
META-REWARDING LANGUAGE MODELS:
Self-Improving Alignment with LLM-as-a-Meta-Judge

Tianhao Wu1,2 Weizhe Yuan1,3 Olga Golovneva1 Jing Xu1

Yuandong Tian1 Jiantao Jiao2 Jason Weston1,3 Sainbayar Sukhbaatar1

1Meta FAIR 2University of California, Berkeley 3New York University

ABSTRACT

Large Language Models (LLMs) are rapidly surpassing human knowledge in
many domains. While improving these models traditionally relies on costly hu-
man data, recent self-rewarding mechanisms (Yuan et al., 2024c) have shown that
LLMs can improve by judging their own responses instead of relying on human
labelers. However, existing methods have primarily focused on improving model
responses rather than judgment capabilities, resulting in rapid saturation during
iterative training. To address this issue, we introduce a novel Meta-Rewarding
step to the self-improvement process, where the model judges its own judgements
and uses that feedback to refine its judgment skills. Surprisingly, this unsupervised
approach improves the model’s ability to judge and follow instructions, as demon-
strated by a win rate improvement of Llama-3-8B-Instruct from 22.9% to 39.4%
on AlpacaEval 2, and 20.6% to 29.1% on Arena-Hard. These results strongly
suggest the potential for self-improving models without human supervision.

1 INTRODUCTION

Large Language Models (LLMs) are advancing significantly in their ability to follow instructions
and respond to user queries (OpenAI, 2023; Touvron et al., 2023). An important phase in training
these models is instruction tuning (Ouyang et al., 2022), which typically involves training LLMs on
datasets curated by humans, either via supervised finetuning or preference optimization. Neverthe-
less, the acquisition of human-generated data is both costly and time-consuming. Furthermore, the
quality of such data is inherently constrained by the limitations of human capabilities. The so-called
‘Super Alignment’ challenge (Burns et al., 2023) aims to find a solution to steering or controlling
potentially super-intelligent AIs when their actions are inherently beyond human abilities to judge.

Among the potential solutions to this challenge, self-judging by the AI emerges as a particularly
promising approach. Yuan et al. (2024c) introduces an iterative Self-Rewarding mechanism that
enables an LLM to improve autonomously. The process involves a single model that takes on two
distinct roles, as an actor and as a judge. As an actor, the model produces responses that are aimed to
fulfill specific instructions. As a judge (a special kind of acting), the model evaluates these responses
via LLM-as-a-Judge prompting (Zheng et al., 2024) and assigns rewards. The objective of the actor
during this self-play is to maximize its reward, thereby improving its ability to follow instructions.

We hypothesize that a major limitation of this previous work is that its learning objective enhances
the model’s ability as an actor to generate better responses, while overlooking improving the model’s
ability as a judge. If the ability to judge does not improve then training the actor over iterations can
quickly saturate – or worse could overfit the reward signal, a.k.a. reward hacking. Consequently, it
is imperative to also improve the model’s capabilities as a judge in addition to its ability to act.

In this paper, we propose a novel method called Meta-Rewarding which assigns rewards to its own
judgements to train the model’s ability to judge. The key idea is to introduce a third role of meta-
judge, whose task is to evaluate the model’s own judgements. While the judge evaluates the actor’s
responses, the meta-judge evaluates the judge’s judgments (including rewards that it assigns) using a
mechanism similar to LLM-as-a-Judge, which we term LLM-as-a-Meta-Judge. The meta-judge en-
ables us to build training data containing preference pairs of judgements, in addition to the standard
preferences between actor responses derived from the standard judge. Our Meta-Rewarding method

1

ar
X

iv
:2

40
7.

