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ABSTRACT

Large Language Models (LLM) are increasingly trained on data generated by
other LLM, either because generated text and images become part of the pre-
training corpus, or because synthetized data is used as a replacement for expensive
human-annotation. This raises concerns about model collapse, a drop in model
performance when their training sets include generated data. Considering that it is
easier for both humans and machines to tell between good and bad examples than to
generate high-quality samples, we investigate the use of verification on synthesized
data to prevent model collapse. We provide a theoretical characterization using
Gaussian mixtures, linear classifiers, and linear verifiers to derive conditions with
measurable proxies to assess whether the verifier can effectively select synthesized
data that leads to optimal performance. We experiment with two practical tasks
– computing matrix eigenvalues with transformers and news summarization with
LLMs – which both exhibit model collapse when trained on generated data, and
show that verifiers, even imperfect ones, can indeed be harnessed to prevent model
collapse and that our proposed proxy measure strongly correlates with performance.

1 INTRODUCTION

As generative models for language, images, and video continue to achieve human-level performance
(Touvron et al., 2023; Achiam et al., 2023; Ramesh et al., 2021; Rombach et al., 2022; OpenAI, 2024),
they are increasingly used to synthesize data across diverse domains, including coding (Haluptzok
et al., 2022) and mathematics (Trinh et al., 2024). With this rise in AI-generated data, there is growing
interest in its potential to replace expensive human annotators.

This gradual replacement of human-written corpora by machine-generated tokens gives rise to a
number of concerns, notably the risk of “model collapse” Shumailov et al. (2023; 2024), where iterated
training on synthesized data brings a drop in model performance, and, ultimately, “dumber models”.
This phenomenon was observed empirically (Hataya et al., 2023; Martı́nez et al., 2023a;b; Bohacek
& Farid, 2023; Briesch et al., 2023; Guo et al., 2023) and described theoretically (Alemohammad
et al., 2023; Bertrand et al., 2023; Dohmatob et al., 2024a). Its main consequence is the breaking of
known scaling laws (Dohmatob et al., 2024b): as data becomes more synthetic, larger training sets do
not enhance performance. Current thinking around model collapse recommends that synthetic data is
to be avoided for model training lest the system deteriorate completely.

This raises a critical question: are synthesized data so fundamentally flawed that they must be
identified and discarded using detection techniques (Zhang et al., 2024b), corrected through various
refinement methods (Gillman et al., 2024) or used as negative feedback (Alemohammad et al., 2024)?
In this work, we argue that synthesized data contain abundant valuable information that can be
effectively leveraged. We advocate for a paradigm of verifier-based selection of synthesized data and
provide criteria for when this process is successful - even with imperfect verifiers.
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(a) The generator is capable of producing high-
quality data, and verifiers can extract this data
through selection to prevent model collapse, which
occurs in the absence of such selection.
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The pruner improves synthesized data through se-
lection, resulting in improved performance.

Figure 1: Illustrative figures for our proposal (a) and for the theoretical and simulation settings (b).

Throughout this paper, we focus on a scenario where synthesized data serve as the labels (answers)
to questions—a common framework in tasks such as question answering, code generation, and
mathematical reasoning. To begin, we explore the information contained in synthesized data through
a controlled experiment: training transformers on a linear algebra task. This setting allows us to
both understand the solutions and easily synthesize data, placing it into a long established corpus of
works that study interesting phenomena in a controlled setting to advance our understanding of the
underlying mechanisms in larger models in the wild (see e.g. Power et al. (2022); Garg et al. (2022);
Charton (2024); Dohmatob et al. (2024b)). In this context, we find that the accuracy of the most
accurate synthesized solution among the top candidates is three times higher than that of the solution
selected by the model itself based on perplexity — its own measure of quality. This finding provides
a positive answer to our question: the model is indeed capable of generating high-quality solutions.
However, it cannot intrinsically identify the best solution using perplexity alone. Thus, effectively
scaling with synthesized data requires a robust selection and verification process.

We proceed to provide a theoretical characterization using Gaussian mixtures and linear classifiers,
employing an external verifier to select the generated data. In the limit of infinite synthesized data, we
analyze the conditions required for the generator and verifier to enable the model, trained on selected
synthesized data, to achieve Bayes-optimal results. Notably, there is a sharp phase transition — from
zero accuracy due to errors in the synthesized data to optimal accuracy. Our theory confirms that there
is abundant information within the synthesized data, and that proper, not necessarily perfect, selection
can overcome model collapse. We also identify a measurable proxy function that characterizes the
ability of the verifier to select synthesized data that results in good models when retraining on it.

We conduct two large-scale experiments to test our theoretical insights : (1) the above mentioned
transformers on a linear algebra task and (2) news summarization using the LLM Llama-2 (Touvron
et al., 2023). In both experiments, we apply various verifiers for selection and compute our theoretical
proxy function. Our results show that relying solely on generated data leads to poorer performance
than that of the generator itself, even with increased data volume, indicating model collapse. However,
even with noisy and imperfect selection methods, synthesized data can be improved to yield models
that outperform the original generator. Our proxy function strongly correlates with final performance
across all cases. In particular it elucidates the counter-intuitive fact that a stronger model is not
automatically a better selector — as we demonstrate by showing inferior performance when selecting
with Llama-3 compared to self-selection with Llama-2 for Llama-2-generated text.

We summarize our contributions as follows:

• We provide a theoretical analysis in the high-dimensional limit with infinite data proving that
synthesized data with appropriate selection can lead to optimal performance, and provide a
characterization of necessary conditions via a measurable proxy function (Section 4).

• We validate our theoretical findings in three empirical settings of increasing departure from our
theoretical assumptions:

– Simulation results with linear classifiers, tested in a finite-data regime (Section 5),
– Linear algebra tasks with transformers trained in a generative way (Section 6.1),
– News summarization using Llama-2 (Section 6.2).

Crucially, note that all that is needed to re-attain model performance akin to training on clean original
data is the ability to rank high-quality from low quality labels; arguably, a task much simpler than
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annotating the labels. Thus, to go beyond model collapse and continue scaling up with synthesized
data, verification is all you need!

2 RELATED WORK

We here only list works of direct relevance to ours, with an extensive reference list in Appendix A.

Model Collapse. With the advancement of generative models, synthesized data generated by these
models has become increasingly prevalent online, mixing irreversibly into our training corpora.
Recent studies have highlighted the potential for dramatic deterioration in downstream models, a phe-
nomenon known as “model collapse” (Shumailov et al., 2023). Empirical studies have demonstrated
this issue in various settings (Hataya et al., 2023; Martı́nez et al., 2023a;b; Bohacek & Farid, 2023;
Briesch et al., 2023). Synthesized datasets have been shown to reduce diversity (Padmakumar & He,
2024; Guo et al., 2023) and cause distributional distortions (LeBrun et al., 2021). Theoretical analysis
also examines the effects of iterative training on self-generated data (Alemohammad et al., 2023;
Bertrand et al., 2023; Dohmatob et al., 2024a; Seddik et al., 2024). Notably, Dohmatob et al. (2024b)
warns that model collapse signifies a break in customary neural scaling laws (Kaplan et al., 2020;
Hoffmann et al., 2022), where increasing synthesized data volume does not enhance performance
as effectively as scaling with human-generated data. As a result, recent works have focused on
avoiding or correcting synthetic data to prevent model collapse. Gillman et al. (2024) propose using a
correction function informed by expert knowledge to modify the synthesized data. Alemohammad
et al. (2024) leverage a model trained on synthetic data as negative guidance for diffusion models.
Zhang et al. (2024b) employ the confidence score and an AI detection classifier to discard synthesized
data. In contrast, we propose leveraging the synthesized data through selection techniques.

Benefits of Synthesized Data. Synthetic data holds great potential, as it is much easier and cheaper
to scale compared to human-labeled data. Numerous empirical studies have demonstrated the benefits
of synthesized data across a wide range of settings. Common practices include cases where the
downstream task slightly differs from that of the data-generating model, where the generating model
is significantly stronger than the consuming one, or when better prompt engineering and external
information are utilized. In Appendix A.1, we provide a taxonomy that outlines when and how
synthesized data can be advantageous. Data selection is already employed in some works, particularly
in code generation and mathematics, where natural verifiers such as compilers, solutions, or heuristic
verifiers exist. For instance, Haluptzok et al. (2022) generate synthesized code and filter out incorrect
samples. Ulmer et al. (2024) use conversational metrics to filter synthetic dialogue data. Trinh
et al. (2024) utilize a symbolic deduction engine to verify correct solutions for Olympiad geometry
problems. Setlur et al. (2024) apply a final answer verifier to distinguish between good and bad
synthetic data. Although verifiers are used in these cases, their effects on performance have not been
systematically explored, especially in terms of how different types of verifiers influence outcomes.

