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SUMMARY

Compounds with definedmulti-target activity are candidates for the
treatment of multi-factorial diseases. Such compounds are mostly
discovered experimentally. Designing compounds with the desired
activity against two targets is typically attempted by pharmaco-
phore fusion. In addition, machine learning models can be derived
for multi-target prediction of compounds or computational target
profiling. Here, we introduce transformer-based chemical language
model variants for the generative design of dual-target compounds.
Alternativemodels were pre-trained by learningmappings of single-
to dual-target compounds of increasing similarity. Different models
were optimized for generating compounds with activity against
pairs of functionally unrelated targets using a new cross-fine-tuning
approach. Control models confirmed that pre-trained and fine-
tuned models learned the chemical space of dual-target com-
pounds. The final models were found to exactly reproduce known
dual-target compounds excluded from model derivation. In addi-
tion, many structural analogs of such compounds were generated,
further supporting the validity of the methodology.

INTRODUCTION

In drug discovery, target-specific compounds have been a primary focal point since

the 1980s, when advances in molecular and structural biology triggered the intro-

duction of the ‘‘one drug, one target’’ paradigm.1 However, following the advent

of systems biology in drug discovery,2 evidence was also mounting that perturbed

signaling and pharmacological networks were responsible for various multi-factorial

diseases such as cancer3,4 and that successful treatment of such diseases often de-

pended on therapeutic intervention of multiple targets.4,5 Such insights triggered

the inception of the polypharmacology concept in drug discovery that was formally

introduced in 2006,5 encompassing the use of compounds with desirable multi-

target (MT) activity and the exploration and exploitation of ensuing pharmacological

effects.5–7 Of note, MT engagement of drugs also is a major source of adverse side

effects that require careful consideration in drug discovery.7,8 While MT activity of

some central nervous system drugs was already known since the late 1980s,9,10 com-

pounds with well-defined MT activity (‘‘multi-specificity’’) became of central rele-

vance for polypharmacology-oriented drug discovery.

Polypharmacological compounds were often discovered serendipitously, for instance

in biological screening or target profiling campaigns, but were also of high interest in

molecular design.11,12 In computer-aided medicinal chemistry, the most popular

design strategy forMT compounds (MT-CPDs) has thus far been combining ormerging

target-specific pharmacophores, a knowledge-based approach for which different

computational protocols are available.11–13 For example, pharmacophore fusion can
Cell Reports Physical Science 5, 102255, November 20, 2024 ª 2024 The Author(s). Published by Elsevier Inc.
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be attempted by designing hybrid compounds. Alternatively, multiple pharmaco-

phore models might be used for computational compound screening concentrating

on shared hits.11–13 Other virtual screening protocols are also applicable. For example,

machine learning (ML) models were used to search for compounds mimicking natural

molecules with MT activity.14 In addition, in computational target profiling, multiple

independently derived single-target-based ML classifiers or multi-task (target) models

can be used to search for hits with putativeMT activity.15,16 Target profiling is related to

the ML-based prediction of drug-target interactions,17–19 including proteochemomet-

ric modeling,20 which also aids in the identification of MT-CPDs. Moreover, in struc-

ture-based design, cross-docking screens are applicable to prioritize compounds

that can be accommodated in different binding sites based on high interaction and

shape complementarity.20,21

While it is fair to state that pharmacophore-based approaches have thus far domi-

nated MT-CPD design, ML offers new opportunities, supported by increasing

numbers of compounds with multiple target annotations that are becoming avail-

able for learning. Notably, the most interesting MT-CPDs are not those that are

active against closely related targets from the same family, which is often observed

(due to a lack of compound specificity), but others that are active against structurally

and functionally unrelated targets. For instance, a systematic analysis of public bio-

logical screening assays identified more than 1,000 compounds that were tested

against at least 100 human targets and active against 10 or more targets from two

or more different classes.22 In addition, MT activities of nearly 2,000 drugs related

to adverse side effects were systematically evaluated in 200 assays,23 and the data

have been made publicly available. Furthermore, a recent analysis of public com-

pound data from medicinal chemistry identified nearly 700 compounds with activity

against at least three targets from two different protein classes based on high-con-

fidence target annotations.24 Moreover, a systematic search in the ChEMBL com-

pound database25 uncovered 170 target pairs, involving 137 unique human targets,

for which at least 100 dual-target compounds (DT-CPDs) and (50+50) corresponding

single-target compounds (ST-CPDs) with high-confidence activity data were avail-

able.26 Taken together, these findings illustrate that currently available MT-CPDs