19
59

4v
2

 [
cs

.C
L

]
 3

0
Ju

l 2
02

4

Sample multiple
responses

Actor data
Prompt

Actor Data Creation Preference Optimization

Next iteration
model

JudgeActor

Judge Data Creation

 Select
pairs

Sample multiple
judgements

Pairwise
rankings

Generate
judgements

Judge Meta-Judge

Response

DPO
training

 Select
pairs

Judge data

Figure 1: Meta-Rewarding iterative training scheme. The language model at step t behaves as
an actor to generate responses to instructions, as a judge to assign rewards to those responses, and
as a meta-judge to evaluate its own judgments. The judgments are used to create preference pairs to
improve its ability to act, and the meta-judgments are used to create preference pairs to improve its
ability to judge. Both preference pair sets are used together to train the model for the next iteration.

thus aims to explicitly improve both the acting and judging skills of a model – whereby these com-
bined skills should help to enhance its instruction following ability as an actor. It is important to
note that all three roles - actor, judge, and meta-judge - are performed by the same model, thereby
maintaining a self-improving nature that requires no extra human data.

In addition to enhancing the judging ability through Meta-Rewarding, we also address the length-
bias issue in the judging process (Singhal et al., 2023). Like other reward models, the judge tends
to favor long responses, which can make response length grow during iterative DPO (Yuan et al.,
2024c). To counteract this, we combine the judge score with length information to determine the
winning response, ensuring that a shorter response is chosen when scores are close.

In our experiments we start from Llama-3-8B-Instruct and perform multiple iterations of our Meta-
Rewarding training. When evaluated on AlpacaEval 2 (Dubois et al., 2024b), we see a substantial
improvement in the length-controlled (LC) win rate (from 22.9% to 39.4%), even outperforming
GPT-4-03141. We also observe that our method outperforms standard Self-Rewarding training even
if it is enhanced with our length-bias improvements (35.5% vs 39.4%), highlighting the importance
of the meta-judge. We also see similar improvement on Arena-Hard benchmark (Li et al., 2024),
which is a benchmark targeting models’ ability to answer complex and hard questions.

2 META-REWARDING

In our method, we assume a setup where we only have an initial seed model, an instruction-tuned
LLM, and no further human supervised training data. The idea is to generate training data from the
model itself through an iterative self-play process. In this process, the model assumes three main
roles: as an actor, it generates responses to given prompts; as a judge, it evaluates and scores its own
responses; and as a meta-judge, it compares the quality of its own judgments.

While training the actor to generate better responses to user queries is the final objective, this train-
ing’s efficacy relies on the accuracy of the judge. As the judge’s accuracy increases, it will provide
higher quality feedback for training the actor, ultimately leading to a better actor. Therefore, the goal
of Meta-Rewarding is to improve the model’s capability both as actor and judge during training. The
role of the meta-judge is to provide feedback necessary for training the judge.

At a high level, as depicted in Figure 1, our method is an iterative training scheme that starts from a
given seed LLM, which assumes all three roles. An iteration starts with the actor generating multiple
response variations for each prompt. This is followed by the judge evaluating each response using an
LLM-as-a-Judge prompt and generating a judgement that contains a score. This score then allows
us to build preference pairs of responses for training the actor. For training the judge, we pick a
single response and let the meta-judge compare two of its judgement variations generated by the

1https://tatsu-lab.github.io/alpaca_eval/

2

https://tatsu-lab.github.io/alpaca_eval/

LLM-as-a-Meta-Judge Prompt

Review the user’s question and the corresponding response, along with two judgments.
Determine which judgment is more accurate according to the rubric provided below. The
rubric used for the initial judgments is as follows:

- Add 1 point if the response is relevant and provides some information related to
the user’s inquiry, even if it is incomplete or contains some irrelevant content.
- Add another point if the response addresses a substantial portion of the user’s question,
but does not completely resolve the query or provide a direct answer.
- Award a third point if the response answers the basic elements of the user’s question in a
useful way, regardless of whether it seems to have been written by an AI Assistant or if it
has elements typically found in blogs or search results.
- Grant a fourth point if the response is clearly written from an AI Assistant’s perspective,
addressing the user’s question directly and comprehensively, and is well-organized and helpful,
even if there is slight room for improvement in clarity, conciseness or focus.
- Bestow a fifth point for a response that is impeccably tailored to the user’s question
by an AI Assistant, without extraneous information, reflecting expert knowledge, and
demonstrating a high-quality, engaging, and insightful answer.