Data Selection. Data selection is a preprocessing technique typically applied to original datasets with
human labels, as discussed in various related works (see Appendix A.3). In contrast, our work focuses
on data selection for synthesized data, which does not represent a noisy version of the ground truth
but rather a skewed distribution. Our aim is not to propose new selection methods but to demonstrate
how selection can prevent model collapse and to analyze the conditions under which it is effective.

3 WARMUP

We first focus on transformer models on a mathematical task, which offers an interpretable setting to
understand the generation quality since we have a clear metric for error and a computable ground
truth, as well as the ability to generate as much (original) data as desirable.

Setting. We follow Charton (2022), who showed that transformers (Vaswani et al., 2017) can learn to
predict the eigenvalues of 5× 5 real symmetric matrices with independent and identically distributed
entries, rounded to three significant digits. All training, test, and synthesized data are generated by
sampling matrices with independent entries from U [−10, 10]. A prediction is considered correct if
the relative error in the L1 norm is below a certain tolerance τ . The synthesized data generator is
trained on a limited sample of 200,000 examples with Adam for 65 epochs. Details on the tokenizer
and optimization can be found in Appendix B.
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We aim to evaluate the quality of the generator’s outputs and determine how much useful information
can be extracted from it. To achieve this, we employ beam search, an inference technique that
maintains multiple candidate sequences (referred to as ”beams”) during the generation process to
explore a larger portion of the solution space. Beam search tracks the top k candidate sequences
based on their cumulative probability scores, expanding each by considering all possible next tokens.
When k = 1, beam search is equivalent to greedy decoding. The algorithm continues this expansion
until the full generation process is complete, allowing us to assess the upper bound of the generator’s
capabilities and better understand its limitations and strengths.

Table 1: Generator accuracy for different beam sizes.
Left: the most accurate solution in the beam is evaluated.
Right: the solution with lowest perplexity is evaluated.

Verify Verify
all beams the best beam

Tolerance τ 2% 1% 0.5% 2% 1% 0.5%

Beam 50 90.4 60.4 22.9 65.9 19.2 2.4
Beam 35 89.2 56.9 19.8 66.0 19.2 2.4
Beam 25 88.0 53.2 16.8 66.1 19.3 2.4
Beam 10 83.7 43.1 10.5 66.2 19.5 2.5
Beam 5 79.3 34.9 7.1 66.5 19.7 2.4
Greedy 66.9 20.2 2.4 66.9 20.2 2.4

In Table 1, we report the test accuracy of gen-
erated predictions using beam search. We con-
sider two settings: evaluating only the best beam
identified by the model (right) to understand the
model’s actual predictions, and another evaluat-
ing all k candidates in the beams, with the best
one contributing to the accuracy (left) to assess
the model’s full potential.

For self-selection, increasing the number of
beams does not lead to any improvement in accu-
racy, despite significantly higher inference costs.
However, in the left setting, moving from greedy
decoding (beam 1) to beam 50 improves accu-
racy from 20.2% to 60.4%, with τ = 1%. This indicates that the model has considerable potential
to generate improved solutions, but it lacks the inherent capability to autonomously select the
best predictions. Among the vast amount of synthesized data, there may be high-quality data, but
effective selection is necessary.

4 THEORETICAL INSIGHTS

In this section, we aim to theoretically explore training and verification using synthesized data,
and characterize the conditions under which verification enhances performance. To streamline our
analysis, we focus exclusively on training with synthesized data, since the inclusion of additional
real data is always advantageous. We consider learning with a family of high-dimensional data
distributions. Within this context, the verification process is implemented as a pruning strategy
applied to synthesized data. Crucially, we will not assume that the pruning strategy has access to the
ground truth, as such an assumption would be overly restrictive for practical applications; rather, we
will formulate our theory for general pruners, which could for instance be like another trained model.
A full exposition of our general theory is in Appendix E; for ease of exposition, we specialize here to
Gaussian mixtures.

4.1 SETTING

Data Distribution. We will consider distributions P over Rd×{0, 1} with certain high dimensional
concentration properties of a general form (Condition E.1). A special case are binary Gaussian
mixtures: features have conditional distribution given by x | y ∼ N(µy,Σ), where µy = (2y − 1)µ,
for some µ ∈ Rd and Σ is a positive-definite matrix with E ∥x∥2 = ∥µ∥22 + trΣ = 1. For further
ease of exposition we will only consider balanced distributions:

P(y = 1) = P(y = 0) = 1/2, for (x, y) ∼ P.

Synthesized Data. Let DN = {(x1, y1), . . . , (xN , yN )} be a dataset of N i.i.d. pairs from the true
distribution P and let D′

N = {(x1, y′1), . . . , (xN , y′N )} be the synthesized data generated from the
same distribution, but where label y′i (instead of yi) has been generated by an AI model.

Downstream Model and Pruning. We will model our data selection (whether with or without
feedback) via a pruning strategy q = (q1, . . . , qN ) where qi is a bit which indicates whether the ith
training example from D′

N has survived pruning. For the downstream models we consider the family:

P(y = 1 | x,w) = ŷ := σ(x⊤w) ∈ (0, 1), σ(z) :=
1

1 + e−z
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parametrized by a vector of weights w ∈ Rd and sigmoid non-linearity σ. Let ŵN be obtained via
logistic regression fitted on D′

N with ridge regularization parameter λ > 0. Thus, ŵ is the unique
minimizer of the following objective function:

L(w) :=
1

N

N∑
i=1

qiℓ(σ(x
⊤
i w), y

′
i) +

λ

2
∥w∥2, (1)

where ℓ is the binary cross-entropy. The corresponding downstream classifier is f̂N = fŵN
, where

the notation fw refers to the linear classifier induced by a weights vector w ∈ Rd, i.e fw(x) =
(sign(x⊤w) + 1)/2.

Test Accuracy. The test accuracy of the downstream model f̂N is defined by

acc(f̂N ) := P(f̂N (x) = fBayes(x)), for a random test point (x, y) ∼ P,

where fBayes(z) := E[y|x = z] is the Bayes-optimal classifier. In particular, note that acc(fBayes) =

100% by construction. The quantity acc(f̂N ) will be the main object of our analysis, and we will be
interested in how it depends on errors in the generator P and the choice of pruning strategy q, in the
infinite-sample limit N → ∞.

4.2 PRUNING STRATEGY

We consider a wide class of parametrized pruning strategies q, which we term Verification-Pruning
(see Appendix E). They satisfy the following reasonable property:

Assumption 4.1 (Independent Selection). The bits q1, . . . , qN ∈ {0, 1} are independent. Thus, in
particular, whether any training example ei := (xi, y

′
i) ∈ D′

N survives pruning or not is independent
of what happens to the other examples ej ̸=i.

We shall denote by p ∈ [0, 1), the probability that the label y′ of a synthesized example (x, y′) is
different from the true label y, i.e

p := P(y′ ̸= y). (2)

Note that p does not depend on the example index i, due to the i.i.d. assumption.

Our verification-pruning family (refer to Appendix E for details) is described by four parameters
(ϕ0, ϕ1, ψ01, ψ10), defined as follows:

ϕk = P(q = 1 | y′ = k, y = k), ψkℓ = P(q = 1 | y′ = ℓ, y = k). (3)

For simplicity of exposition, we will focus on symmetric pruning strategies, ϕ1 = ϕ0 = ϕ and
ψ01 = ψ10 = ψ. Assumption 4.1 implies that for any class labels k, ℓ ∈ {0, 1}, the random variables
(zikℓ)i∈[N ] defined by zikℓ = 1[yi = k, y′i = ℓ, qi = 1] are i.i.d. with Bernoulli(pkℓ) distribution,
with

pkk = (1− p)ϕk/2, and pkℓ = pψk/2 if k ̸= ℓ. (4)

In this section we focus on a special case of supervised pruning strategies q of the form:

Supervised Pruning: qi = 1[y′i(x
⊤
i wprune) > 0], (5)

for some wprune ∈ Rd. This pruning strategy filters out all examples on which there is disagreement
on the assigned label. In Appendix E we show how we can map this to (ϕ, ψ)-pruning.

Let us provide two more notable examples of (symmetric) pruning strategies.

No Pruning. The case (ϕ, ψ) = (1, 1) corresponds to no pruning, i.e using the entire training dataset.

Oracle Pruning. The case (ϕ, ψ) = (1, 0). The pruning strategy only keeps indices corresponding
to examples in the dataset which have correct label (all corrupted labels are discarded).
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4.3 PERFORMANCE OF MODELS TRAINED WITH PRUNING: INSIGHTS FROM
INFINITE-SAMPLE REGIME

The following is our main theoretical result (see Theorem E.3 for full statement). It characterizes test
accuracy acc(f̂N ) of the downstream model on pruned data as a function of p (the label disagreement)
and the parameters (ϕ, ψ) of the pruner, in the theoretical limit of infinite training data (N → ∞).
Theorem 4.2 (Simplified version of Theorem E.3). Let Assumption 4.1 be in order. Fix p, ϕ, ψ and
define the breakdown point p⋆ ∈ (0, 1) by p⋆ := 1/(1 + ψ/ϕ). For the family of data distributions
obeying Condition E.1 (including the Gaussian mixture), for a downstream model f̂N trained on data
from a generator with error rate p, pruned with an verification-type strategy with parameters (ϕ, ψ),
in the limit N → ∞ it holds a.s that:

(i) If p < p⋆ then acc(f̂N ) = 100%.