provide a substantial resource for follow-up analysis in medicinal chemistry and

drug design. However, derivation and assessment of ML models to detect or

generate new MT-CPDs is currently essentially restricted to compounds with activity

against target pairs. For target triplets, numbers of available MT-CPDs are rapidly

declining,26 preventing meaningful ML model building in most cases. For the 170

target pairs referred to above, random forest classification models were built to

distinguish DT- from corresponding ST-CPDs. Most of these models reached high

prediction accuracy with a median of greater than 80%. Explainable ML analysis

then revealed that these overall accurate pair-based predictions were determined

by structural features that differed for target pairs and were present in DT- but ab-

sent in corresponding ST-CPDs.26

While classification models for MT-CPDs can be used for computational screening,

deep generative ML models for drug discovery27 can also be adapted for the design

of compounds with desired MT activity. Thus, generative modeling further extends

the capacity ofML for discoveringMT-CPDs. However, compared to pharmacophore

fusion or virtual screening, generative design of compounds for polypharmacology is

still in its early stages, with only a few currently available studies. For instance, a gen-

eral-purpose generative recurrent neural network (RNN), termed REINVENT 2.0,28

was fine-tuned via transfer learning using 1,000 randomly selected MT-CPDs.29,30

For this work, MT-CPDs were extracted from publicly available screening data.
2 Cell Reports Physical Science 5, 102255, November 20, 2024



Figure 1. Transformer model

The architecture of the transformer-based CLM is schematically illustrated.
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Specifically, MT-CPDs were selected that were active against five or more different

targets. Of note, for this study, MT activity was generalized, without distinguishing

between target combinations (otherwise the analysis would not have been feasible).

Corresponding ST-CPDs were only active against one of these targets. During fine-

tuning, the model produced increasing proportions of candidate compounds that

were predicted to be MT-CPDs by an independently derived classifier, and the

fine-tuned model was found to reproduce individual test set MT-CPDs and also

generated structural analogs of such compounds.29 Furthermore, with DrugEx v.2,

another RNNwas used in combinationwith transfer learning andmulti-objective opti-

mization to design DT-CPDs with a low likelihood of anti-target activity.31

In this study, we further expand predictive modeling of candidate compounds for

MT engagement and introduce transformer models for the generation of

DT-CPDs for pre-defined target pairs. Transformers32 represent a preferred deep

learning architecture for chemical languagemodels (CLMs)33,34 applied to learn mo-

lecular conversions. In this context, the design of DT-CPDs is perceived and

executed as a machine translation task, as detailed in the following.

RESULTS AND DISCUSSION

Computational framework

A transformer-based CLM was derived to learn mappings of ST- to DT-CPDs

(see experimental procedures for details). The CLM architecture is illustrated in

Figure 1. For a target pair (A, B), ST-CPDs active against target A were mapped to

DT-CPDs active against both A and B. During pre-training, ST-/DT-CPDs from

75,274 target pairs were used. For fine-tuning, six target pairs from distinct protein

families not included in pre-training were selected, as reported in Table 1. The CLM

was evaluated by determining its ability to exactly reproduce test DT-CPDs, repre-

senting the most stringent criterion for model validation. Three versions of the
Cell Reports Physical Science 5, 102255, November 20, 2024 3



Table 1. Target pairs for fine-tuning

Target A ID Target B ID Target A Target B

DT-CPDs

0% 25% 50%

220 2039 acetylcholinesterase (ACE) monoamine oxidase B (MOB) 76 75 59

220 4822 ACE beta-secretase 1 (BS1) 74 73 45

2971 1865 tyrosine-protein kinase JAK2 (JAK) histone deacetylase 6 (HD6) 50 50 46

251 325 adenosine A2a receptor (A2R) HD1 39 39 28

4630 220 serine/threonine-protein kinase CHK1 (CHK) ACE 30 30 30

264 222 histamine H3 receptor (H3R) norepinephrine transporter (NER) 27 27 27

For targets A and B of each pair, ChEMBL IDs and names are provided (abbreviations in parentheses are used in the following). In addition, the total number of

DT-CPDs is reported for the 0%, 25%, and 50% similarity threshold datasets (see experimental procedures).
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CLM were developed based on sets of ST- and DT-CPDs with different degrees of

similarity (0%, 25%, and 50%). Furthermore, as a ST-CPD control (ST-CTRL), test

sets of ST-/ST-CPD pairs were derived (see experimental procedures).

