
Preprint

ADDITION IS ALL YOU NEED
FOR ENERGY-EFFICIENT LANGUAGE MODELS

Hongyin Luo & Wei Sun
BitEnergy AI, Inc.
Cambridge, MA 02142, USA
{hongyin,wei}@bitenergy.ai

ABSTRACT

Large neural networks spend most computation on floating point tensor multipli-
cations. In this work, we find that a floating point multiplier can be approximated
by one integer adder with high precision. We propose the linear-complexity mul-
tiplication (L-Mul) algorithm that approximates floating point number multipli-
cation with integer addition operations. The new algorithm costs significantly
less computation resource than 8-bit floating point multiplication but achieves
higher precision. Compared to 8-bit floating point multiplications, the proposed
method achieves higher precision but consumes significantly less bit-level com-
putation. Since multiplying floating point numbers requires substantially higher
energy compared to integer addition operations, applying the L-Mul operation in
tensor processing hardware can potentially reduce 95% energy cost by element-
wise floating point tensor multiplications and 80% energy cost of dot products.
We calculated the theoretical error expectation of L-Mul, and evaluated the algo-
rithm on a wide range of textual, visual, and symbolic tasks, including natural lan-
guage understanding, structural reasoning, mathematics, and commonsense ques-
tion answering. Our numerical analysis experiments agree with the theoretical
error estimation, which indicates that L-Mul with 4-bit mantissa achieves compa-
rable precision as float8 e4m3 multiplications, and L-Mul with 3-bit mantissa
outperforms float8 e5m2. Evaluation results on popular benchmarks show that
directly applying L-Mul to the attention mechanism is almost lossless. We further
show that replacing all floating point multiplications with 3-bit mantissa L-Mul
in a transformer model achieves equivalent precision as using float8 e4m3 as
accumulation precision in both fine-tuning and inference.

1 INTRODUCTION

Modern artificial intelligence (AI) systems are significant energy consumers. Because of the large
scale computation needed for neural network inference, AI applications based on such models are
consuming a considerable amount of electricity resource. Reportly, the average electricity consump-
tion of ChatGPT service in early 2023 was 564 MWh per day, equivalent to the total daily electricity
usage of 18,000 families in the United States1. It is estimated that Google’s AI service could con-
sume as much electricity as Ireland (29.3 TWh per year) in the worst-case scenario (de Vries, 2023).

Reducing the amount of computation needed by neural networks is the key to reduce both energy
consumption and inference speed for large-scale AI models. Neural networks, especially large lan-
guage models (LLMs) (Radford et al., 2019; Brown, 2020; Achiam et al., 2023; Touvron et al.,
2023; Team et al., 2023), contain a large number of floating point parameters involved in element-
wise and matrix multiplication computations. In transformer (Vaswani, 2017) based LLMs, the
attention mechanism is a major bottleneck that limits the computation efficiency. Given a input
context of N tokens, the complexity of standard attention mechanism computation is O(N2), in-
volving multiplying high dimensional tensors. Besides attention, there are also a large amount of
element-wise multiplication and linear transformation computations. In this work, we propose the

1https://www.eia.gov/tools/faqs/faq.php?id=97

1

ar
X

iv
:2

41
0.

00
90

7v
2

 [
cs

.C
L

]
 2

 O
ct

 2
02

4

https://www.eia.gov/tools/faqs/faq.php?id=97

Preprint

linear-complexity multiplication (L-Mul) algorithm, which approximates floating point multiplica-
tion with integer addition operations. The algorithm can be integrated into existing models at various
levels, such as replacing the multiplication in the attention mechanism or substituting all matrix and
element-wise multiplications.

The proposed L-Mul method will lead to a significantly reduced energy consumption for both model
training and inference. In modern computing hardware, multiplications between floating point num-
bers consumes significantly higher energy than addition operations (Horowitz, 2014). Specifically,
multiplying two 32-bit floating point numbers (fp32) costs four times energy as adding two fp32
numbers, and 37 times higher cost than adding two 32-bit integers (int32). The rough energy
costs for various operations are shown in Table 1. In PyTorch (Paszke et al., 2019), the default
precision for accumulating tensor multiplication results is set to fp32. While I/O and control op-
erations are not considered, approximating fp32 multiplications with int32 additions consumes
only 1/37 ≈ 2.7% of the energy. When the accumulation precision is reduced to fp16, integer
addition consumes approximately 4.7% of the energy required for floating-point multiplication.

Operation Integer Floating Point

8-bit 32-bit 16-bit 32-bit

Addition 0.03 pJ 0.1 pJ 0.4 pJ 0.9 pJ
Multiplication 0.2 pJ 3.1 pJ 1.1 pJ 3.7 pJ

Table 1: Energy cost of various arithmetic operations cited from Horowitz (2014).