User: {prompt}

Response:
{response}

Judgment A:
{judgment a}

Judgment B:
{judgment b}

After examining the original question, response, and both judgments:

- Explain which judgment is more accurate according to the original rubric and why.
Consider factors such as adherence to the rubric, accuracy in evaluating the response, and
consistency in applying the criteria.
- Conclude with a clear statement of which judgment is better using the format: “Winner:
[Judgement A | Judgement B]”

Figure 2: Prompt used by the meta-judge to compare given two judgements.

judge to determine which one is better using an LLM-as-a-Meta-Judge prompt, see Figure 2. This
step enables us to create preference pairs of judgements that can be used for training the judge.

Once we have the preference data both for the actor and the judge, then we apply preference opti-
mization on the dataset via DPO (Rafailov et al., 2024). Note that while other RLHF methods can
be employed, we chose to use DPO because of its simplicity and stability. After the training, we
end up with an improved model that will be then used for the next iteration, both for generating
training data and as an initial model for the optimization. Next, we will describe each preference
data creation process in detail.

2.1 ACTOR PREFERENCE DATASET CREATION

Our approach to create the actor preference dataset on a given iteration is built upon the pipeline
introduced by Yuan et al. (2024c), with a crucial modification to incorporate a length-control mech-
anism. As we see later in Section 3.5, this change proves to be essential in preventing the responses
from lengthening and improving the length-controlled win rate. The dataset creation process con-
sists of three main steps:

Sample Responses from Actor. We assume we have a given set of prompts. For each prompt x, we
generate K different responses {y1, . . . , yK} by sampling from the current model Mt at iteration t.

Aggregate Multiple Judgments. For each response yk, we generate N different judgments
{j1k, . . . jNk } from Mt using an LLM-as-a-Judge prompt (shown in Section A.1). The prompt in-
structs the model to evaluate the given response yk for prompt x according to a fixed rubric and

3

output its chain-of-thought reasoning and a final score out of 5. We use regular expressions to parse
the scores, discarding any judgments with parsing errors or those not adhering to the 5-point scale.
The final reward score for each response is then calculated by averaging all valid judgment scores.

Preference Data Selection with Length-Control. The previous work simply selects the highest
Smax and lowest Smin scored responses as the chosen yc and rejected yr as a preference pair for each
prompt. However, this leads to length explosion where responses get longer with each iteration.
This is due to the length-bias of the judge, a well-know issue in reward models (Dubois et al.,
2024a; Park et al., 2024; Yuan et al., 2024b). To mitigate this, we introduce a simple length-control
mechanism. We define a quality tier parameter ρ ∈ [0, 1] to control the trade-off between score-
based selection and length consideration. Responses with scores in the top tier, specifically within
the range [(1 − ρ)Smax + ρSmin, Smax], are considered to have similar quality. For selecting the
chosen response yc, we opt for the shortest response within this top tier. This approach helps to
counteract the tendency of judges to favor longer responses, which can lead to biased training data.
Conversely, for the rejected response yr, we select the longest response with a score in the range
[Smin, (1 − ρ)Smin + ρSmax]. Setting ρ to 0 effectively disables the length-control, reverting to a
purely score-based selection.

2.2 JUDGE PREFERENCE DATASET CREATION

Unlike the judge that provides score-based judgements, we design the meta-judge to operate in a
pairwise mode by comparing two given judgements. Thereby, we adopt the following three steps for
generating and selecting chosen and rejected pairs, while carefully controlling for positional bias:

Response Selection: To prepare effective training data for the judge, we focus on responses where
the judge is the least certain, as measured by the variance of the scores it has given. To be more
specific, we first compute the score variance given by the N different judgments for every response
yk. We then pick the response y with the highest score variance for each prompt x to be used in the
judge training. If multiple responses have the same variance, we break ties randomly.

Pairwise Meta-Judge Evaluations: For each selected response y, we have up to N corresponding
judgments, denoted as {j1, . . . , jN}. We then evaluate each pair of different judgments (jm, jn)
using a meta-judge prompt shown in Figure 2. This LLM-as-a-Meta-Judge prompt includes the
original prompt x, response y, and its two judgements (jm, jn) as well as the rubric used by the
judge. Then the model is asked to generate chain-of-thought reasoning followed by its choice of the
better judgement. Again this uses the same LLM model, but acting as a meta-judge this time.