Pre-trained models

The three (0%, 25%, and 50%) versions of the pre-trained model were tested on

hold-out sets comprising 10% of the unique DT-CPDs covering the entire target

space. As reported in Table 2, the validity of the sampled strings across all test com-

pounds was consistently close to 100%. For the 0% and 25%model versions, most of

the sampled compounds were structurally unique, with mean uniqueness values of

98.4% and 82.6%, respectively. However, for the 50%model pre-trained on structur-

ally very similar compounds, uniqueness was reduced to 27.1%, showing that this

model often sampled multiple copies of the same compound. This was a likely

consequence of restricting the chemical space for learning to very similar com-

pounds, thereby also increasing the likelihood of re-sampling. On the other hand,

the proportion of generated compounds that were structurally novel (not contained

in training data) decreased from 35.2% (50% model) to 17.8% (25%) and 5.7% (0%),

indicating that increasing the training compound similarity favored the generation of

novel compounds, an unexpected finding at a first glance. However, this observation

could be rationalized as follows: for very similar training compounds, confined struc-

tural modifications often generated different analogs formally qualifying as new

compounds, which extended memorization of training compounds. Importantly,

as also reported in Table 2, all three versions of the model accurately reproduced

hundreds of test DT-CPDs not encountered during training, ranging from 31.8%

(50% model) and 21.5% (25%) to 13.2% (0%). Hence, increasing the structural simi-

larity of training and test compounds increased the probability of reproducing DT-

CPDs from test ST-/DT-CPD pairs, as one might expect. The difference in reproduc-

ibility between the models might conceivably be attributed to the difference in the

number of times an ST-CPD was used as input in pairs, thereby potentially increasing

the probability of reproducing a DT-CPD. However, the number of times an ST-CPD
Table 2. Evaluation of pre-trained models

Model ST-/DT-CPD pairs DT-CPDs Rep_DT-CPDs R % Similarity % Validity % Uniqueness % Novelty %

0% 18,954 2,895 384 13.2 14.5 99.4 98.4 5.7

25% 18,249 2,416 521 21.5 27.9 98.0 82.6 17.8

50% 19,370 2,410 768 31.8 53.5 97.6 27.1 35.2

For eachmodel version, the number of test ST-/DT-CPD pairs, unique DT-CPDs, accurately reproduced DT-CPDs (Rep_DT-CPDs), and the corresponding repro-

ducibility (R) are reported. In addition, the average Tanimoto similarity of newly generated and all test DT-CPDs (similarity), themean percentage of valid sampled

SMILES strings (validity), unique sampled structures (uniqueness), and novel structures not contained in training data (novelty) are provided. Similarity, validity,

uniqueness, and novelty values are averages over all test instances.

4 Cell Reports Physical Science 5, 102255, November 20, 2024



Figure 2. Similarity value distributions for pre-trained models

The distributions of ECFP4 Tanimoto similarity values from pairwise comparisons of candidate

compounds generated with different model versions and corresponding test compounds are

shown for DT-CPDs (top) and ST-CPDs (bottom).
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was sampled was comparable for the 0%, 25%, and 50%models, with mean values of

1.3, 1.6, and 1.5, respectively (and a median value of 1 for all three models). More-

over, in the ST-CTRL, the corresponding reproducibility of test ST-CPDs was only

low, i.e., 2.7% (50% model), 0.7% (25%), and 0.1% (0%). Thus, taken together, these

findings provided proof of concept for the approach to generate known DT-CPDs

from input ST-CPDs and demonstrated that the calculations were not determined

by global compound similarity relationships but that the models indeed learned

the chemical space of DT-CPDs.

Figure 2 shows the distributions of similarity values for pairwise comparisons of com-

pounds generated with the different model versions and test ST- and DT-CPDs from

all ST-/DT-CPD pairs. The distributions are similar for ST- and DT-CPDs. The modes

of the distributions are close to the respective compound similarity threshold values

but increasingly broaden with increasing similarity constraints. Hence, the 50%

model also generated a substantial portion of compounds with lower similarity

than test input and output compounds. For the model without compound similarity

constraints, most compounds had close to 20% similarity to test compounds.