We evaluate the numerical precision of L-Mul algorithm on transformer-based language models with
a wide range of language and vision tasks. Experiments with full-precision model weights show that
replacing standard multiplication operations with L-Mul in the attention mechanism is almost loss-
less for transformer-based LLMs. On natural language reasoning tasks, the average performance
loss of L-Mul-based attention is 0.07% across commonsense, structured reasoning, language under-
standing. On vision tasks, L-Mul-based attention gained 0.12% accuracy improvement on visual
question answering, object hallucination, and free-form visual instruction tasks. The experiment re-
sults are obtained by directly adapting pretrained LLMs with the standard attention implementation
to the new L-Mul-based attention mechanism without any additional training.

The error estimation and ablation study show that under the training-free setting, L-Mul with 4-
bit mantissa can achieve comparable precision as multiplying float8 e4m3 numbers, and L-
Mul with 3-bit mantissa outperforms float8 e5m2 multiplication. We also show that fine-tuning
can fix the performance gap between L-Mul and the standard multiplication. Fine-tuning a model
where all multiplication operations in attention mechanisms, linear transformations, and element-
wise products are replaced by 3-bit-mantissa L-Mul results in comparable performance to fine-
tuning a standard model with an accumulation precision of float8 e4m3.

In the expansive landscape of AI efficiency research, our approach centers on enhancing the effi-
ciency of tensor arithmetic algorithms—a direction that is orthogonal yet complementary to prevail-
ing efforts in I/O and control optimization (Jouppi et al., 2017; Choquette et al., 2021; Abts et al.,
2022)2. We believe that truly energy- and compute-efficient AI computation will emerge from a
holistic integration of optimizations across I/O, control, and arithmetic operations.

2 METHOD

2.1 BACKGROUND: FLOATING-POINT NUMBERS AND TENSORS

Most machine learning models, including neural networks, use floating point (FP) tensors to repre-
sent their inputs, outputs, and trainable parameters. Typical choices are 32-bit and 16-bit FP tensors
(fp32 and fp16) defined by the IEEE 754 standard shown in Figure 1.

2Due to the absence of native implementation, GPUs cannot fully exploit the efficiency of the L-Mul al-
gorithm. We recommend training and hosting L-Mul-based models on devices integrated with specialized
architectural designs. Patent pending.

2

Preprint

0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0

Sign
(1 bit)

Exponent
(5 bit)

Fraction
(10 bit)

0 0 1 1 1 0 0 0

0 0 1 1 1 1 0 0

FP16 FP8_e4m3

Sign
(1 bit)

Exponent
(4 bit)

Fraction
(3 bit)

Sign
(1 bit)

Exponent
(5 bit)

Fraction
(2 bit)

FP8_e5m2

MSB LSB MSB LSB

MSB LSB

0 0 0 0 0 0

Sign
(1 bit)

Digits
(15 bit)

Int16
MSB LSB

0 0 0 0 0 0 0 0 0 1

Figure 1: 16-bit, 8-bit floating point numbers defined in IEEE 754 and on various hardware for
tensor computations, and the 16-bit integer. MSB stands for most significant bit and LSB stands for
least significant bit.

Multiplication operations are generally more complicated than additions, and FP operation are more
costly than integers (Horowitz, 2014). Table 1 shows that multiplying two fp32 numbers consumes
37 times higher energy than adding two 32-bit integers. While the complexity of integer addition
is O(n) where n is the number of bits used for representing the number, FP multiplication requires
O(e) exponent addition, O(m2) mantissa multiplication, and rounding. Here e and m stand for the
number of bits used for exponent and mantissa parts of the FP numbers.

Modern LLM training and inference involves a large number of FP calculations in tensor computa-
tion. Consider calculating the element-size and dot products of two 2-D tensors:

Y1 = A ◦X, Y2 = A ·XT ; A,X ∈ R(N,k)

Calculating Y1 involves N2 FP multiplications (Mul). If A and X are both fp32 tensors, A ◦ X
consumes 37 times higher energy than adding two int32 matrices of the save size. Similarly,
Calculating Y2 involves (m× n× k) FP Mul and the same number of FP additions (Add). When A
and X are fp32 tensors, each Mul-Add operation for two numbers consumes 0.9 + 3.7 = 4.6 (pJ)
energy. If we replace the fp32 Mul with int32 Add, the energy cost becomes 0.1+0.9 = 1.0 (pJ),
only 21.7% of the original cost. Similarly, if the inference is conducted in fp16, replacing fp16
Mul with int16 Add result in a 1− (0.05 + 0.4)/(1.1 + 0.4) = 70% energy saving.

2.2 LINEAR-COMPLEXITY MULTIPLICATION (L-MUL)

We propose L-Mul, a FP multiplication algorithm with O(n) complexity, where n is the bit size
of its FP operands. Consider two FP numbers x, y, whose exponents and fractions are xe, ye and
xm, ym respectively, the vanilla FP Mul result is

Mul(x, y) = (1 + xm) · 2xe · (1 + ym) · 2ye = (1 + xm + ym + xm · ym) · 2xe+ye

plus an xor operation (⊕) to decide the sign of the result. Assume xm and ym are mantissas of m
bits. The O(m2) mantissa multiplication operation is the complexity bottleneck of this calculation.
We remove this operation and introduce a new multiplication algorithm that processes mantissas
with a computational complexity of O(m):

L-Mul(x, y) = (1 + xm + ym + 2−l(m)) · 2xe+ye , l(m) =

m if m ≤ 3,

3 if m = 4,

4 if m > 4.

