image that aligns with the reference image and style note.\nQuery: < qimg >\n< qimg ><eos>
CIRR Retrieve a day-to-day image that aligns with the modification instructions of the provided image.\nQuery: < qimg >\n< qimg ><eos>

8. (qimg, qtxt) → (cimg, ctxt)
OVEN Retrieve a Wikipedia image-description pair that provides evidence for the question of this image.\nQuery: < qimg >\n< qimg ><eos>
InfoSeek Retrieve a Wikipedia image-description pair that provides evidence for the question of this image.\nQuery: < qimg >\n< qimg ><eos>

Task Dataset MTEB task instruction

9. qtxt → ctxt

ArguAna Given a claim, find documents that refute the claim\nQuery: < qtxt ><eos>
Climate-FEVER Given a claim about climate change, retrieve documents that support or refute the claim\nQuery: < qtxt ><eos>
CQADupStack Given a question, retrieve detailed question descriptions from StackExchange that are duplicates to the given question\nQuery: < qtxt ><eos>
DBPedia Given a query, retrieve relevant entity descriptions from DBPedia\nQuery: < qtxt ><eos>
FEVER Given a claim, retrieve documents that support or refute the claim\nQuery: < qtxt ><eos>
FiQA Given a financial question, retrieve user replies that best answer the question\nQuery: < qtxt ><eos>
HotpotQA Given a multi-hop question, retrieve documents that can help answer the question\nQuery: < qtxt ><eos>
MSMARCO Given a web search query, retrieve relevant passages that answer the query\nQuery: < qtxt ><eos>
NFCorpus Given a question, retrieve relevant documents that best answer the question\nQuery: < qtxt ><eos>
Natural Questions Given a question, retrieve Wikipedia passages that answer the question\nQuery: < qtxt ><eos>
Quora Find questions that have the same meaning as the input question\nQuery: < qtxt ><eos>
SCIDOCS Given a scientific paper title, retrieve paper abstracts that are cited by the given paper\nQuery: < qtxt ><eos>
SciFact Given a scientific claim, retrieve documents that support or refute the claim\nQuery: < qtxt ><eos>
Touch´e-2020 Given a question, retrieve detailed and persuasive arguments that answer the question\nQuery: < qtxt ><eos>
TREC-COVID Given a query on COVID-19, retrieve documents that answer the query\nQuery: < qtxt ><eos>

Table 12: LLaVa-P instructions for M-BEIR and MTEB. [image], [text] and [image,text] are used to inform
LLaVa-P the user desired modality. For all the candidates, we use the prompt to generate the embedding:
< cimg >\n< ctxt >\nDescribe the above in one word:

Task Dataset M-BEIR task instruction

1. qtxt → cimg
VisualNews [image] < qtxt >\nDescribe the news-related caption in one word:
MSCOCO [image] < qtxt >\nDescribe the everyday caption in one word:
Fashion200K [image] < qtxt >\nDescribe the fashion description in one word:

2. qtxt → ctxt WebQA [text] < qtxt >\nAnswer the question using Wikipedia in one word:

3. qtxt → (cimg, ctxt)
EDIS [image,text] < qtxt >\nDescribe the news-related caption in one word:
WebQA [image,text] < qtxt >\nAnswer the question using Wikipedia in one word:

4. qimg → ctxt
VisualNews [text] < qimg >\nDescribe the news-related image in one word:
MSCOCO [text] < qimg >\nDescribe the everyday image in one word:
Fashion200K [text] < qimg >\nDescribe the fashion image in one word:

5. qimg → cimg NIGHTS [image] < qimg >\nDescribe the everyday image in one word:

6. (qimg, qtxt) → ctxt OVEN [text] < qimg >\n< qtxt >\nAnswer the question based on the image from Wikipedia in one word:InfoSeek

7. (qimg, qtxt) → cimg FashionIQ [image] < qimg >\nChange the style of this shirt/dress/toptee to < qtxt >\nDescribe this modified shirt/dress/toptee in one word:
CIRR [image] < qimg >\nModify this image with < qtxt >\nDesribe modified image in one word:

8. (qimg, qtxt) → (cimg, ctxt)
OVEN [image,text] < qimg >\n< qtxt >\nAnswer the question based on the interleaved image-text passage from Wikipedia in one word:InfoSeek

Task Dataset MTEB task instruction

9. qtxt → ctxt

ArguAna [text] < qtxt >\nGiven a claim, generate a document that refute the claim in one word:
Climate-FEVER [text] < qtxt >\nGiven a claim about climate change, generate a document that supports or refutes the claim in one word:
CQADupStack [text] < qtxt >\nDescribe the StackExchange question in one word:
DBPedia [text] < qtxt >\nGiven a query, generate a relevant entity description from DBPedia in one word:
FEVER [text] < qtxt >\nGiven a claim, generate a document that supports or refutes the claim in one word:
FiQA [text] < qtxt >\nAnswer the financial question in one word:
HotpotQA [text] < qtxt >\nAnswer the multi-hop question in one word:
MSMARCO [text] < qtxt >\nAnswer the web search query in one word:
NFCorpus [text] < qtxt >\nAnswer the question in one word:
Natural Questions [text] < qtxt >\nAnswer the question using Wikipedia in one word:
Quora [text] < qtxt >\nDescribe the question in one word:
SCIDOCS [text] < qtxt >\nGiven a scientific paper title, generate a paper abstract that is cited by the given paper in one word:
SciFact [text] < qtxt >\nGiven a scientific claim, generate a document that support or refute the claim in one word:
Touch´e-2020 [text] < qtxt >\nAnswer the question with detailed and persuasive arguments in one word:
TREC-COVID [text] < qtxt >\nAnswer the query on COVID-19 in one word:

Table 13: Prompts for reranking tasks in M-BEIR .