(ii) If p > p⋆ then acc(f̂N ) = 0%. The pruner is overwhelmed by so many inaccuracies in the
synthesized data, and the downstream model learns the exact opposite of the true class labels.

Figure 2: Empirical confirmation of Theorem
4.2. Comparing the breakdown points of differ-
ent generators and pruners of different strengths.
Synthesized data is generated from a linear model
wgen with classification error rate p = θgen/π ∈
[0, 1]. The data is pruned with another linear model
wprune which has classification error θprune/π.
Broken lines correspond to the prediction of The-
orem 4.2, while solid points correspond to exper-
iments. Notice the sharp phase transitions where
the model suddenly switches from perfect accuracy
to worse-than-chance, as the theorem predicts.

Thus, there is a sharp phase-transition around the
corruption level p⋆ := 1/(1 + ψ/ϕ): as p is in-
creased past level p⋆, the downstream model f̂N
abruptly switches from being perfectly accurate, to
perfectly inaccurate! The proof (see Appendix E.7
for a sketch) explicitly computes empirical test accu-
racy in terms of Nkℓ :=

∑N
i=1 zikℓ, which follow a

binomial distribution, bounding the gap to the popu-
lation accuracy, and using concentration of measure
type techniques. Note that the sharp transition is due
to the infinite-sample regime, where we can avoid
finite-sample corrections. p∗ could be used as a mea-
surable proxy in the experiment.

See Figure 2 (and Figure 6 in Appendix E) for an
empirical illustration of the theorem.
Remark 4.3. Note that the 100% accuracy achiev-
able in Theorem 4.2 is idealized, and is expected
to only hold in the infinite sample regime (with a
possibly large but fixed input dimension).

4.4 SOME CONSEQUENCES OF THEOREM 4.2

We now present some illustrious applications of Theorem E.3. These examples are empirically
confirmed in Figure 2 (see also Figure 6 in Appendix E).

No Pruning. Here, we have ψ/ϕ = 1 and so the downstream model achieves 100% accuracy for
all values of corruption parameter p up to the breakdown point p⋆ = 1/2 predicted by Theorem E.3 .

Oracle Pruning. For this scenario, ψ/ϕ = 0 and so Theorem E.3 predicts that the downstream
model f̂N achieves 100% accuracy for all values of corruption parameter p up to the breakdown point
p⋆ = 1. This is perhaps not so surprising in hindsight. The point is that even for moderately large
values of ψ/ϕ, the breakdown point p⋆ can still be quite close to 1.

Supervised Pruning. Consider isotropic Gaussian mixture data with means ±µ, and a pruning
strategy as in Eq. (5). The parameters (ϕ, ψ) only depend on the angles θgen, θprune, θ ∈ [0, π]:

θgen := ∠(wgen, µ), θprune := ∠(wprune, µ),

θ := ∠(wprune, wgen).
(6)

This is because, the pkℓ’s defined in equation 4 now correspond to orthant probabilities for a trivariate
normal distribution, with correlation coefficients given by these angles (see also Figure 2). In the
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Appendix E.6, we provide the calculation from the angles to ψ and ϕ. In practice, we can directly
measure the proxy p∗, which encapsulates all the aforementioned correlations.

Decoupling the Generator and Verifier. Although the generator and verifier are coupled together
in supervised pruning, there are some intuitions that help us decouple them: (1) a better generator
always improves performance, (2) when the verifier is poor, such as in cases of no pruning or random
pruning, we have a low breakdown point and require a good generator to achieve good performance,
and (3) when the verifier is sufficiently good, close to an oracle, the breakdown point is high, and any
non-degenerate generator is sufficient.

5 SIMULATIONS ON SYNTHESIZED DATA

The theoretical results are based on the best-case scenario of having unlimited access to synthesized
data and operating in the high-dimensional limit. In this framework, the impact of generator and
verifier on performance is reflected in binary outcomes: 100% or 0%. In this section, we present
simulation results from finite regimes to illustrate the practical implications of our theoretical
framework. Specifically, we explore how the generator and verifier influence performance, and
how performance scales with an increasing, yet finite, volume of synthesized data.

5.1 SETTING

Following the theoretical setting, we consider the same Gaussian mixture and linear models for the
generator and selector. Let w∗ be a fixed unit vector in Rd. The distribution Porig is

x|y ∼ N(yτw∗, Id/d), for y ∈ [−1,+1].

Here, τ is a positive scalar that controls the overlap.

Synthesized Data Generation and Verification. We sample N0 data points from the distribution
Porig to form the original dataset, which is used to train a linear model, ŵN0

, employing ordinary least
squares. We then generate a large synthesized dataset using the trained model ŵN0

with a sigmoid
function, which undergoes selection by various verifiers into sets Dgen,N0

vrf . In our study, these verifiers
are linear models parameterized by various wθprune , where θprune denotes the angle between the
pruner and the ground truth w∗. 5Having the verified synthesized data, We then randomly select n′

data from Dgen,N0

vrf to train and evaluate the final models.

5.2 LESSONS LEARNED

In Figure 3, we conduct several simulations varying N0, θprune, and n′. A larger N0 indicates a
more effectively trained generator, utilizing a greater amount of original data. θprune determines the
verifier’s quality, with θprune = 0 corresponding to the use of the ground truth as an oracle verifier.
We further explore scenarios where θprune = π

24 and π
12 . The variable n′ represents the number of

synthesized samples used to train the final model. We plot the scaling curves as n′ approaches infinity,
a scenario analyzed by our theory. The “random” line represents the process of randomly selecting n′
data points from the synthesized dataset without any verification. The “clean” line indicates training
of the model using n′ data points from the original distribution. We make the following observations:

Oracle Verification Matches Training with Oracle Labels. The oracle verifier achieves the best
performance, matching training with clean data across all settings and attaining Bayes optimal
accuracy. This validates the theory that synthesized data has the full information which can be
extracted with verification.

The Effectiveness of a Weak Verifier Depends on n′. In practical scenarios, obtaining oracle-level
verification is often challenging, so weaker forms of verification are typically employed. While a
weak verifier generally leads to poorer performance, consistent with the decaying threshold points
predicted by theory, there is a surprising “sweet spot” at a certain data size (for the curves with
θprune = π

12 ). Training around 10,000 data outperforms training with more data. Therefore, the
choice of verifier should also take into account the quantity of data selected.

p∗ is strongly correlated with the final performance. Across all settings, the relative values of
p∗ consistently align with the models’ performance. The simulations provide practical validation
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Figure 3: Simulations with Gaussian mixtures. (Top row) Relative error (accuracy relative to optimal
accuracy) scaling as a function number of selected data, n′, used to train the model. τ = 0.15, N1 = 106. The
Bayes optimal classifier achieves approximately 94% accuracy on this distribution. (Bottom row) p∗ values for
all settings.

Table 2: Implementation of our three experiments: We progressively explore our insights through three
real-world experiments. First, we conduct simulations in a finite-data regime, where all settings align with
theoretical expectations. Next, we examine transformers trained on generation tasks, evaluated using a 0-1
metric. Finally, we analyze large language models with general metrics.

Settings Data Task Model Verifiers Metric

Simulation Gaussian mixture classification linear model linear models classification accuracy
Arithmetic synthesized data generation transformer (noisy) verifiers accuracy w. tolerance
Summarization XLSUM dataset generation Llama Llamas similarity w. Rouge-1

of the theoretical results and are consistent with the interpretation presented in Section 4.4. Oracle
supervision yields optimal performance, and, in general, improving both the generator and verifier
leads to enhanced results.

6 EXPERIMENTS

In both the theoretical results and the simulations, we examine a classification scenario where oracle
supervision can select “100% correct” synthesized data. However, outside of these controlled settings,
synthesized data may only approximate the ground truth, meaning the selected data might be closer
to the truth rather than exactly correct. In this section, we explore verification for more general
tasks using generative models through two experiments: (1) training a transformer to predict the
eigenvalues of a matrix, and (2) fine-tuning Llama-2-7B on a news summarization task. Table 2
provides an overview of how we gradually relax the setting from theoretical to empirical. For the
purposes of our discussion here, we refer to model collapse whenever the performance of the model
trained on synthetic data is worse than that of the original generator.

6.1 TRANSFORMER FOR ARITHMETIC TASKS

Recall the setting described in Section 3, where a transformer is trained in a generative manner using
200K samples of matrices and their corresponding eigenvalues. This setting allows for the synthesis
of unlimited data by generating random matrices and using the generator to predict their eigenvalues.