(1)

The offset exponent l(m) is defined according the observation shown in Figure 3. In the following
sections, we show that (1) the L-Mul operation can be implemented by integer Adders, and (2) the
algorithm is more accurate and efficient than fp8 multiplications.

The implementation of the algorithm is shown in Figure 2, where we also added the Inline PTX
Assembly code we used to simulate the process on Nvidia GPUs. While Equation (1) contains 4
addition operations, the bit format design of FP numbers helps us implement the L-Mul algorithm
with one adder. Since the FP format handles 1 + xm implicitly, we do not have to compute the
value of (1 + . . .). The integer addition operation also automatically send the mantissa carry to

3

Preprint

S(A) E(A) A

Sign
(1 bit)

Exponent
(8 bit)

Fraction
(23 bit)

Fp32 A S(A) A

Sign
(1 bit)

Digits
(31 bit)

Int32

S(B)Fp32 B

FP32
A * B

S(A) XOR S(B)S(AB) =

E(AB)

E(B) B

E(A) + E(B) - Offset= +

Carry

Carry

+ 1 + AB=(1+ A) * (1 + B)

S(AB) E(AB) AB

Floating-point Multiplication (Mul)

S(B) B

Bitcast

Linear-complexity Multiplication (LMul)

S(A) XOR S(B)S(AB) =

ABS(AB)

AB A + B - 0x3F780000=

Int32

Int32
A + B

Mantissa Carry

Bitcast

mov.b32 r1, $1;

mov.b32 r2, $2;

and.b32 r1, r1, 0x7FFFFFFF;

and.b32 r2, r2, 0x7FFFFFFF;

xor.b32 s1, s1, s2; add.u32 r0, r1, r2;
sub.u32 r0, r0, 0x3F780000;
and.b32 r0, r0, 0x7FFFFFFF;

and.b32 s1, r1, 0x80000000;

and.b32 s2, r2, 0x80000000;

add.u32 r0, r0, s1;

mov.b32 $0, r0;

Figure 2: Coparing the process of regular floating-point multiplication and linear-complexity multi-
plication (L-Mul) between two fp32 numbers. In the inline PTX Assembly code, $1 and $2 are
fp32 registers storing inputs while $0 is the fp32 register for output. s1, s2, r0, r1, r2 are
unsigned int32 registers storing intermediate results. Note that the assembly program is only for
numerical simulation on Nvidia GPUs. The optimal implementation is at the hardware level.

the exponent. If the mantissa sum is greater than 2, a carry is automatically added to the exponent.
This is different from the rounding process in traditional FP multiplier, where the fraction is man-
ually rounded to 1.x and the carry is added to the exponent as an independent step. As a result,
the L-Mul algorithm is more efficient than traditional FP multiplication by skipping both mantissa
multiplication and rounding operations.

The construction of L-Mul results can be expressed using the following equation, where all bit-level
calculations are performed as operations between unsigned integers.

L-mul(x, y)[0] = x[0]⊕ y[0]

L-mul(x, y)[1:] = x[1:] + y[1:]− offset
(2)

We further implement the attention mechanism with L-Mul. In transformer models, the attention
mechanism has a high computation cost because of its O(|C|2) complexity to process the input
context C. We found that L-Mul can replace the complicated tensor multiplications with mini-
mal performance loss needing no additional training. In this work we implement a more efficient
attention mechanism as follows,

K = H ·Wk, Q = H ·Wq, V = H ·WV

A = softmax

[
L-matmul(Q,KT)√

d

]
, H ′ = L-matmul(A,H)

(3)

where L-matmul(Q,KT) stands for a matrix multiplication operation where all regular FP multi-
plications are implemented in L-Mul. By doing this, all FP multiplications are replaced with integer
additions, which consumes significantly lower computation resource.

2.3 PRECISION AND COST ANALYSIS

In this section, we show that L-Mul is more precise than fp8 e4m3 multiplications but uses less
computation resource than fp e5m2. To be concise, we do not consider the rounding to nearest
even mode in both error analysis and complexity estimation for both Mul and L-Mul.