Figure 3 shows the distributions of synthetic accessibility (SA) scores calculated for all

available DT-CPDs and compounds generated with the pre-trained 50% model. For

known DT-CPDs and newly generated compounds, median SA values of 3.9 and 2.7

were obtained, respectively, indicating the slightly easier SA of model compounds.

Taken together, the findings in Figures 2 and 3 show that the pre-trained models

produced chemically reasonable candidate compounds, providing a sound basis

for fine-tuning.
Cell Reports Physical Science 5, 102255, November 20, 2024 5



Figure 3. SA scores

Boxplots show the distributions of SA scores for DT-CPDs and candidate compounds generated

with the 50% model. The boxes represent the upper and lower quartiles, the horizontal line the

median value, and the whiskers the minimum and maximum values. Statistical outliers are shown as

diamond symbols.
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Fine-tuned models

For the pre-trained 0%, 25%, and 50% model versions, systematic cross-fine-tuning

using 0%, 25%, and 50% fine-tuning datasets of the six pairs of unrelated targets in

Table 1 was carried out. The results obtained for fine-tuning the pre-trained 0%

model with the 0%, 25%, and 50% datasets are reported in Table 3.

Between 10 and 30 test DT-CPDs (in the 0% and 25% fine-tuning datasets) or be-

tween 10 and 23 (50% fine-tuning dataset) were available to test the fine-tuned

model versions. After fine-tuning, the pre-trained model without a similarity

constraint (0%) accurately reproduced one or more test DT-CPDs in 16 of 18 cases

except for two target pairs when 0% fine-tuning data were used. For 0% fine-tuning

data, one DT-CPD at most was reproduced for any target pair. These observations

were made for all three pre-trained model versions. However, increasing similarity

of the fine-tuning compounds increased the number (and proportion) of DT-CPDs

reproduced with the pre-trained 0% model, with up to three and seven compounds

for 25% and 50% fine-tuning data, respectively. Hence, for the confined numbers of

DT-CPDs available for fine-tuning, the similarity of these compounds played a criti-

cally important role in focusing models on target pairs, as expected.

Table 4 reports the cross-fine-tuning results for the 25% and 50% pre-trained

models. Given the low reproducibility observed for the 0%-0% model, 0% fine-tun-

ing data were not considered for these models.

Fine-tuning differentiated between the pre-trained 0% and 25% models (Tables 3

and 4). The 25%-25% model clearly reproduced more test DT-CPDs than the

0%-25% model, with up to nine (compared to three) compounds and an average

of 5.7 DT-CPDs per target pair, compared to 2.0 for the 0%-25% model. A similar

observation was made for the 25%-50% model, which reproduced on average 5.3

test DT-CPDs per target pair, compared to 3.7 for the 0%-50% model. The numbers

of reproduced test DT-CPDs were similar for the 25%-25% and 25%-50% models.

However, given the smaller number of available test DT-CPDs in the 50% fine-tuning
6 Cell Reports Physical Science 5, 102255, November 20, 2024



Table 3. Fine-tuning of the 0% pre-trained model

Target pairs

0% Fine-tuning 25% Fine-tuning 50% Fine-tuning

DT-CPDs Rep_DT-CPDs R % DT-CPDs Rep_DT-CPDs R % DT-CPDs Rep_DT-CPDs R %

ACE-MOB 30 1 3.3 30 3 10.0 23 3 13.0

ACE-BS1 29 1 3.4 29 2 6.9 18 7 38.8

JAK-HD6 20 1 5.0 20 1 5.0 18 4 22.2

A2R-HD1 15 0 0.0 15 1 6.6 11 5 45.4

CHK-ACE 12 1 8.3 12 2 16.6 12 1 8.3

H3R-NER 10 0 0.0 10 3 30.0 10 2 20.0

For each target pair and fine-tuning dataset, the number of unique test DT-CPDs, the number of DT-CPDs exactly reproduced (Rep_DT-CPDs), and the repro-

ducibility (R %) after fine-tuning are reported.
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dataset, the mean reproducibility of the 25%-50% model (36.4%) was slightly higher

than that of the 25%-25% model (30.6%). For the pre-trained 50% model, results af-

ter fine-tuning were very similar to the 25% model, as also reported in Table 4. The

reproducibility of the different fine-tuned models across different trials is summa-

rized and compared in Figure 4. Taken together, the results of cross-fine-tuning anal-

ysis revealed that similarity of pre-training and fine-tuning compounds was required

for the derivation of models for the effective prediction of DT-CPDs for different

target pairs and that the 25% and 50% models had comparable predictive ability.