We first introduce the oracle verifier that measures the relative L1 distance between the model’s
predictions and the correct solutions. We use greedy decoding to generate a prediction for each
matrix, and only matrices with predictions within a tolerance of τ = 1% (as determined by the oracle
verifier) are retained. Additionally, we introduce a set of noisy verifiers, where data with predicted
solutions exceeding the 1% tolerance are still included with a probability of pnoise

1. Since we are
evaluating accuracy in a binary (0/1) manner for each data point, we can directly compute ψ and ϕ
in Equation 3, with y′ = y replaced by being within 1% relative L1 tolerance. The noisy verifier
corresponds to setting ϕ = 1 and ψ = pnoise. Consequently, according to our theory, the proxy is

1This is equivalent to introducing random noise in the selection of both correct and incorrect data.
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given by p∗ = 1/(1 + pnoise). For perfect oracle verifier, pnoise = 0 and p∗ = 1; for random selection
without verification, pnoise = 1 and p∗ = 0.5.

We generate various verified synthesized datasets, with data sizes ranging from 1 million to 5 million,
and up to 10 million samples. Using these datasets, the transformer is trained from scratch and
evaluated with greedy decoding. We report how different verifiers, specifically different proxy values
p∗, and varying dataset sizes affect the final performance in Figure 4. We observe the following:
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Figure 4: Transformers computing eigen-
values. Correlation between accuracy with
1% tolerance, p∗, and the number of syn-
thesized data. Model collapse is observed
without verification (p∗ = 0.5), while higher
values of p∗ result in improved performance.
Results are averaged over 5 seeds.

Model Collapse is Observed. When using synthesized
data without any verification, at p∗ = 0.5, even with a
significantly larger dataset — 10 million samples, or 50
times the size of the generator’s original training set —
the trained model performs worse than the generator itself
(represented by the dashed line). This outcome indicates
the occurrence of model collapse.

p∗ as a Reliable Proxy for Final Performance. When
leveraging verification, we observe a consistent increase
in performance. With the oracle verifier (p∗ = 1), the
accuracy nearly doubles. This observation aligns with
practices in code generation and mathematics (Haluptzok
et al., 2022; Trinh et al., 2024), where a natural verifier,
such as precomputed solutions, unit tests, or a compiler, is
available. Across all dataset sizes, p∗ shows a strong cor-
relation with the final performance. Furthermore, using 10
million samples approximates the effect of having infinite
synthetic data; the turning point on the green curve, which
surpasses the generator’s performance, occurs around 0.65 in Figure 4. This value is close to the
generator’s error rate (i.e., 1 minus the accuracy, represented by the dashed line) and reflects the
phase transition predicted by our theory.

6.2 LLMS FOR NEWS SUMMARIZATION

We now turn to one of the most standard tasks in NLP: news summarization. We utilize the English
summarization subset of the XLSUM dataset (Hasan et al., 2021), the largest publicly available
summarization dataset, consisting of 307,000 training samples and 11,500 test samples. Each sample
in this dataset contains a news article x paired with a professionally annotated summary y. Unlike in
the previous cases, we no longer have infinite (x, y) pairs due to the finite number of news articles
available. Therefore, we fine-tune a Llama-2-7B model (Touvron et al., 2023) on only 12.5% of the
training set to serve as the generator. The synthesized data (news summaries) is generated using the
articles of the entire training set with greedy decoding. This approach reflects real-world conditions
where synthetic data generation can significantly outpace human annotation.

In this setting, we use the Rouge-1 score (Lin, 2004) to evaluate the generated summary y′. Rouge-1
assesses the quality of the generated summary by measuring the overlap of individual words between
the generated and human-written summaries y. Similar to other tasks in natural language processing
(NLP), we only have a similarity measure between y′ and y, rather than a binary 0/1 measure. In
Appendix C, we generalize the definitions of ψ and ϕ for these metrics. The core idea is to extend
y′ = y to a similarity score in the range [0, 1].

We consider three selection strategies: (1) Selection with Oracle: We calculate the Rouge score
between the generated summary and the ground truth summary, keeping the data with the highest
scores; (2) Selection with Weak Supervision: We leverage a fine-tuned Llama-3 model with higher
Rouge score than the generator and keep the data with the lowest perplexity; (3) Self-Selection:
We use the generator to keep the data with the lowest perplexity. We apply three selection rates:
12.5% (when the selected synthesized data is the same size as the original data used to train the
generator), 25%, and 50%. For each combination, we collect the selected synthesized data to finetune
the Llama-2 model. We present scaling law curves that illustrate how the Rouge-1 score improves
with increasing amount of selected synthesized data used for training. Throughout the experiments,
all finetuning was performed with full parameter training. Details are provided in Appendix D.

The results and p∗ are shown in Figure 5. We observe the following:
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Figure 5: News summarization with LLMs. (Top Row) The three figures from left to right represents models
trained on 12.5%, 25%, and 50% of the selected data individually. Each figure includes four curves illustrating
different training scenarios: (1) selection with oracle, (2) selection with Llama-3 as a weak supervision, (3)
self-selection, and (4) random selection. Additionally, two horizontal lines are included for comparison: one
representing the generator model and the other representing a model trained with 100% data with original labels.
(Bottom row) Computed values of p∗ for the verifiers for corresponding proportions of selected data. Training
with data selected by a verifier with higher p∗ achieves better performance.

Model Collapse is Observed. The Random Selection curve represent training with synthesized data
directly without verification. In Figure 5 Left, using the same amount of synthesized data results
in worse performance compared to using the original data, indicating model collapse (comparing
‘Random Selection’ with ‘Generator’). Only with more data, the Random Selection lines improve
and nearly match the performance of the generator.

Selection by Oracle Performs Best. The dataset curated with oracle selection surpasses the perfor-
mance of the generator in all settings. Oracle selection with 12.5% of the data selected even surpasses
the model trained with 100% of the training set and original labels. The oracle verifier consistently
has the best p∗ compared with the other methods.

p∗ Strongly Correlates with Performance. Surprisingly, self-selection leads to better performance
than the generator, while Llama-3 verification results in performance similar to random selection.
These findings seem counterintuitive, given that Llama-3 actually achieves a better Rouge-1 score.
However, they are consistent with the measured p∗. Intuitively, self-selection tends to favor easy-
to-learn samples, resulting in good performance with fewer data points. Although Llama-3 can
generate better summaries, the synthesized data are produced by Llama-2, which is less correlated
with Llama-3. As discussed in Equation 6, p∗ depends on three correlations and Llama-3 is not
necessarily a better verifier in this context. This comparison highlights the challenges of selecting an
appropriate verifier when a fixed oracle, like those used in code or math tasks, is not available. In
such cases, our proposed p∗ can serve as a valuable proxy before any training is conducted.

7 DISCUSSION AND LIMITATIONS

In this paper, we consider a novel problem related to synthesized data: how to prevent model
collapse through data selection. We propose to leverage a verifier to improve the synthesized data.
We emphasize it is crucial to focus not only on the quality of the generator but also on having a
high-quality verifier to select the data. We theoretically show that verification is all you need for
synthesized data and identify a proxy function for performance after data selection. Through three
solid experiments, we demonstrate that a decent selector can prevent model collapse and our proxy
function is a reliable measure. Our work is of significant theoretical and practical importance in the
era of large models with increasing use of generated data.

Can a model improve itself? In our paper, we present results showing that a math transformer using
beam search does not improve test accuracy, while Llama-2, through self-selection of its generated
data, can yield a model that performs better than the original generator. In the first experiment, the
model selects a better y (output) for each x (input) (label selection). However, at the distribution
level, the selected y are not better. In the second experiment, the model selects better (x, y) pairs
from a larger pool of news articles (x) than available in the generator’s training set. This introduces
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new information through the x and results in a shift in the distribution of x. Due to this distribution
shift, the trained model can outperform the original generator even with self-selection.

One limitation of this study is that we only considered data selection as a means of data curation.
Besides data selection, data curation also includes methods such as data augmentation, data regenera-
tion, and weighting. The exploration of general data curation methods to avoid model collapse is left
for future work.
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A MORE WORKS ON SYNTHESIZED DATA

A.1 TAXONOMY FOR SYNTHESIZED DATA

Contrary to the phenomenon of model collapse, synthesized data has been shown to improve per-
formance in numerous empirical studies. We now provide a taxonomy outlining when and how
synthesized data is beneficial. Specifically, we identify four key components: prompt engineering
●, knowledge from advanced models ▲, distributional shift and targeted curation ■, and external
verifiers ✦. Most empirical studies can be categorized based on one or more of these components.
We use ●▲■and ✦to denote the components each reference leverages.

Code and Math. Haluptzok et al. (2022) ✦generate synthesized data for codes and use a verifier
to filter and show that the model can ”self-improve” with its own synthesized data. Gunasekar
et al. (2023) ●■filter high-quality data from the web and prompt GPT-3.5 with a specially curated
prompt set covering both quality and diversity. Wei et al. (2023) ●leverage a diverse and large set
of open-source code snippets to curate code instructions as prompts with good coverage and high
quality. Zheng et al. (2024); Trinh et al. (2024) ✦leverage a symbolic deduction engine as a verifier
to test the correctness of each branch for solving Olympic geometry problems.