2.3.1 PRECISION ESTIMATION

The goal of the precision analysis is to find the precision of the L-Mul algorithm is equivalent to
rounding the fraction of a FP number to how many bits, e.g., fp8 with 2- or 3-bit mantissas (e5m2
or e4m3). Consider positive FP numbers x = (1 + xm) · 2xe and y = (1 + ym) · 2ye , they can be
written in the following format if we explicitly highlight the k bits to be kept after rounding:

x = (1 + xk + xr) · 2xe , x′ = (1 + xk) · 2xe

4

Preprint

y = (1 + yk + yr) · 2ye , y′ = (1 + yk) · 2ye

where xk, yk are the first k bits of xm, ym, and xr, yr are the value of remaining bits that will be
ignored after the k-bit rounding. x′, y′ are the rounded value of x, y by keeping the first k bits of
the mantissa. Consider x and y has m-bit mantissa in their full precision. For example, Float16
numbers have 10-bit mantissa and BFloat16 contain 7 bits. The error of Mul(x, y) = x · y and
its expectation are

ekmul = Mul(x, y)−Mul(x′, y′) = (xkyr + ykxr + xr + yr + xryr) · 2xe+ye

E[ekmul] = f1(m, k) · E[2xe+ye]
(4)

Comparing with a k-bit mantissa FP multiplication, the error of k-bit mantissa L-Mul is

eklmul = ekmul + (xkyk − 2−l(k)) · 2xe+ye

E[eklmul] = E[ekmul] + E[xk yk − 2−l(k)] · E[2xe+ye]
(5)

With the equations above, we can compute the expectation of the precision gap between k-bit L-Mul
and FP multiplication:

E[eklmul]− E[ekmul] = f2(k) · E[2ex+ey], E[eklmul] = [f1(m, k) + f2(k)] · E[2ex+ey]

When xm, ym are evenly distributed, we can calculate the following expectations,

E[xk] =
1

2
(1− 2−k), E[xr] =

1

2
(2−k − 2−m)

By estimating f1(m, k) and f2(k) and further inferring E[eklmul] and E[ekmul], we find that L-Mul is
more accurate than fp8 e5m2with evenly distributed operands. However, the weight distribution is
often biased in pretrained LLMs. Based on the combined weight distribution of five popular LLMs,
we find that L-Mul can achieve higher precision beyond fp8 e4m3 with 5-bit mantissa operands
in practice. We support both claims with estimated errors detailed in Appendix A.

2.3.2 GATE COMPLEXITY ESTIMATION

In this section, we make a rough estimation for the amount of gate-level computations needed by
L-Mul and fp8 multiplications. Multiplying two fpn eimj number require the following com-
putation: sign prediction, exponent addition with offset, a j + 1-bit mantissa multiplication, and
exponent rounding. The mantissa multiplication includes (j + 1)2 AND operations, 3 half adders
and 2j − 2 full adders. The exponent rounding needs i half adders. In a regular circuit design, a
full adder involves 2 AND, 2 XOR, and 1 OR. Each XOR has 4 NAND gates. As a result, a full adder
consumes 11 gate-level computation, while a half adder (no incoming carry) consumes 5 gate-level
computations (1 AND and 1 XOR).

In conclusion, the total amount of gate-level computation needed by fp8 Mul can be estimated as

N×
fp16 ≈ 584, N×

fp8-e4m3 ≈ 325, N×
fp8-e5m2 ≈ 296 (6)

L-Mul consumes 1 XOR for sign prediction, 1 half adder, and k− 2 full adders. The total gate count
needed by 16-bit and 8-bit L-Mul can be estimated as follows,

NL-mul
eimj = N⊕

1 +N+
int(i+j) +N+

int8

NL-mul
fp16 ≈ 256, NL-mul

fp8 ≈ 157
(7)

L-Mul with fp8 e4m3 and fp8 e5m2 operands have similar complexity since exponent offsets
are typically implemented by 8-bit unsigned integer adders. As estimated, fp16 L-Mul requires
less gates than fp8 multiplications, and fp8 L-Mul is significantly more efficient.

To summarize the error and complexity analysis, L-Mul is both more efficient and more accurate
than fp8 multiplication.

5

Preprint

3 EXPERIMENTS

To prove the theoretical precision estimation and find out how L-Mul-based LLMs perform
on real tasks, we conducted experiments on various benchmarks with different transformer-
based large language models. We evaluated Llama-3.1-8b-Instruct (Dubey et al., 2024),
mistral-7b-v0.3-Instruct (Jiang et al., 2023), Gemma2-2b-It (Team et al., 2024), and
Llava-v1.5-7b (Liu et al., 2024) models, and found that the proposed method can replace dif-
ferent modules in transformer layers under fine-tuning or training-free settings. In this section, we
first introduce the benchmarks and tasks used for evaluation, then compare the numerical error of
the L-Mul algorithm against models with fp8 parameters. We also report the benchmarking results
of LLMs under different precision settings.

3.1 TASKS

Massive Multitask Language Understanding (MMLU) (Hendrycks et al., 2020) contains 57
multi-choice natural language understanding tasks covering various high-school and college sub-
jects. With 5 few-shot examples, the LLMs for evaluation are required to find the most appropriate
answer option to each question. The benchmark focuses on evaluating the language understanding
and knowledge abilities related to given subjects.

BigBench-Hard (BBH) (Srivastava et al., 2023) contains a set of complex symbolic tasks to evaluate
the structural and logic reasoning abilities of language models. In this work, we select a subset of
17 multi-choice tasks to evaluate Llama and Mistral LLMs. We evaluate language models under the
few-shot prompting setting for all BBH tasks.