Table 5 reports the best fine-tuned model for each target pair, including two 50%-

50% and two 25%-50% models as well as one 50%-25% and one 25%-25% model.

For these models, the number of unique sampled candidate compounds ranged

from 102 to 701, with an average of 395. The models achieved high reproducibility

of DT-CPDs of 23.3%–63.6%, depending on the target pair, with a mean of 42.6%.

Furthermore, in addition to exactly reproduced test DT-CPDs, Table 5 also reports

the proportion of structural analogs of test DT-CPDs among all sampled candidates,

ranging from 1.7% to 44.2%, with a mean of 16.8%. Thus, structural analogs were

frequently generated. Finally, the independently derived target-pair-based

balanced random forest (BRF) classifiers predicted from 55.6% to 84.7% of sampled

candidate compounds to be DT-CPDs, with a mean of 68.5%, thus indicating an

enrichment of putative DT-CPDs among the generated candidates. While the repro-

ducibility of known DT-CPDs excluded from the training phase represented themost

rigorous criterion for predictive ability, these independent predictions provided

supporting, albeit hypothetical, evidence.

The high reproducibility of fine-tuned models and frequent generation of structural

analogs of test-DT compounds were encouraging, given that the chemical space of
Table 4. Fine-tuning of the 25% and 50% pre-trained model

Target pairs

25% Pre-training 50% Pre-training

25% Fine-tuning 50% Fine-tuning 25% Fine-tuning 50% Fine-tuning

DT-CPDs Rep_DT-CPDs R % DT-CPDs Rep_DT-CPDs R % DT-CPDs Rep_DT-CPDs R % DT-CPDs Rep_DT-CPDs R %

ACE-MOB 30 7 23.3 23 4 17.4 30 4 13.3 23 5 21.7

ACE-BS1 29 6 20.6 18 9 50.0 29 8 27.6 18 10 55.5

JAK-HD6 20 7 35.0 18 7 38.9 20 8 40.0 18 7 38.9

A2R-HD1 15 9 60.0 11 7 63.6 15 9 60.0 11 4 36.4

CHK-ACE 12 3 25.0 12 1 8.3 12 3 25.0 12 4 33.3

H3R-NER 10 2 25.0 10 4 40.0 10 2 25.0 10 2 20.0

For each target pair and the 25% and 50% fine-tuning datasets, the number of unique test DT-CPDs, the number of DT-CPDs reproduced (Rep_DT-CPDs), and

the reproducibility (R %) after fine-tuning are reported.

Cell Reports Physical Science 5, 102255, November 20, 2024 7



Figure 4. Reproducibility for fine-tuned models

Boxplots show the distribution of reproducibility (R) after fine-tuning for the different model

versions.
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DT-CPDs was sparsely populated and the likelihood to fully reproduce such com-

pounds was intrinsically low. Moreover, for the 25%-25% and 50%-50% models,

the ST-CTRL did not reproduce any test ST-CPDs for three and five of the six target

pairs, respectively, and only a single or three ST-CPDs for the remaining pairs, thus

clearly indicating that the fine-tuned models learned DT-CPDs.

Figure 5 shows exemplary predictions using 25%-25% models for different target

pairs. In all cases, the test DT-CPD was correctly reproduced, and structural analogs

of the DT-CPD were generated.

Limitations

Generative modeling of MT-CPDs is generally restricted by the limited availability of

known MT-CPDs for learning, especially for unrelated targets, as discussed herein.

Furthermore, detectable similarity between known ST- and DT-CPDs of a target

pair is a pre-requisite for the derivation of generative models and effective fine-tun-

ing, as revealed by our analysis. This also represents a general limitation, regardless

of model architectures and prediction protocols. Learning of compound mappings

implicitly capturing different properties must inevitably rely on detecting structural

features and relationships giving rise to property changes.

Closing remarks

ThepredictionofcompoundswithdefinedMTactivity isa topical issue inmedicinal chem-

istry and drug design, given its immediate relevance for polypharmacology-oriented
Table 5. Preferred fine-tuned models for target pairs

Target pairs Best model R % Analogs % Predicted DT-CPDs %

ACE-MOB 25%-25% 23.3 11.5 61.7

ACE-BS1 50%-50% 55.5 1.7 62.8

JAK-HD6 50%-25% 40.0 16.8 84.7

A2R-HD1 25%-50% 63.6 20.6 76.4

CHK-ACE 50%-50% 33.3 44.2 70.0

H3R-NER 25%-50% 40.0 6.1 55.6

For each target pair, the best-performing fine-tuned model version is reported together with its repro-

ducibility (R). In addition, for each model, ‘‘analogs’’ reports the proportion of structural analogs of test

DT-CPDs among sampled candidate compounds and ‘‘predicted DT-CPDs’’ the proportion of sampled

candidate compounds that were predicted to be DT-CPDs using target-pair-based BRF classifiers.