To mitigate positional bias (where the meta-judge might e.g. tend to prefer the judgment that appears
first), we prompt the model twice by changing the ordering of the two judgements. In addition, we
also introduce weighted scoring for winning in the first vs second positions. We define win1st and
win2nd as the total wins in the first and second positions respectively, and calculate the weights as:

ω1 =
win2nd

win1st + win2nd
, ω2 =

win1st

win1st + win2nd
.

The result of a single battle between judgments (jm, jn) is defined as:

rmn =

1 If the meta-judge prefers m wins
−1 If the meta-judge prefers n wins
0 If tie or parse error.

We then construct a battle matrix B as the weighted sum of the battle results:

Bmn = ω11[r
mn = 1] + ω21[r

nm = −1]

Elo Score and Pairs Selection: The next step is to convert the battle matrix into rewards (meta-
rewards) corresponding to each judgement. Inspired by Zheng et al. (2024), we determine the Elo
score εm for each judgment jm by solving the following maximum likelihood estimation problem:

argmax
ε

∑
m,n

Bmn log

(
eεm−εn

1 + eεm−εn

)
.

4

SFT Iter 1 Iter 2 Iter 3 Iter 4
26

28

30

32

34

36

38

40

42

LC
 W

in
 ra

te
 (%

)

Meta Rewarding (Ours)
Self Rewarding w/ LC
Claude Opus
GPT-4-0314
GPT-4-0613

Figure 3: AlpacaEval 2. Length-controlled (LC) win rate increases with Meta-Rewarding itera-
tions, even approaching Claude-Opus level. The Self-Rewarding w/LC baseline lags behind in later
iterations due to its lack of judge training.

This approach allows us to compute scores that account for the positional bias in the meta-judge
evaluations, providing a more accurate reward signal representing the judgment quality. When cre-
ating the preference pairs, we select the chosen jc and rejected jr as the judgment with the highest
and lowest Elo score respectively, breaking ties randomly.

However, we find that the meta-judge can also exhibit length-bias similar to the judge, preferring
verbosity when evaluating judgments. This bias results in chosen judgments being, on average,
longer than rejected ones. If left unchecked, this tendency could lead to increasingly verbose model
outputs after training. To overcome this verbosity issue, we implement an additional filtering step
to filter out preference pairs where the chosen judgment exceeds a certain length threshold. This
process effectively penalizes excessively long generations, helping to maintain a balance between
quality and conciseness in the judge’s outputs.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

We use instruction-finetuned Llama-3-8B-Instruct as a seed model, and otherwise closely follow the
experimental setup of Yuan et al. (2024c). Before our Meta-Rewarding training, we first perform
supervised finetuning (SFT) of the seed model on the Evaluation Fine-Tuning (EFT) dataset from
Yuan et al. (2024c). This dataset is built from Open Assistant (Köpf et al., 2024) and provides initial
LLM-as-a-Judge training data of ranked human responses, thus aiding the model to act as a judge.
Since the seed model is already instruction finetuned, we skip training directly on human responses
for the actor. We refer to this model as SFT on EFT, or simply SFT for short.

For Meta-Rewarding iterations, we utilize 20,000 prompts from Yuan et al. (2024c) that were gener-
ated by Llama-2-70B-Chat using an 8-shot prompt. We provide a visualization of their distribution
in Appendix Figure 6. For each iteration, we sample 5,000 prompts from this seed set and conduct
four iterations in total. The iterative process is formally defined as follows:

Iter 1 Obtain M1 by training using DPO (initialized from the SFT model) on both actor and judge
preference pairs generated by the SFT model.

Iter 2 Obtain M2 by training M1 using DPO on actor and judge preference pairs generated by M1.

Iter 3 Obtain M3 by training M2 using DPO exclusively on actor preference pairs generated by M2.

Iter 4 Obtain M4 by training M3 using DPO exclusively on actor preference pairs generated by M3.

We provide a detailed recipe for training in Section A.3. In each iteration, we generate K = 7
response variations per prompt using temperature 0.8 and top p 0.95. This results in a total of
35,000 responses per iteration. We then filter out identical responses, typically removing no more

5

Table 1: AlpacaEval 2: The evaluation on AlpacaEval shows significant improvement with Meta-
Rewarding training. While the seed model Llama-3-8B-Instruct only achieves 22.92% length-
controlled (LC) win rate against GPT4-Turbo, our 4-th iteration achieves 39.44%.