Alignment. During standard fine-tunings, synthesized data is often generated by a stronger model
like GPT-4 (Peng et al., 2023) ▲. Wang et al. (2023) ●✦use a good set of prompts and inputs
with a heuristic verifier to filter out low-quality ones and maintain high diversity. Bai et al. (2022)
●■use the model itself to critique whether its own generation is harmful, given already harmful
prompts with gold standards from humans. For alignment with reinforcement learning, Ouyang et al.
(2022) ●✦use humans as verifiers to compare synthesized data generated by the current model with
a good set of prompts. Some papers propose reinforcement learning with AI feedback (RLAIF)
(Lee et al., 2023) ●■that leverages another LLM as the verifier to match human verification. The
verifier is a stronger model, instruct-tuned Palm2 L, while the network being trained is the Palm2
XS. However, Yang et al. (2024) ●later found that using better prompts (self-improve) that direct
harmful or harmless responses can surpass RLAIF. Yuan et al. (2024) ●achieve surprising results
with iterative fine-tuning and generating good prompts with in-context learning.

Knowledge distillation. Most papers in the knowledge distillation area involve using a better model
to distill for general performance or specific tasks, with ●, ▲, and ■involved from case to case. One
example is the tiny story cases (Eldan & Li, 2023) ●▲, where GPT-4 is prompted to generate stories
for four-year-olds that are used to train GPT-Neo with good performance.

Image Domain. Kirillov et al. (2023) and Li et al. (2022) ■use a distributional shift from high-quality
to low-quality data to label and curate a vast amount of unlabeled data. Specifically, Li et al. (2022)
also trains a verifier to filters high-quality data. (Um et al., 2024) ▲■specifically curate minority
groups with a diffusion model to enhance performance. He et al. (2023); Dunlap et al. (2023)
▲■generate synthesized data that aids in classification tasks by tailoring the synthesized data to
match the model’s learning objectives. Azizi et al. (2023); Hemmat et al. (2023) ▲■employ guided
curation (with supervision) to curate data from diffusion models. Burg et al. (2023) find that while
synthesized data from a diffusion model helps improve downstream tasks, such as classification,
using the pre-training data of the diffusion model alone gives even stronger performance.

A.2 KNOWLEDGE DISTILLATION WITH SOFT LABELS

Related to synthesized data, there is a long history of using synthesized labels in image classifica-
tions. In the domains of self-distillation and knowledge distillation (Hinton et al., 2015; Furlanello
et al., 2018), data with soft labels generated from the teacher model can significantly improve the
performance of the student model. These soft labels convey additional insights—referred to as ’dark
knowledge’—that have been theoretically linked to specific advantageous adaptations. These include
implicit biases that mitigate overfitting (Mobahi et al., 2020), mimicry of early stopping (Dong et al.,
2019) for improved optimization under label noise (Das & Sanghavi, 2023), and adjustments to
accommodate specific data structures (Allen-Zhu & Li, 2022). We only consider synthesized data
with fixed labels as in the current practice of LLMs and diffusion models.

17



A.3 DATA SELECTION

Comprehensive surveys on data selection for language models can be found in Albalak et al. (2024),
along with theoretical studies on selection in high-dimensional settings (Sorscher et al., 2022;
Kolossov et al., 2024). Specifically, Kolossov et al. (2024) also explore the use of surrogate models
for producing labels during selection, followed by curation of the original labels. In our study,
selection is applied to synthesized data where original labels are not available, resulting in distinct
phenomena compared to these approaches on original data.

B PREDICTING THE EIGENVALUES

We leverage the code base provided by Charton (2022) at https://github.com/
facebookresearch/LAWT under the license CC BY-NC 4.0.

Input and Tokenization. Transformers are trained to predict the eigenvalues of 5× 5 symmetric
real matrices. Model inputs are sequences of 25 real entries, rounded to three significant digits, and
tokenized as triplets of signs( + or -), mantissas (from 0 to 999) and power of ten exponents (from
E-100 to E100). For instance, the 2× 2 matrix,(

2.3 0.6035
0.6035 −3.141

)
will be encoded as the sequence of 12 tokens: + 23 E-1 + 604 E-3 + 604 E-3 - 314
E-2. Model outputs are vectors of 5 real eigenvalues, rounded to three significant digits, and
tokenized as before, as triplets of sign, mantissa and exponent (the P1000 encoding from (Charton,
2022)).

Model and Optimization. We train sequence-to-sequence transformers (Vaswani et al., 2017), with
4 layers in the encoder, and one in the decoder, 512 dimensions and 8 attention heads, to minimize a
cross-entropy loss, using the Adam optimizer (Kingma & Ba, 2014), with a fixed learning rate of
5 · 10−5, after an initial linear warm-up phase over the first 10,000 optimization steps. The model is
trained for 400 epochs before overfitting.

Evalution. Model accuracies are measured on a held-out test set of examples not seen at train-
ing. Model predictions are evaluated by decoding the output sequence as a vector of 5 real
numbers (p1, p2, p3, p4, p5), and assessing that a prediction p(p1, p2, p3, p4, p5) of eigenvalues
v(v1, v2, v3, v4, v5) is correct if the relative error in L1 norms is below some tolerance τ , i.e. if

5∑
i=1

|vi − pi| < τ

5∑
i=1

|vi|.

We use tolerances τ of 5, 2, 1 and 0.5%.

B.1 FINETUNING MODELS WITH SYNTHESIZED DATA

In all previous experiments, the data generated from the generator (using beam or reject sampling)
were used to train a new model. In this section, we consider using data generated from the generator
to finetune models pre-trained on a small sample of ground truth data. We consider four cases:

• Fine-tuning the generator (Model A).

• Fine-tuning a model pre-trained to the same accuracy as the generator (62%, Model B).

• Fine-tuning a model pre-trained to higher accuracy (93%, Model C).

• Fine-tuning a model pre-trained to low accuracy (4%, Model D).

Table 3 compares accuracy of the four fine-tuning cases to that of a model trained from scratch.
Fine-tuning only achiueves better performance when the pre-teained model achieved higher accuracy
than model A. In all other cases, fine-tuning brings no improvement. Note that fine-tuning model A
on its own generated data achieves the worst result, a clear case of model collapse.
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Model A (66%) Model B (62%) Model C (93%) Model D (4%) From scratch

Rejection 61.8 72.9 82.1 66.3 72.1
Beam 50 74.1 82.6 87.3 78.3 84.0
Beam 35 72.7 81.3 86.8 76.8 80.4
Beam 25 71.3 79.8 84.4 73.3 79.9
Beam 10 67.5 75.1 83.5 68.0 73.9
Beam 5 64.9 70.8 80.1 65.6 69.1
Beam 1 61.6 62.1 75.6 55.8 60.5

Table 3: Performance of models fine-tuned on 1M examples generated by the generator. τ = 2%

B.2 COMPUTATIONAL RESOURCES

We leverage a V100 GPU with 32GB of memory for all experiments involving linear algebra. The
training time ranges from 1 to 5 days, depending on the data size and the number of epochs.

C GENERALIZATION OF THE PROXY

Recall that in our theoretical setting, we define all variables in a two-way classification problem,
with y as the ground truth label and y′ as the predicted synthesized label. We introduce an indicator
variable s, defined as:

s =

{
1 if y = y′

0 if y ̸= y′
.

We can rewrite all formulas in terms of s:

p := 1− E[s],

and
ϕ = P(q = 1 | s = 1), ψ = P(q = 1 | s = 0).

When moving beyond the classification setting, s is no longer a binary 0/1 variable. In more general
cases, s represents a measure of similarity or distance between the original target y and the synthesized
target y′. Without loss of generality, we assume s is normalized to lie within the range [0, 1]. For
instance, in the news summarization experiment, s corresponds to the ROUGE-1 score between the
ground truth text y and the synthesized text y′, and equals 1 if and only if y = y′.

With this generalized measure s, we can extend the previous definitions of ϕ and ψ as follows:

ϕ =
Es[qs]

1− p
, ψ =

Es[q(1− s)]

p
.

When s takes values in {0, 1}, these definitions are consistent with those in Equation 3.

D NEWS SUMMARIZATION

We leverage the XLSUM dataset (Hasan et al., 2021) at https://huggingface.co/
datasets/csebuetnlp/xlsum under the license CC-BY-NC-SA 4.0.

Data preprocessing. For each data in both training and test dataset, it consists of a news report and a
summarization, denoted as (news, summarization). We write each data in the following form:

Article: news. A summary of the article: summarization.