Common Sense. We put together a set of 5 question answering tasks to evaluate the commonsense
knowledge reasoning ability of LLMs. The set of task includes ARC-Challenge (Clark et al., 2018),
CSQA (Saha et al., 2018), OBQA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020), and SIQA (Sap
et al., 2019), covering different aspects of factual and social knowledge.

Visual Question Answering. We select a set of multi-choice question answering tasks based on im-
ages for evaluating both vision and language understanding abilities of visual language models. The
tasks include VQAv2 (Goyal et al., 2017), VizWiz (Gurari et al., 2018), and TextVQA (Singh et al.,
2019), containing both unanswerable and answerable questions with different types of answers.

Visual Instruction following. We test the instruction following ability of Llava-1.5-7b model
with the Llava-bench task (Liu et al., 2024) by generating free-form responses given images and
corresponding instructions. Following the official evaluation guide, we evaluate the instruction fol-
lowing quality with GPT4o and compare the relative performance.

Object Hallucination. We explore if conducting inference with lower precision infects the truthful-
ness of the Llava model using the POPE benchmark (Li et al., 2023), which prompt visual language
models with a sequence of yes/no questions about positive and negative objects.

GSM8k (Cobbe et al., 2021) consists of 8.5k human-crafted grade school math problems, with a
test split of 1,000 problems designed to evaluate the arithmetic capabilities of language models. We
conduct experiments on GSM8k in two different settings. In the training-free setting, we assess
LLMs with few-shot, chain-of-thought prompting (Wei et al., 2022). Additionally, we fine-tune the
Gemma2-2b-It model on the training split and evaluate its performance in a zero-shot setting.

3.2 PRECISION ANALYSIS

Selection of l(k). We first visualize the mean square errors obtained by different l(k) selections
with different models on the GSM8k dataset in Figure 3. In the plot, we highlight the l(k) configu-
rations that leads to lower average error than float8 e4m3 multiplications in model inference in
red, and the k, l(k) combinations leading to an error between e4m3 and e5m2 are underlined. In
both models, L-Mul with 3-bit mantissas is more accurate than fp8 e5m2 and L-Mul with 4-bit
mantissas achieves comparable or lower error than fp8 e4m3.

Mantissa size. In section 2.3.1, we argued that the error expectation of L-Mul can be lower
than multiplying fp8 e4m3 multiplication while using less computation resource than multiplying
fp8 e5m2 numbers. We hereby confirm the correctness of our theoretical precision estimates for

6

Preprint

Figure 3: Mean square errors obtained by different l(k) selections on Llama and Gemma models.
The combinations achieving higher precision than fp8 e4m3 are highlighted in read, and those
outperforming fp8 e5m2 are underlined. When k = 4 and l(k) = 3, the average error of the llama
model is slighly lower but very close to fp8 e4m3.

e5m2

e4m3

L-Mul L-Mul

L-MulL-Mul

e5m2

e4m3

e5m2

e4m3

e5m2

e4m3

Figure 4: Comparing the error levels of linear-complexity multiplication (L-Mul) against the number
of mantissa bits comparing with 8-bit FP multiplication operation in different formats.

the L-Mul algorithm with experimental analysis. The average errors of Llama and Gemma models
are illustrated in Figure 4.

The experiments demonstrated that across various sizes of LLMs, the L-Mul algorithm using 6-bit
mantissa FP operands approximates the lowest average error, significantly outperforming both fp8
formats. Additionally, the 3- and 4-bit mantissa L-Mul achieved accuracy on par with or exceeding
that of fp8 e5m2 and fp8 e4m3 multiplication operations, respectively.

7

Preprint

In the IEEE 754 format (with a 1-bit sign and a 5-bit exponent), using a 6-bit mantissa is equivalent
to rounding fp16 numbers down to fp12. By applying the complexity estimation method outlined
in Equation (7), we can compute the gate count for 12-bit L-Mul operations as follows:

NL-mul
12 ≈ 201 < N×

fp8 ≈ 300 (8)

The experimental results further confirm that L-Mul is more efficient and accurate than fp8 mul-
tiplication. Although we estimated gate counts as an indicator of computational complexity, the
actual difference in energy cost is greater than the complexity gap suggests. Based on the energy
consumption reported in Horowitz (2014), an fp8 multiplication consumes approximately 0.25 pJ
to 0.4 pJ, while a 16-bit L-Mul uses around 0.06 pJ of energy.

3.3 BENCHMARKING

In this section, we demonstrate that L-Mul can replace tensor multiplications in the attention mech-
anism without any loss of performance, whereas using fp8 multiplications for the same purpose
degrades inference accuracy. This indicates that we can achieve the same model inference perfor-
mance while reducing the energy cost of attention computations by 80%. Additionally, we present
the full-model fine-tuning performance when all tensor multiplication operations are replaced with
L-Mul on the GSM8k benchmark.