Task Dataset Prompt

1. qtxt → cimg
VisualNews < cimg >\nNews:< qtxt >\nDoes the above News image match the News story? True or False
MSCOCO < cimg >\nCaption:< qtxt >\nDoes the above daily-life image match the caption? True or False
Fashion200K < cimg >\nDescription:< qtxt >\nDoes the above image match the cloth style description? True or False

2. qtxt → ctxt WebQA Question: < qtxt >\nAnswer: < ctxt >\nDoes the answer correctly answer the question? True or False

3. qtxt → (cimg, ctxt)
EDIS Question: < qtxt >\nAnswer: < ctxt >\nDoes the answer correctly answer the question? True or FalseWebQA

4. qimg → ctxt
VisualNews < qimg >\nNews:< ctxt >\nDoes the above News image match the News story? True or False
MSCOCO < qimg >\nCaption:< ctxt >\nDoes the above daily-life image match the caption? True or False
Fashion200K < qimg >\nDescription:< ctxt >\nDoes the above image match the cloth style description? True or False

5. qimg → cimg NIGHTS < qimg >\n< cimg >\nDoes the above two images have the same scene? True or False

6. (qimg, qtxt) → ctxt OVEN
< qimg >\nQuestion:< qtxt >\nAnswer:< ctxt >Does the answer correctly answer the question? True or FalseInfoSeek

7. (qimg, qtxt) → cimg FashionIQ
< cimg >\nCaption:< qtxt >\nDoes the above caption describe the modification of the image? True or FalseCIRR

8. (qimg, qtxt) → (cimg, ctxt)
OVEN

< qimg >\nQuestion:< qtxt >\nAnswer:< ctxt >Does the answer correctly answer the question? True or FalseInfoSeek
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Instruction: Find me an everyday image that 
matches the given caption.  
Query: A man brushes his teeth while a 
woman wraps in a towel.

Instruction: Identify the news-related image 
in line with the described event. 
Query: The Q Street NW entrance to the 
Dupont Circle Metro station.

Instruction: Find me an everyday image that 
matches the given caption.  
Query: A large tow truck towing a double 
decker bus.

Correct Answer

Negative samples with incorrect modality

A man brushes his teeth while a woman behind him 
wraps a towel around herself. Dupont Circle metro station, Q Street escalator. A tow truck towing a double decker bus.

A man brushing his teeth with woman in wrapping 
herself in a towel in the background.

Riding escalator to Q Street exit of Dupont Circle 
Metro. A tow truck is in front of a double decker bus.

Negative samples with unsatisfactory information needs

Figure 2: Examples of modality-aware negative samples mined by M rand(NV-Embed-v1). We ob-
serve that negative samples with incorrect modality show similar semantic meaning as queries while
negative samples with unsatisfactory information needs show less accurate information compared to
the correct answers
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Query Answer Retrieval Reranking

Human and one animal from a different specie

Same breed dog, focus on its head.

Put the fries in a white plate with white background, clean.

Query Answer Retrieval Reranking

Is shiny and silver with shorter sleeves and fit and flare.

Is grey with black design and is a light printed short dress.

Is a solid red color and shorter and tighter with more blue 
and white.

M-BEIR FashionIQ Task 7

M-BEIR CIRR Task 7

Figure 3: Top-1 candidates for the tasks of composed image retrieval and reranking. In many cases,
retrieval and reranking yields different top-1 results from labeled positives but appears to be correct
since each query only has single labeled positive candidate (see Table 8).
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Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proc. ICML, pp. 41–48, 2009.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large anno-
tated corpus for learning natural language inference. In Proc. EMNLP, pp. 632–642, 2015.

Yingshan Chang, Guihong Cao, Mridu Narang, Jianfeng Gao, Hisami Suzuki, and Yonatan Bisk.
WebQA: Multihop and multimodal qa. In Proc. CVPR, pp. 16474–16483, 2022.

Xilun Chen, Kushal Lakhotia, Barlas Oguz, Anchit Gupta, Patrick Lewis, Stan Peshterliev, Yashar
Mehdad, Sonal Gupta, and Wen-tau Yih. Salient phrase aware dense retrieval: Can a dense
retriever imitate a sparse one? In Proc. Findings of EMNLP, pp. 250–262, 2022.

Yang Chen, Hexiang Hu, Yi Luan, Haitian Sun, Soravit Changpinyo, Alan Ritter, and Ming-Wei
Chang. Can pre-trained vision and language models answer visual information-seeking questions?
In Proc. EMNLP, pp. 14948–14968, 2023.

Wenliang Dai, Nayeon Lee, Boxin Wang, Zhuoling Yang, Zihan Liu, Jon Barker, Tuomas Rinta-
maki, Mohammad Shoeybi, Bryan Catanzaro, and Wei Ping. NVLM: Open frontier-class multi-
modal LLMs. arXiv:2409.11402, 2024.

Gabriel de Souza P. Moreira, Radek Osmulski, Mengyao Xu, Ronay Ak, Benedikt Schifferer, and
Even Oldridge. NV-Retriever: Improving text embedding models with effective hard-negative
mining. arxiv.2407.15831, 2024.

Manuel Faysse, Hugues Sibille, Tony Wu, Bilel Omrani, Gautier Viaud, Céline Hudelot, and Pierre
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