Fine-tuning and generating details. Throughout all phases of evaluation and generation, we employ
greedy decoding. Given that news summarization is a low-entropy task, greedy decoding is chosen to
ensure quality generation. Consistent with common practice, fine-tuning is limited to a single epoch.
Through out the experiments, all the finetuning is with full parameter tuning to better capture the
scaling law as suggested in Zhang et al. (2024a).
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Implementation details. We leverage the official implementation in Huggingface 2 for training,
under the license Apache 2.0. Specifically, for training the generator, we start our training with the
pre-trained Llama-2, and set the learning rate to 5e-5, the learning rate scheduler as ‘cosine’, the
number of epochs to 1, the total batch size to 32, the block size to 1024 and the others to the default
value. For generating the synthesized data, we use greedy strategy to generate a summarization for
each news in the training set. For training based on the selected synthesized data, we also start our
training with the pre-trained Llama-2, and set the learning rate to 2e-5, the learning rate scheduler
as ‘constant’ and the others to the same. For evaluation, we first use greedy strategy to generate
a summarization for each news in the test set, and then calculate the Rouge-1 score between the
generated summarization and the corresponding ground truth, and finally report the average of the
Rouge-1 scores of all test data. When calculating the perplexity, we only calculate the perplexity for
the generated summary. When fine-tuning the Llama-3 model, we use the full XLSUM dataset to
achieve good performance. The resulting model achieves a Rouge-1 score of 34.5.

Computational Resources. All experiments were conducted using a dedicated computational cluster
equipped with 4 NVIDIA A800 GPUs, each with 80 GB of memory. Our training and inference
processes are performed on the cluster.

Estimated Time. Training the whole dataset for an epoch takes about 6 hours. Generating the whole
dataset takes about 1 day. During evaluation, we need to first generate and calculate the rouge score,
which takes around 40 minutes for one checkpoint.

E A GENERAL THEORY OF PRUNING WITH VERIFICATION

In Section 4 we have presented a special case of our general theory, which we describe here in more
generality and detail. While some of our exposition here overlaps with Section 4, we prefer to leave
it as a complete text that provides a stand-alone overview.

E.1 DATA DISTRIBUTION

Consider a probability distribution P over Rd × {0, 1} with the following high-dimensional property
Condition E.1. Given N ≤ N(d) i.i.d. samples (x1, y1), . . . , (xN , yN ) from P with N ≤ N(d),
the following hold estimates w.p 1− o(1) uniformly on all i, j ∈ [N ], in the limit d→ ∞

∥xi∥2 ≃ 1,

x⊤i xj ≃
{
a, if yi = yj ,

b, if yi ̸= yj

where b < a < 1 are constants. For simplicity of presentation of our results, We will further assume
that b = −a or b = 0.

The above structural condition is inspired by an assumption in Das & Sanghavi (2023).

For simplicity of exposition, we will only consider balanced distributions, meaning that

P(y = 1) = P(y = 0) = 1/2, for (x, y) ∼ P.

Gaussian Mixture Example. As a first example, in the case of Gaussian mixtures where the
features have conditional distribution given by

x | y ∼ N(µy,Σ), (7)
(8)

where µy = (2y−1)µ, for some µ ∈ Rd and positive-definite matrix Σ with E ∥x∥2 = ∥µ∥2+trΣ =
1, we may take

a = ∥µ∥2, b = −a. (9)

Condition E.1 then holds thanks to concentration, with N(d) = eΘ(d).
2https://github.com/huggingface/transformers/blob/main/examples/

pytorch/language-modeling/run_clm.py

20

https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm.py
https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm.py


E.2 TRAINING DATA, DATA PRUNING, AND DOWNSTREAM MODEL

Let DN = {(x1, y1), . . . , (xN , yN )} be a dataset of N i.i.d. pairs from the true distribution P and
let D′

N = {(x1, y′1), . . . , (xN , y′N )} a version of the dataset (also i.i.d.) with labels y′i instead of yi.
For example, this could be labels generated by an AI trying to reproduce real-world data. D′

N is the
data on which the downstream model is trained.

We will consider a family of models given by

P(y = 1 | x,w) = ŷ := σ(x⊤w) ∈ (0, 1),

parametrized by a vector of weights w ∈ Rd. Here, σ is the sigmoid function defined by

σ(z) :=
1

1 + e−z
. (10)

For the loss function, we use binary cross-entropy (BCE), defined by

ℓ(ŷ, y) = −y log ŷ − (1− y) log(1− ŷ). (11)

Let ŵN be obtained via logistic regression fitted on D′
N with ridge regularization parameter λ > 0.

Thus, ŵ is the unique3 minimizer of the following objective function:

L(w) :=
1

N

N∑
i=1

qiℓ(σ(x
⊤
i w), y

′
i) +

λ

2
∥w∥2.

Here qi is a bit which indicates whether the ith training example has survived pruning. The numbers
q = (q1, . . . , qN ) is called a pruning strategy. The corresponding downstream classifier is f̂N = fŵN

,
where the notation fw refers to the linear classifier induced by a weights vector w ∈ Rd, i.e

fw(x) :=

{
1, if x⊤w > 0,

0, otherwise.
(12)

The test accuracy of the downstream model f̂N is defined by

acc(f̂N ) := P(f̂N (x) = fBayes(x)), for a random test point (x, y) ∼ P,

where fBayes(z) := E[y|x = z] is the Bayes-optimal classifier. In particular, note that acc(fBayes) =
100% by construction.

This quantity will be the main object of our analysis, and we will be interested in how it depends on
the corruption level p and the choice of pruning strategy q, in the infinite-sample limit N → ∞.

For later reference, we also define an empirical version, namely the accuracy of f̂N evaluated on the
clean dataset DN , namely

âcc(f̂N ) :=
1

|M |
|{i ∈M | f̂N (xi) = yi}|, (13)

where M := {i ∈ [N ] | qi = 1} collects the indices of training samples which survive pruning by q.

E.3 A CLASS OF PARAMETRIZED PRUNING STRATEGIES

Given hyper-parameters ϕ0, ϕ1, ψ01, ψ10 ∈ [0, 1], we consider a broad class of parametrized pruning
strategies with the following property. For any class labels k, ℓ ∈ {0, 1}, the random variables
(zikℓ)i∈[N ] defined by zikℓ = 1[yi = k, y′i = ℓ, qi = 1] are i.i.d. with Bernoulli distribution
Bern(pkℓ), where

pkℓ = P(qi = 1, y′i = ℓ, yi = k)

= P(qi = 1 | y′i = ℓ, yi = k)P(y′i = ℓ | yi = k)P(yi = k)

=

{
ϕk(1− p)/2, if k = ℓ,

ψkℓp/2, else.

(14)

3Unicity is due to strong convexity of objective function.
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and the numbers p, ϕk and ψkℓ are defined by
p := P(y′i ̸= yi), ϕk = P(qi = 1 | y′i = k, yi = k), ψkℓ = P(qi = 1 | y′i = ℓ, yi = k). (15)

Consequently, if Nkℓ is the number of training examples that have true label k, fake label ℓ, and
survive pruning, then

Nkℓ :=

N∑
i=1

zikℓ (16)

which is has binomial distribution Bin(N, pkℓ). As mentioned in the main text, for simplicity of
exposition we considered the following simplifying assumption:

ϕ1 = ϕ0 = ϕ, ψ01 = ψ10 = ψ. (17)
Such a pruning strategy will be referred to as a verification-pruning strategy with parameter (ϕ, ψ).
Remark E.2. Note that the parametrization (ϕ, ψ) and (p00, p11) describe the same verification-
pruning strategy via the following bijective transformation.

p00 = p11 = (1− p)ϕ/2, p01 = p10 = pψ/2. (18)

E.4 EXAMPLES

Let us present some notable examples of verification-pruning strategies.

No Selection. The case (ϕ, ψ) = (1, 1) corresponds to no selection, i.e the entire training dataset is
used.

Oracle Selection. The case (ϕ, ψ) = (1, 0). The selection strategy only keeps indices correspond-
ing to examples in the dataset which have correct label (all corrupted labels discarded).

Supervised (Margin-Based) Selection. Let wprune ∈ Rd, and consider the pruning strategy
defined by

qi = 1[y′i(x
⊤
i wprune) > 0].

This pruning strategy simplify filters out all examples on which it disagrees on the assigned label.

E.5 PERFORMANCE BOUNDS FOR MODELS TRAINED WITH VERIFICATION SELECTION

The following is one of our main results (proved in Appendix F).
Theorem E.3. Suppose Condition E.1 is in order. Fix ϕ, ψ, t ∈ (0, 1) and define p±⋆ (t) ∈ (0, 1) by

p−⋆ (t) :=
1− t

1− t+ (1 + t)ψ/ϕ
, p+⋆ :=

1 + t

1 + t+ (1− t)ψ/ϕ
(19)

If p < p−⋆ (t), then the limitN → ∞ it holds w.p 1−o(1) that the acc(f̂N ) = 100% for a downstream
model f̂N trained on data from a generator with error rate p pruned with a verification-pruning
strategy with parameters (ϕ, ψ).

On the other hand, if p > p+⋆ , then in the limit N → ∞ it holds w.p 1− o(1) that the acc(f̂N ) = 0%

for a downstream model f̂N .