Textual tasks. Table 2 presents the evaluation results of the Llama and Mistral models on various
natural language benchmarks, including MMLU, BBH, ARC-C, CSQA, PIQA, OBQA, and SIQA.
In these experiments, the matrix multiplications in the attention layers, both before and after the
softmax operation, were replaced with 8-bit tensor computations in different formats or L-Matmul
following the implementation we discussed in Equation (3).

Precision BBH MMLU ARC-R CSQA OBQA PIQA SIQA Avg.
Mistral-7b-Instruction-v0.3

BFloat16 55.85 62.20 75.94 71.42 76.20 80.74 44.83 69.83
Float8 e4m3 55.16 62.18 75.39 71.25 76.00 80.47 44.63 69.55
Float8 e5m2 53.20 61.75 74.91 71.25 74.40 79.76 44.52 68.97
L-Mul 55.87 62.19 76.11 71.09 76.60 80.52 45.34 69.93

Llama-3.1-8B-Instruct

BFloat16 70.79 68.86 82.51 74.53 84.20 84.00 45.96 74.24
Float8 e4m3 69.91 68.16 81.66 74.28 82.20 83.51 45.34 73.40
Float8 e5m2 62.94 66.61 80.12 73.30 79.40 81.07 45.39 71.86
L-Mul 70.78 68.54 82.17 74.28 84.20 83.30 46.06 74.00

Table 2: Comparing the attention mechanism implemented with 16- and 8-bit tensor multiplication
operations and L-Mul approximations. Note that the L-Mul computations cost significantly less
resource than fp8 tensors.

The results indicate that L-Mul not only requires significantly fewer computational resources but
also delivers higher precision than float8-e4m3 tensors in 12 out of 14 experiments using Mistral
and Llama models. This leads to a minimal performance gap when compared to bf16 inference.
On average, across the two models, the performance difference between bf16 and L-Mul is just
0.07%. These findings suggest that matrix multiplication operations in the attention mechanism
can be seamlessly replaced with the L-Mul algorithm without any loss of accuracy or the need for
additional training.

GSM8k. We evaluated the performance of three language models—Mistral-7b-Instruct-v0.3,
Llama3.1-7b-Instruct, and Gemma2-2b-It—on the GSM8k dataset using few-shot prompting and
L-Mul-based attention. The models were tested under different numerical precision formats: bf16,
fp8 e4m3, fp8 e5m2, and the L-Mul method. The results are summarized in Table 3.

Notably, the L-Mul-based attention mechanism slightly improved the average performance com-
pared to the bf16 baseline. Mistral-7b-Instruct-v0.3 and Gemma2-2b-It both exhibited improved

8

Preprint

Model Bfloat16 Float8 e4m3 Float8 e5m2 L-Mul

Mistral-7b-Instruct-v0.3 52.54 52.39 50.19 52.92
Llama3.1-7b-Instruct 76.12 75.44 71.80 75.63
Gemma2-2b-It 45.87 45.94 44.43 47.01

Average 58.17 57.92 55.47 58.52

Table 3: GSM8k accuracy with Mistral, Llama, and Gemma models with few-shot prompting and
attention mechanism implemented in different precision levels.

accuracies with L-Mul, achieving 52.92% and 47.01% respectively. Llama3.1-7b-Instruct’s accu-
racy with L-Mul was slightly lower than its bf16 performance but still higher than with fp8 e4m3
and fp8 e5m2. On contrary, rounding the tensors in the attention computation to fp8 e5m2 leads
to a significant performance drop although it’s more complicated than L-Mul.

Vision-language tasks. The performance of the Llava-v1.5-7b model on VQA, object halluci-
nation, and instruction following tasks are shown in Table 4. Similar to the experiments on language
tasks, the attention computation is conducted with different precision/methods while other linear
transformation layers are unchanged. Except for TextVQA where the accuracy gap is 0.5%, the
performance of L-Mul and BFloat16 attentions are comparable. The VQA tasks are evaluated
with the official evaluation scripts and the Llava-Bench results are generated by GPT-4o.

Task POPE Llava-Bench TextVQA
Split rand. adv. pop. all comp. conv. detail. all all

BFloat16 86.20 83.17 85.13 84.83 66.80 57.60 41.40 57.50 57.90
L-Mul 86.57 83.19 85.34 85.03 64.90 58.70 43.30 57.50 57.41

Task VQAv2 VizWiz
Split yes/no num. other all yes/no num. unans. other all

BFloat16 91.88 59.04 70.56 78.03 77.19 45.24 71.75 38.19 49.31
L-Mul 91.78 58.93 70.73 78.06 78.54 50.48 73.78 38.41 50.16

Table 4: Evaluating the performance of different attention implementation on the
Llava-v1.5-7b model. VQAv2, VizWiz, and TextVQA are visual question answering
tasks, POPE evaluates object hallucination, and Llava-Bench assesses the instruction following
ability scored by GPT-4o.