8 Cell Reports Physical Science 5, 102255, November 20, 2024
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Figure 5. Compound generation

Shown are results of exemplary predictions using 25%-25% models for different target pairs. In each case, a test DT-CPD was exactly reproduced for an

input ST-CPD, and structural analogs of the DT-CPD were generated. The input ST-CPD, output DT-CPD, and an exemplary structural analog (bottom)

are shown for the (A) ACE-MOB, (B) ACE-BS1, and (C) A2R-HD1 target pairs. For the input ST-CPDs and output DT-CPDs, experimental negative-

decadic logarithmic potency values for their targets (IC50 values except one Kd value indicated with an asterisk) and Tanimoto similarity (TS) are

reported. In the DT-CPDs and the sampled structural analogs (bottom), the distinguishing substituents are highlighted. All structural analogs were

novel compounds not encountered during training.
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drug discovery. Compounds are often active against closely related targets (e.g., targets

fromthe same family), but suchcompoundsarenotnecessarily primecandidates forpoly-

pharmacology, except in cases where particular families are targeted (such as protein ki-

nase families implicated in cancer). Rather, compounds with the potential to inhibit or

antagonize targets with distinct functions are often desirable, for instance, to simulta-

neously interfere with signaling and metabolic pathways implicated in disease. For all

practical purposes, the designofMT-CPDs is primarily focused on compoundswith activ-

ity against two or, at most, three distantly related or unrelated targets. While pharmaco-

phore fusion methods have played a dominant role in practical MT-CPD design thus far,

advanced ML approaches are also considered but are still in their infancy for this design

task. In this work, we have introduced transformer-based CLM variants for the generative

designof DT-CPDs.Of note, for compoundswith triple-target activity, there currently are

too few available for systematic model derivation and assessment, as reported herein.

Only for related protein kinases were a limited number of datasets with inhibitors having

triple-kinase activity and corresponding single-kinase activity assembled,35 given the

wealth of compound activity data available for this target class. Our current models

were pre-trained to cover a large target space and learn mappings of ST- to DT-CPDs

at different similarity thresholds. The pre-trained models generated almost exclusively

valid simplified molecular input line entry system (SMILES) strings and preferentially

sampled unique compounds with favorable SA scores. The pre-trained model versions

were then focused on DT-CPDs for pairs of functionally unrelated targets (excluded

from pre-training) via cross fine-tuning applying compound similarity thresholds corre-

sponding to those used during pre-training. A comparison of 0% and 25% pre-trained

and fine-tuned models showed that similarity of DT-CPDs and corresponding ST-CPDs

was required for thederivation ofpredictivemodels, as onewouldexpect. In the absence

of detectable similarity relationships, learning compoundmappings could hardly lead to

the generation of candidate compounds with shared features. Importantly, ST-CTRL cal-

culations confirmed that thepre-trainedandfine-tunedmodels successfully learnedmap-

pingsofST- toDT-CPDsas thebasis for thegenerativedesignofnewcandidates.Thefinal

fine-tuned models achieved, in part, unexpectedly high reproducibility of known DT-

CPDs not encountered during training, representing the most stringent test for a gener-

ative model. In addition, the fine-tuned models produced varying amounts of structural

analogs of known DT-CPDs (and large numbers of candidates predicted to be DT-

CPDs by an independent classifier), thus further supporting their predictive ability. Taken

together, our findings indicate thatCLMvariants forDT-CPDdesignpresentedherein are

capable of generating candidate compounds that should merit careful consideration in

drug discovery. To these ends, the pre-trained model versions, such as the 25% model,

are immediately applicable for fine-tuning with compounds for target pairs of interest.

EXPERIMENTAL PROCEDURES

Compounds and target-pair-based datasets

High-confidence compound activity data were extracted from ChEMBL25 (release

33). Compounds with a molecular mass of less than 1,000 Da and numerically spec-

ified (IC50, Kd, or Ki) potency values ranging from 10 mM to 10 pM were selected.