Thus, there is a sharp phase-transition around the corruption level p⋆ := 1/(1 + ψ/ϕ): as p is
increased past level p⋆, the downstream model f̂N abruptly switches from being perfectly accurate,
to perfectly inaccurate!

See Figure 6 for an empirical illustration of the theorem.

The thresholds p±⋆ (t) appearing in the above theorem are proxies for the so-called breakdown points
pup ≥ pdown defined by

pup = inf
{
p ∈ [0, 1]

∣∣ acc(f̂N )
a.s→ 0% in the limit N → ∞

}
, (20)

pdown = sup
{
p ∈ [0, 1]

∣∣ acc(f̂N )
a.s→ 100% in the limit N → ∞

}
. (21)

Theorem E.3 implies pdown ≥ p−⋆ (t) and pup ≤ p+⋆ (t) for all t ∈ (0, 1). Consequently,
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Figure 6: Empirical Confirmation of Theorem E.3. Comparing the breakdown points of different
models. Here, the task is classifying a Gaussian mixture, with infinite training samples from
datasets generated from a model with classification error rate p (x-axis). Notice the sharp phrase-
transitions where the model suddenly switches from perfect accuracy to worse-than-chance, a
phenomenon predicted by Theorem E.3. Left. Performance of verification-pruning strategies with
different values of the hyper-parameters (ϕ, ψ). Recall that the case ψ/ϕ = 1 corresponds to no
pruning, while ψ/ϕ = 0 corresponds to oracle selection. Right. Comparing pup, approximated
with sup{p | acc(f̂N ) ≥ 90%} (computed empirically), against the analytic estimate p−⋆ (t) given in
Theorem E.3 (for t = 0.1). Again, the results are in excellent agreement with the predictions of the
theorem.

Corollary E.4. Under the hypotheses of Theorem E.3, it holds that pup = pdown.

E.6 SOME CONSEQUENCES OF THEOREM E.3

We now present some illustrious applications of Theorem E.3. These examples are empirically
confirmed in Figure 6.

No Selection. Here, we have ψ/ϕ = 1 and so the downstream model achieves 100% accuracy for
all values of corruption parameter p up to the proxy breakdown point predicted by Theorem E.3 is
then p−⋆ = 1/2− t/2.

Oracle Selection. For this scenario, ψ/ϕ = 0 and so Theorem E.3 predicts that the downstream
model f̂N achieves 100% accuracy for all values of corruption parameter p up to the breakdown point
p−⋆ = 1. This is perhaps not so surprising in hindsight. The point is that even for moderately large
values of ψ/ϕ, the proxy breakdown point p−⋆ given in equation 19 can still be quite close to 1.

Self-supervised (Margin-Based) Selection. Consider Gaussian mixture data with means ±µ, and
consider a margin-based pruning strategy in Equation (5). It is clear that ϕ and ψ only depend on all
the 3 angles between the set of vectors {w∗, wgen, wprune}, with w∗ = µ.

Supervised Selection. Consider isotropic Gaussian mixture data with means ±µ, and a pruning
strategy as in Eq. (5). The parameters (ϕ, ψ) only depend on the angles θgen, θprune, θ ∈ [0, π] given
by

θgen := ∠(wgen, µ), θprune := ∠(wprune, µ),

θ := ∠(wprune, wgen).
(22)

Conditioned on y = 1 and using E∥x∥2 = ∥µ∥22 + trΣ = 1 (and ∥µ∥2 < 1), we get x ∼
N (µ, 1

(1−∥µ∥2
2)d

Id). We can rewrite x as:

x = µ+
1

(1− ∥µ∥22)d
η, (23)
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where η ∼ N (0, Id). For simplicity of calculation, let us further assume here that ∥wgen∥22 =
∥wprune∥22 = 1.

ϕ1 = P(x⊤wprune > 0 | y = 1, y′ = 1)

=
P(x⊤wprune > 0, y = 1, x⊤wgen > 0)

P(y = 1, x⊤wgen > 0)

=
P(η⊤wprune > −∥µ∥2d(1− ∥µ∥22) cos θprune, η

⊤wgen > −∥µ∥2d(1− ∥µ∥22) cos θgen)

P(η⊤wgen > −∥µ∥2d(1− ∥µ∥22) cos θgen)
.

In the second step, we use the definition of conditional probability and use equation 23 from line 2 to
line 3. The random variables η⊤wgen and η⊤wprune are jointly Gaussian with:(

η⊤wgen
η⊤wprune

)
∼ N

(
0,

(
1 cos θ

cos θ 1

))
.

Let Φ be the CDF of the standard normal distribution and Φ2 the CDF of the bivariate normal
distribution, where Φ2(x, y; ρ) is defined as:

Φ2(x, y; ρ) := P(X ≤ x, Y ≤ y)

for (X,Y ) ∼ N
(
0,

(
1 ρ
ρ 1

))
. Denote c1 = −∥µ∥2d(1− ∥µ∥22) cos θprune and c2 = −∥µ∥2d(1−

∥µ∥22) cos θgen. We have:

ϕ1 =
1− Φ(c1)− Φ(c2) + Φ2(c1, c2; cos θ)

1− Φ(c2)
.

All the distributions are symmetric, and we have ϕ0 = ϕ1 = ϕ. In the same spirit, ψ = ψ10 = ψ01,
with

ψ =
Φ(c1) + Φ(c2)− Φ2(c1, c2; cos θ)

Φ(c2)
.

E.7 SKETCH OF PROOF OF THEOREM E.3

The proof is based on the following representation (refer to Proposition F.2) of the accuracy of the
downstream classifier f̂N evaluated on the the clean training dataset DN , namely

âcc(f̂N ) =
N111A<1/2 +N001D<1/2 +N101B>1/2 +N011C>1/2

N11 +N00 +N10 +N01
, (24)

for some random some random variables A,B,C,D ∈ (0, 1) which depend on the Nkℓ’s defined in
equation 16.

Remark E.5. We only compute the accuracy âcc(f̂N ) of the downstream model f̂N evaluated on the
clean training dataset DN . By classical results in learning theory (McAllester, 2003; Shalev-Shwartz
& Ben-David, 2014; Kakade et al., 2008), we know that the gap to the population version (test
accuracy) acc(f̂N ) shrinks to zero at rate O(1/

√
N), and so since the claim in Theorem E.3 is made

only in the limit N → ∞, we are good.

Next, in Proposition F.3 and Proposition F.4, necessary and sufficient conditions are established to
ensure A,D < 1/2 and B,C > 1/2, and therefore âcc(f̂N ) = 100%. These conditions are given
explicitly in terms of theNkℓ’s. Finally, in Proposition F.5, concentration of measure is used to control
the Nkℓ’s, and present the aforementioned conditions in terms of the pkℓ’s defined in equation 14,
and therefore in terms of p, ϕ, and ψ alone, giving condition equation 19.

F PROOF OF THEOREM E.3

Our analysis is based on non-trivial extensions of arguments by Das and Sanghavi (2023). Viz,
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• We allow for a selection mechanism (aforementioned work does study selection, just self-
distillation), and

• We use a careful asymptotic analysis to avoid solving certain complicated fixed-point
equations defining the weights vector ŵN of the downstream model f̂N .

F.1 PRELIMINARY COMPUTATIONS

For later use, given a pruning strategy q, define the following objects

Ik := {j ∈ [N ] | yj = k}, (25)

I ′ℓ := {j ∈ [n] | y′j = ℓ}, (26)

M := {i ∈ [N ] | qi = 1}, (27)

Nkℓ :=
∑

i∈Ik∩I′
ℓ

qi = |Ik ∩ I ′ℓ ∩M |, (28)

R := 1− a > 0. (29)

Thus, Nkℓ is the number of training examples that have true label k, fake label ℓ, and survive pruning.
The following result will be crucial in the sequel.
Proposition F.1. We have the representation ŵ =

∑
i∈M αixi, where

αi =


A, if i ∈ I1 ∩ I ′1 ∩M,

−B, if i ∈ I1 ∩ I ′0 ∩M,

C, if i ∈ I0 ∩ I ′1 ∩M,

−D, if i ∈ I0 ∩ I ′0 ∩M,

(30)

and A,B,C,D ≥ 0 solve the following system of equations

γA = σ(−(aN11A− aN10B + bN01C − bN00D)−RA),

γB = σ(aN11A− aN10B + bN01C − bN00D −RB),

γC = σ(−(bN11A− bN10B + aN01C − aN00D)−RC),

γD = σ(bN11A− bN10B + aN01C − aN00D −RD).