L-Mul with fewer bits. In this section, we explore how L-Mul-based attention precision influences
the overall model performance using the MMLU benchmark with Mistral and Llama models. We
implement the attention mechanism with L-Mul and only keep the first k bits of the operand tensors.
The results of L-Mul attention with different precision are listed in Table 5. As expected, using L-
Mul with a 4-bit mantissa achieves performance comparable to or slightly better than that of bf16
and fp8 e4m3. However, performance drops proportionally to the estimated error depicted in
Figure 4. When k = 3, both models significantly outperform their fp8 e5m2 counterparts, with
the Llama model’s performance remaining close to that of fp8 e4m3. When k = 2, the Llama
model’s performance is comparable to that of fp8 e5m2 rounding. This suggests that with the
Llama model, we can perform L-Mul directly on fp8 models without compromising performance.

Model e4m3 e5m2 k = 4 k = 3 k = 2

Mitral 62.18 61.75 62.16 62.06 61.08
Llama 68.16 66.61 68.43 68.12 66.67

Table 5: The performance of Mistral models with atten-
tion mechanism implemented with k-bit tensor L-Mul.

8bit Acc. e4m3 e5m2 L-Mul
GSM8k 36.09 7.96 37.91

Table 6: Zero-shot fine-tuned Gemma2-
2b models with 8-bit accumulation pre-
cision. L-Mul uses fp8 e4m3 inputs.

9

Preprint

Full-model fine-tuning. To further explore the impact of the L-Mul algorithm, we go beyond imple-
menting attention layers with L-Mul by replacing all multiplication operations—including matrix
multiplications in linear transformations, element-wise multiplications, and those within attention
layers—with fp8 e4m3 L-Mul for the Gemma2-2b-It model. We then fine-tune the updated
model on the training set of the GSM8k corpus and evaluate both the fine-tuned fp8 and L-Mul
models under a zero-shot setting on the GSM8k test set. Note that the L-Mul operations in this ex-
periment takes operands with 3-bit mantissas (k = 3) and the accumulation precision is fp8 e4m3
to explore an extremely efficient setting.

The experimental results demonstrate that a fine-tuned fp8 e4m3 L-Mul model achieves perfor-
mance comparable to a standard fine-tuned fp8 e4m3 model under fp8 accumulation precision.
This suggests that L-Mul can enhance training efficiency without compromising the fine-tuned
model’s performance. Moreover, it reveals the potential of training L-Mul native LLMs for accurate
and energy-efficient model hosting.

4 RELATED WORK

Reducing the computation needed by neural networks while maintain the performance is an impor-
tant problem which entailed multiple research directions. Typical methods include neural network
pruning, quantization, and improved tensor I/O implementations.

Pruning. Neural network pruning focuses on improving the inference efficiency by reducing the
number of connections among layers (Han et al., 2015a;b; Wang et al., 2020). Neural network prun-
ing methods usually involves training. After important weights are identified, the neural networks
are re-trained to further update the selected weights for specific tasks. Different from model pruning,
the method we proposed is designed for general tasks, requiring no task-specific re-training.

Optimizing tensor I/O. On regular GPUs, moving tensors between GPU SRAM and high-
bandwidth memory (HBM) is the main bottleneck of time and energy consumption. Reducing the
I/O operations in transformer models and making the best use of the HBM can significantly improve
the efficiency of AI training and inference (Dao et al., 2022; Dao; Kwon et al., 2023). Our method,
which focuses on optimizing arithmetic operations, is orthogonal to this direction.

Rounding and quantization. Standard neural network weights are stored as 32-bit or 16-bit FP
tensors. However, the full-sized weights takes a considerable amount of GPU memory. To improve
the storage efficiency, both weights storage and computation can be conducted in a lower precision,
for example, using 16-bit, 8-bit, or 4-bit FP and Int (fp16, bf16 (Kalamkar et al., 2019), fp8-e4m3,
fp8-e5m2 (Micikevicius et al., 2023), int8 (Dettmers et al., 2022), fp4, and int4 (Dettmers et al.,
2024)) tensors to represent model weights. Inference with lower-bit parameters usually hurts the
computation accuracy and impacts the performance of pretrained models, and Integer-based quan-
tization methods spend significant time to handle outlier weights. comparing to the quantization
methods, our method requires less computation but achieves higher accuracy.

5 FUTURE WORK

To unlock the full potential of our proposed method, we will implement the L-Mul and L-Matmul
kernel algorithms on hardware level and develop programming APIs for high-level model design.
Furthermore, we will train textual, symbolic, and multi-modal generative AI models optimized for
deployment on L-Mul native hardware. This will deliver high-speed and energy-efficient AI host-
ing solutions, reducing the energy cost for data centers, robotics, and a wide spectrum of edge-
computing devices.

6 CONCLUSION

In this paper, we introduced L-Mul, an efficient algorithm that approximates floating-point multi-
plication using integer addition. We first demonstrated that the algorithm exhibits linear complexity
relative to the bit size of its floating-point operands. We then showed that the expected accuracy of
L-Mul surpasses that of fp8 multiplications while requiring significantly less computational power.