Compound-target interactions with multiple potency values were only retained

if they fell within one order of magnitude. Direct interactions (target relationship
10 Cell Reports Physical Science 5, 102255, November 20, 2024
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type ‘‘D’’) with single human target proteins and an assay confidence score of 9 were

also required. Compounds flagged with comments such as ‘‘inactive,’’ ‘‘not active,’’

‘‘inconclusive,’’ ‘‘potential transcription error,’’ and ‘‘potential author error’’ were dis-

carded. In addition, public filters were applied to exclude potential false positive ac-

tivity annotations due to chemical liability, assay interference, or colloidal aggrega-

tor effects.25,36–40 Finally, compounds with undesirable target annotations such as

cytochrome 450 isoforms, hERG, or albumin were omitted.

Data curation resulted in the selection of 120,195 unique qualifying compounds with

activity against 1,747 unique target proteins that were assigned to 329 families

based on the UniProt classification.41

For all possible target pairs, a search for DT-CPDs was carried out. DT-CPDs were

detected for 75,280 target pairs involving 1,457 unique targets from 231 UniProt

families. A confined subset of 7,747 target pairs was formed by targets from different

families. For each qualifying target pair, subsets of ST-/DT-CPD pairs with at least

50% or 25% Tanimoto similarity42 were generated based on the extended connec-

tivity fingerprint with bond diameter 4 (ECFP4)43 using its 2,048-bit version gener-

ated using RDKit.36

For pre-training, ST-/DT-CPD pairs from all target pairs were pooled. Compound

pairs in the pre-training datasets contained 42,328 unique ST- and 24,109 unique

DT-CPDs.
Generative model

Data mapping and tokenization

The key task for our transformer-based CLM was to learn target-pair-based map-

pings of ST- to DT-CPDs that were represented as SMILES strings44 (generated using

RDKit). Thus, for a given target A in a pair (A, B), mapping of ST-CPDs active against

A to DT-CPDs with activity against targets A and B was learned:

ðSTA � CPDÞ/�
DT½A;B� � CPD

�
:

Tokenization of SMILES strings45 yielded a vocabulary consisting of 38 individual to-

kens, primarily composed of single-character tokens and also two-character tokens

like ‘‘Br,’’ and ‘‘‘Cl,’’ as well as bracketed tokens like ‘‘[nH]’’ and ‘‘[O-].’’ Additionally,

‘‘start’’ and ‘‘end’’ tokens were used to represent the start and end of strings,

respectively.
Model architecture and implementation

A transformer encoder-decoder architecture32 was adopted from a previously re-

ported CLM derived to predict activity cliffs.45 The architecture is illustrated in

Figure 1. The encoder stack consists of six identical layers, each composed of two

sub-layers, including a multi-head self-attention sub-layer and a fully connected

feedforward neural network (FFN) sub-layer. The multi-head self-attention mecha-

nism facilitates the retention of long-term memory by applying attention functions

in parallel over different segments of the input sequence. Subsequently, the encoder

processes the tokenized input data and encodes it into a continuous representation,

which is then utilized by the decoder for generating the output sequence. The

decoder stack also consists of six identical layers. In addition to the two sub-layers

analogous to those in the encoder, the decoder constitutes a third multi-head atten-

tion sub-layer responsible for processing the output from the encoder (termed

encoder-decoder attention). The self-attention sub-layer of the decoder also
Cell Reports Physical Science 5, 102255, November 20, 2024 11
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incorporates masking to prevent the model from attending to the information from

previous positions.32

Model variants were implemented using PyTorch46 with default parameter settings

including a dropout rate of 0.1, a batch size of 64, and a learning rate of 0.0001. The

model was configured with a dimensionality of 256 and featured eight attention

heads per layer, with label smoothing set to 0.

The training process included pre-training and fine-tuning. During training, the

model was subjected to at least 100 epochs using the Adam optimizer47 with its

default settings. The Kullback-Leibler (KL)-divergence loss function48 was employed

to guide the optimization process. The model’s state was saved after each epoch,

and the version with the lowest validation loss was selected as the final model. In

the decoder, the softmax function was used to generate probability distributions

for tokens. Output compounds were generated through multinomial sampling,

and the resulting tokens were re-converted to SMILES strings. For each input

ST-CPD, a maximum of 50 unique and valid SMILES strings were sampled over a

maximum of 100 trials.