(31)

Proof. The following result is inspired by (Das & Sanghavi, 2023) and the proof is similar. Observe
that KKT conditions ∇L(w) = 0 give

∑N
i=1 qi(ŷi − y′i)xi + γw = 0, i.e

w =

N∑
i=1

qiαixi, with αi :=
y′i − ŷi
γ

, ŷi := σ(vi), vi = x⊤i w. (32)

One then computes

vi = x⊤i w =

N∑
j=1

qiαix
⊤
i xj = qiαi +

{
a(s− qiαi) + bt, if i ∈ I1,

a(t− qiαi) + bs, if i ∈ I0,

=

{
as+ bt+Rqiαi, if i ∈ I1,

bs+ at+Rqiαi, if i ∈ I0,

(33)

where s ≥ 0 and t ≥ 0 are given by

s :=
∑
j∈I1

qjαj , t :=
∑
i∈I0

qjαj . (34)

We deduce that for any i ∈M ,

γαi = y′i − σ(vi) =


1− σ(as+ bt+Rqiαi), if i ∈ I1 ∩ I ′1,
−σ(as+ bt+Rqiαi), if i ∈ I1 ∩ I ′0,
1− σ(bs+ at+Rqiαi), if i ∈ I0 ∩ I ′1,
−σ(bs+ at+Rqiαi), if i ∈ I0 ∩ I ′0.

(35)
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Due to monotonicity of σ, we deduce the existence of A,B,C,D ≥ 0 such that

αi =


A, if i ∈ I1 ∩ I ′1 ∩M,

−B, if i ∈ I1 ∩ I ′0 ∩M,

C, if i ∈ I0 ∩ I ′1 ∩M,

−D, if i ∈ I0 ∩ I ′0 ∩M.

(36)

ŷi = y′i − γαi =


1− γA, if i ∈ I1 ∩ I ′1 ∩M,

γB, if i ∈ I1 ∩ I ′0 ∩M,

1− γC, if i ∈ I0 ∩ I ′1 ∩M,

γD, if i ∈ I0 ∩ I ′0 ∩M.

(37)

Furthermore, these scalars must verify

γA = 1− σ(as+ bt+RA) = σ(−(as+ bt)−RA),

γB = σ(as+ bt−RB),

γC = 1− σ(bs+ at+RC) = σ(−(bs+ at)−RC),

γD = σ(bs+ at−RD).

(38)

Finally, observe that,

s = N11A−N10B, t = N01C −N00D, (39)

from which we get

as+ bt = a(N11A−N10B) + b(N01C −N00D)

= aN11A− aN10B + bN01C − bN00D,

bs+ at = b(N11A−N10B) + a(N01C −N00D)

= bN11A− bN10B + aN01C − aN00D.

Plugging this into equation 38 gives equation 31.

F.2 ANALYTIC FORMULA FOR ACCURACY EVALUATED CLEAN TRAINING DATA

One computes the accuracy âcc(f̂N ) of the downstream model evaluated on the clean training dataset
DN as

âcc(f̂N ) =
1

|M |
(|{i ∈M | yi = 1 ∧ ŷi > 1/2 OR yi = 0 ∧ ŷi < 1/2}|) .

We can rewrite this as follows

|M | · âcc(f̂N ) = |{i ∈M | yi = 1 ∧ ŷi > 1/2 OR yi = 0 ∧ ŷi < 1/2}|
= |{i ∈ I1 ∩M | ŷi > 1/2}|+ |{i ∈ I0 ∩M | ŷi < 1/2}|

=
∑

i∈I1∩M

1ŷi>1/2 +
∑

i∈I0∩M

1ŷi<1/2

= |I1 ∩ I ′1 ∩M |1γA<1/2 + |I1 ∩ I ′0 ∩M |1γB>1/2

+ |I0 ∩ I ′1 ∩M |1γC>1/2 + |I0 ∩ I ′0 ∩M |1γD<1/2

= N111γA<1/2 +N001γD<1/2 +N101γB>1/2 +N01AγC>1/2.

(40)

On the other hand, it is clear that the size of the mask is |M | =
∑

k,ℓNkℓ. Putting things together
gives the following result which shall be crucial in the sequel.
Proposition F.2. For any ϕ, ψ ∈ [0, 1], there is a solution (A,B,C,D) of the system of equations
equation 31 such that

âcc(f̂N ) =
N111A<1/2 +N001D<1/2 +N101B>1/2 +N011C>1/2

N11 +N00 +N10 +N01
, (41)

where A := γA, B = γB, C = γC, and D = γD as usual.

Thus, to attain 100% accuracy, it suffices to have A,D < 1/2 and B,C > 1/2. The proof of
Theorem E.3 will be all about establishing sufficient conditions which ensure these inequalities.
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F.3 SUFFICIENT CONDITIONS FOR PERFECT ACCURACY

Note that since γ = Nλ with λ > 0 fixed and N → ∞, we have γ → ∞ and system of equations
equation 31 simplify to4

B = σ((aN11A− aN10B + bN01C − bN00D)/γ),

A = σ(−(aN11A− aN10B + bN01C − bN00D)/γ) = 1−B,

D = σ((bN11A− bN10B + aN01C − aN00D)/γ),

C = σ(−(bN11A− bN10B + aN01C − aN00D)/γ) = 1−D,

(42)

where A := γA, B = γB, C = γC, D = γD as usual, and we have used the elementary property
that σ(−z) = 1− σ(z). Eliminating A and C, the above equations further collapse to

B = σ((aN11(1−B)− aN10B + bN01(1−D)− bN00D)/γ),

= σ((aN11 + bN01 − a(N11 +N10)B − b(N01 +N00)D)/γ),

D = σ((bN11(1−B)− bN10B + aN01(1−D)− aN00D)/γ)

= σ((bN11 + aN01 − b(N10 +N10)B − a(N01 +N00)D)/γ).

(43)

Two special cases are tractable.

The Symmetric Case: b = −a. We have D = 1−B, and thus the equations become
D = A, C = B, D = 1−B,

B = σ((a(N11 +N00)− a(N11 +N10 +N01 +N00)B)/γ).
(44)

If B ≤ 1/2, then we must have B ≥ (N11 +N00)/(N11 +N10 +N01 +N00), which is impossible
if we impose

N10 +N01 < N11 +N00, (45)
i.e the number of bad indices which survive is smaller than the number of good indices which survive
pruning. Thus, under the previous condition, we must haveC = B > 1/2 andA = D = 1−B < 1/2.
By symmetry of the preceeding argument we know that the condition is also necessary. We deduce
the following result.
Proposition F.3. Suppose b = −a. Then, for any solution (A,B,C,D) of the system of equations
equation 31, the inequalities

C = B > 1/2, D = A < 1/2, (46)
hold if and only iff N10 +N01 < N11 +N00.

Skewed Case: b = 0. Here, we have
B = σ(a(N11 − (N11 +N10)B)/γ),

D = σ(a(N01 − (N01 +N00)D)/γ)
(47)

If B ≤ 1/2, then B ≥ N11/(N11 +N10), which is impossible if we impose
N10 < N11, (48)

i.e the number of examples with true label 1, which are incorrectly labelled as 0 in the dataset, which
survive pruning is less than the number of examples with true label 1, which are correctly labelled
and survive pruning. We deduce that B > 1/2 under the above condition.

Similarly, if D ≥ 1/2, then D ≤ N01/(N01 +N00), which is impossible if we impose
N01 < N00, (49)

i.e the number of with true label 0 but incorrectly labelled as 1 in the dataset, which survive pruning is
less than the number of examples with true label 1, which are correctly labelled and survive pruning.
We obtain the following result.
Proposition F.4. Suppose b = 0. Then, for any solution (A,B,C,D) of equation 31, we have

C,B > 1/2 iff N10 < N11, (50)

D,A < 1/2 iff N01 < N00. (51)
4These simplifications are made possible by the Mean Value Theorem.
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F.4 CONCENTRATION

We shall now derive conditions which are sufficient to ensure the hypothesis in Propositions F.3 and
F.4, namely Nkℓ < Nkk for all k, ℓ ∈ {0, 1} with k ̸= ℓ. Recall that for any k, ℓ ∈ {0, 1}, the counter
Nkℓ is random with binomial distribution Bin(N, pkℓ). Now, by basic binomial concentration, we
know that if p, ψ ∈ [0, 1) and ϕ ∈ (0, 1], then for any fixed t ∈ (0, 1), it holds w.p 1− o(1) that{

Nkℓ ≤ (1 + t)Npkℓ, if k ̸= ℓ,

Nkℓ ≥ (1− t)Npkℓ, if k = ℓ.
(52)

In particular, w.p 1− o(1), it holds that

Nkℓ ≤ (1 + t)Npkℓ, (53)
Nkk ≥ (1− t)Npkk. (54)

Comparing the above inequalities, we deduce the following result.
Proposition F.5. If the following condition holds

p01 + p10
p00 + p11

<
1− t

1 + t
= 1− ϵ with ϵ :=

2t

1 + t
, (55)

then w.p 1− o(1) it holds that

N10 +N01 < N11 +N00. (56)

F.5 PROOF OF THEOREM E.3

Follows directly from putting together Propositions F.2, F.3, F.4, and F.5, and then solving the
inequality

1− t

1 + t
≤ p01 + p10
p00 + p11

=
2pψ

2(1− p)ϕ
=

pψ

(1− p)ϕ

for p.
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