Model LC win rate Win rate Length
Llama-3-8B-Instruct (Seed)3 22.92% 22.57% 1899
SFT on EFT 25.47% 25.10% 1943
Self-Rewarding LLM (Yuan et al., 2024c) + LC

Iteration 1 26.93% 27.12% 1983
Iteration 2 30.38% 29.77% 1940
Iteration 3 34.87% 34.59% 1967
Iteration 4 35.49% 35.37% 2005

Meta-Rewarding LLM (Ours)
Iteration 1 27.85% 27.62% 1949
Iteration 2 32.66% 33.29% 2001
Iteration 3 35.45% 37.24% 2064
Iteration 4 39.44% 39.45% 2003

than 50 duplicates. Next, we generate N = 112 different judgments for each response using the
same sampling parameters.

3.2 EVALUATION METHODS

As Meta-Rewarding aims to improve the model both as an actor and a judge, we evaluate its per-
formance in both of these roles. In addition, we also compare it against a Self-Rewarding baseline
(Yuan et al., 2024c) in the same setup, equipped with the same length-control mechanism. This
allows us to measure the gains brought by the judge training data generated via meta-rewarding.

Actor’s Instruction Following We make use of three well-established auto-evaluation benchmarks
based on GPT4-as-a-Judge: AlpacaEval 2 (Dubois et al., 2024a), Arena-Hard (Li et al., 2024) and
MT-Bench (Zheng et al., 2024). These benchmarks focus on different aspects of the model. For
instance, AlpacaEval mainly focuses on chat scenarios, where the prompt sets cover a diverse range
of daily questions. In comparison, Arena-Hard consist of more complex or challenging questions,
where they satisfy more criteria in the predefined 7 aspects (creativity, complexity, problem-solving,
etc). Notably, Arena-Hard has the highest correlation with Chatbot-Arena among popular open-
ended LLM benchmarks (Li et al., 2024). MT-Bench has 8 different question categories and evalu-
ates the multi-turn conversation ability of the model.

Judge’s Reward Modeling To evaluate the reward modeling capability of the judge, we measure
the correlation of our judge scores with human preferences, as well as a strong AI judge when hu-
man labeling is not available. We quantitatively calculate the Spearman correlation and agreement
between the model-generated ranking with the human-labeled preferences provided in the Open As-
sistant dataset. We use a held-out split of 190 samples, with each sample consisting of a prompt and
several human ranked responses, totalling 580 different responses. Additionally, we also measure
the judge’s performance on ranking responses generated by the seed model, which is considered to
be more in-distribution compared to human or other model generated responses. This is because the
judge is mainly trained and applied on samples that are self-generated. However, in this case, we do
not have ground-truth human preference labels, so we adopt the strong judge gpt-4-1106-preview as
a proxy.

3.3 INSTRUCTION FOLLOWING EVALUATION

Meta-Rewarding iterations significantly improves the win rate. In Figure 3, we show the length-
controlled (LC) win rate of our method over its training iterations on the AlpacaEval benchmark.

2We chose this value based on our early experiments showing optimal performance at this number, with
further increases yielding similar or worse correlation with human judgments.

3Our evaluation shows slightly higher numbers, with the LC Winrate 24.57%, Winrate 24.89% and Length
1936. This is likely due to a different inference template.

6

Sc
ie

nc
e

En
te

rta
in

m
en

t
So

cia
l I

nt
er

ac
tio

n
Ph

ilo
so

ph
y

M
isc

el
la

no
us

Pr
of

es
sio

na
l

So
ftw

ar
e

De
ve

lo
p

DI
Y

Pr
oj

ec
ts

Hi
st

or
y

Ex
er

cis
e

Tr
av

el
Te

ch
no

lo
gy

Co
ok

in
g

La
ng

ua
ge

 L
ea

rn
in

g
Ga

m
in

g
M

at
he

m
at

ics
M

us
ic

Lit
er

at
ur

e

0.0

0.1

0.2

0.3

0.4

0.5

LC
 W

in
 ra

te
 (%

)
Seed
SFT
Iter 1

Iter 2
Iter 3
Iter 4

Figure 4: Fine-grained AlpacaEval LC Winrate Analysis. We classify all 805 AlpacaEval test
prompts into 20 categories, while discarding 2 categories that have less than 10 questions. Meta-
Rewarding improves upon Llama-3-8B-Instruct for 17 out of 18 categories.