For sampled output compounds, SA scores49 were calculated and compared to the

training and test set compounds. The SA scores ranged from 1 to 10, indicating

decreasing SA.

Pre-training

For each of the 75,274 target pairs (excluding six pairs for fine-tuning), the 50% sim-

ilarity subset was selected first. Then, the same number of ST-/DT-CPD pairs with

25% similarity was randomly sampled. In addition, an equally sized subset with no

similarity constraint was generated by random sampling. These subsets of constant

size represented the 50%, 25%, and ‘‘no similarity’’ (0%) datasets for pre-training (us-

ing 90% of the DT-CPDs) and initial testing (10%) of three different versions of the

model. For testing, the ST-CPD of each available ST-/DT-CPD pair was used as input,

and output compounds were sampled as specified above. The large number of

target pairs used for pre-training ensured that the model comprehensively charted

chemical space defined by DT-CPDs.

Furthermore, as ST-CTRL, test sets exclusively consisting of ST-CPDs were gener-

ated. ST-CPDs active against target A of a pair (A, B) were combined with randomly

selected ST-CPDs with activity against any other target except A or B. Therefore,

50%, 25%, and 0% datasets of ST-/ST-CPD pairs of the same size as the correspond-

ing ST-/DT-CPD datasets were generated and used to test the three pre-trained ver-

sions of the model. This control was implemented to verify that the ST-/DT-CPD

models learned the DT-CPD chemical space rather than merely generating candi-

date compounds meeting the similarity criteria.

Fine-tuning

For fine-tuning, six target pairs from different families were selected, as reported in

Table 1, and excluded from pre-training. These target pairs were selected

because the targets belonged to functionally unrelated protein families and shared

a sufficient number of DT-CPDs for model derivation and evaluation, which were

exceptions rather than the rule. For pairs of unrelated targets, which are most

interesting from a polypharmacology perspective, typically only small numbers

of DT-CPDs (if at all) were available for learning and testing, which limited the abil-

ity to derive generative models for such target pairs. For fine-tuning, all
12 Cell Reports Physical Science 5, 102255, November 20, 2024
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available DT-CPDs were included in the 50%, 25%, and 0% datasets, as reported in

Table 1. Cross fine-tuning was systematically carried out, during which each pre-

trained model was fine-tuned separately with datasets at different similarity

levels. Hence, cross fine-tuning yielded nine models with varying (pre-training)-

(fine-tuning) data combinations (i.e., 0%-0%, 0%-25%, 0%-50%, 25%-0%, 25%-

25%, 25%-50%, 50%-0%, 50%-25%, and 50%-50%). For each target pair, 60%

and 40% of available DT-CPDs were used for fine-tuning and testing, respectively.

The pre-trained versions of the models were individually fine-tuned for each

target pair.

For each target pair, an ST-CTRL test set was also generated in which all test ST-

CPDs active against target A of a pair (A, B) were paired with randomly selected

ST-CPDs, satisfying the respective similarity constraints and having activity against

any target except A or B.

Model evaluation

For each input ST-CPD, the proportion of valid SMILES strings among all sampled

strings was calculated and averaged. In addition, the proportions of structurally

unique compounds that were sampled and novel compounds not contained in

training data were determined.

As the most stringent criteria for evaluating predictions, the ability of a model to

exactly reproduce test DT-CPDs was determined by calculating the reproducibility

for test sets, defined as

reproducibility ðRÞ =
number of reproduced DT � CPDs

number of test DT � CPDs
3 100:

To complement the reproducibility measure, we also identified structural analogs of

test DT-CPDs among newly generated candidates. Structural analogs represent

compounds that share the same core structure and are only distinguished by one

or more varying substituents (R-groups). Structural analogs of test compounds

were systematically identified using the compound-core-relationship (CCR)

algorithm.50

In addition, for all sampled candidate compounds, pairwise Tanimoto similarity was

calculated and compared to test sets.

BRF classifiers

To further evaluate sampled candidate compounds, BRF classification models were

developed for the six fine-tuning target pairs using scikit-learn51 and imbalanced-

learn52 to distinguish between DT- and corresponding ST-CPDs. For each target

pair, the BRF model was trained using 75% of the ST- and DT-CPDs. The classifica-

tion performance of these models was evaluated using a balanced test set

comprising the remaining 25% of the data. The balanced accuracy53 (BA) scores

for all models were consistently above 0.72, with a mean BA of 0.85.
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