10

Preprint

To assess the practical impact of L-Mul, we evaluated it on natural language, vision, and mathe-
matics benchmarks using popular language models. Our experiments indicate that L-Mul outper-
forms 8-bit transformers with lower computational consumption and achieves lossless performance
when applied to computation-intensive attention layers without additional training. Based on this
evidence, we argue that tensor multiplications in language models can be effectively implemented
using L-Mul to preserve performance while enabling energy-efficient model deployment.

REFERENCES

Dennis Abts, Garrin Kimmell, Andrew Ling, John Kim, Matt Boyd, Andrew Bitar, Sahil Parmar,
Ibrahim Ahmed, Roberto DiCecco, David Han, et al. A software-defined tensor streaming mul-
tiprocessor for large-scale machine learning. In Proceedings of the 49th Annual International
Symposium on Computer Architecture, pp. 567–580, 2022.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny Krashinsky. Nvidia a100
tensor core gpu: Performance and innovation. IEEE Micro, 41(2):29–35, 2021.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In The
Twelfth International Conference on Learning Representations.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Alex de Vries. The growing energy footprint of artificial intelligence. Joule, 7(10):2191–2194,
2023.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
matter: Elevating the role of image understanding in visual question answering. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 6904–6913, 2017.

Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and
Jeffrey P Bigham. Vizwiz grand challenge: Answering visual questions from blind people. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3608–3617,
2018.

11

Preprint

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015b.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference
on Learning Representations, 2020.

Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In 2014 IEEE
international solid-state circuits conference digest of technical papers (ISSCC), pp. 10–14. IEEE,
2014.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis of
a tensor processing unit. In Proceedings of the 44th annual international symposium on computer
architecture, pp. 1–12, 2017.

Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das, Kunal Banerjee,
Sasikanth Avancha, Dharma Teja Vooturi, Nataraj Jammalamadaka, Jianyu Huang, Hector Yuen,
et al. A study of bfloat16 for deep learning training. arXiv preprint arXiv:1905.12322, 2019.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611–626, 2023.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Xin Zhao, and Ji-Rong Wen. Evaluating object hallu-
cination in large vision-language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp.
292–305, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/
v1/2023.emnlp-main.20. URL https://aclanthology.org/2023.emnlp-main.20.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 26296–26306, 2024.

Paulius Micikevicius, Stuart Oberman, Pradeep Dubey, Marius Cornea, Andres Rodriguez, Ian Bratt,
Richard Grisenthwaite, Norm Jouppi, Chiachen Chou, Amber Huffman, et al. Ocp 8-bit floating
point specification (ofp8). Open Compute Project, 2023.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381–2391, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Amrita Saha, Vardaan Pahuja, Mitesh Khapra, Karthik Sankaranarayanan, and Sarath Chandar.
Complex sequential question answering: Towards learning to converse over linked question an-
swer pairs with a knowledge graph. In Proceedings of the AAAI conference on artificial intelli-
gence, volume 32, 2018.

12

https://aclanthology.org/2023.emnlp-main.20

Preprint

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social iqa: Common-
sense reasoning about social interactions. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 4463–4473, 2019.

Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
and Marcus Rohrbach. Towards vqa models that can read. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 8317–8326, 2019.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. Transactions
on Machine Learning Research, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured pruning of large language models. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 6151–6162, 2020.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

A ERROR ESTIMATION

We calculate the error expectations with different (n, k) combinations as follows in Table 7. The
values are calculated with the actual parameters of Mistral, Llama, and Gemma models. For even
distribution, we use the expectations introduced in Section 2.3.1. For real distribution, we estimate
the average value of possible operands using the parameters of five popular pretrained LLMs.

K values 1 2 3 4 5 6
abs[f1(n = 7, k)] 0.68 0.35 0.17 0.081 0.035 0.012Even

Distribution abs[f1(n = 7, k) + f2(k)] 0.68 0.43 0.30 0.24 0.20 0.19

abs[f1(n = 7, k)] 0.61 0.33 0.16 0.077 0.033 0.011Real
Distribution abs[f1(n = 7, k) + f2(k)] 0.16 0.18 0.18 0.12 0.15 0.14

Table 7: Average error expectation with five different language models on floating point multiplica-
tion and L-Mul with different rounding representations when the full precision is BFloat16. K
stands for the bit number of the operand mantissa.

We find that when the operands are distributed evenlly, L-Mul is more accurate than
float8 e5m2 multiplications. However with real models, L-Mul can achieve higher precision
than float8 e4m3 calculations.

13

	Introduction
	Method
	Background: Floating-point Numbers and Tensors
	Linear-complexity Multiplication (L-Mul)
	Precision and Cost Analysis
	Precision Estimation
	Gate Complexity Estimation

	Experiments
	Tasks
	Precision Analysis
	Benchmarking

	Related Work
	Future Work
	Conclusion
	Error Estimation