Overall, we see a substantial increase from 22.9% to 39.4%, outperforming GPT-4 and approaching
close to the Claude Opus model. This is a remarkable result considering our model has only 8B
parameters and our training did not utilize any extra human data beyond the seed model (except the
EFT dataset used in the SFT stage). In addition, our method surpasses the strong baseline of SPPO
(Wu et al., 2024), which has a similar iterative training setup using Llama-3-8B-Instruct, but uses
a reward model that was trained on a large set of human and GPT-4 data. Despite its reliance on
a strong external reward model as a judge, SPPO achieves 38.77% LC win rate, which is slightly
lower than our method.

The meta-judge and length-control mechanism are important. The Self-Rewarding baseline
with our length-control (LC), which lacks the meta-judge for training the judge, also brings im-
provement, but to a lesser degree, especially in later iterations. This signifies the importance of
training the judge and the effectiveness of the meta-judge in achieving this. As shown in Table 1,
the average response length (measured in characters) does not grow substantially over training iter-
ations, proving the effectiveness of our length-control mechanisms (see ablations in Section 3.5).

Meta-Rewarding improves nearly all instruction categories. We perform a fine-grained analysis
by breaking down the 805 questions in AlpacaEval into 18 categories4 given in Yuan et al. (2024c).
Notably, we find significant improvements in most of the categories as shown in Figure 4, including
categories that require a considerable amount of knowledge and reasoning, e.g. science, gaming,
literature, etc. However, there are also categories like Travel or Mathematics, where the model only
has slight improvement compared with the seed model Llama-3-8B-Instruct.

Meta-Rewarding improves answering of complex and hard questions. We further evaluate our
method’s performance on answering complex and challenging prompts using Arena-Hard. The eval-
uation results in Table 2 show that Meta-Rewarding is able to improve the score in all 4 iterations,
showing a substantial improvement (+8.5%) compared with the seed model (20.6%). This further
validate the effectiveness of our method.

Meta-Rewarding does not sacrifice multi-turn ability despite training only on single-turn. We
perform MT-Bench evaluation to examine the loss in multi-turn conversation ability since we trained
only on single-turn data. The result (detailed in Appendix Table 6) shows that Meta-Rewarding
significantly improves the Turn 1 Score from 8.319 to 8.738 in the last iteration, while sacrificing no
more than 0.1 in Turn 2 Score. This is a large improvement on Self-Rewarding + LC, as it typically
sacrifices more than 0.2 in Turn 2 score while not improving the Turn 1 score.

4We dropped 2 categories that had less than 10 samples.

7

Table 2: Arena-Hard: Although our prompt set mainly consists of Open Assistant-like prompts,
which are far from the distribution of Arena-Hard (which is selected from the highest quality clusters
from the Chatbot Arena dataset), we observe a substantial improvement. Four iterations of Meta-
Rewarding brings +8.5% increase over the seed model.

Model Score 95% CI Length
Llama-3-8B-Instruct (Seed) 20.6% (-2.0, 1.8) 2485
SFT on EFT 24.2% (-2.0, 1.8) 2444
Self-Rewarding LLM (Yuan et al., 2024c) + LC

Iteration 1 23.2% (-1.7, 1.9) 2438
Iteration 2 26.3% (-2.1, 2.3) 2427
Iteration 3 28.2% (-2.0, 1.9) 2413
Iteration 4 27.3% (-2.0, 2.2) 2448

Meta-Rewarding LLM (Ours)
Iteration 1 25.1% (-1.9, 1.8) 2395
Iteration 2 27.4% (-2.0, 2.0) 2416
Iteration 3 27.6% (-2.3, 2.6) 2501
Iteration 4 29.1% (-2.3, 2.1) 2422

3.4 REWARD MODELING EVALUATION

We evaluate the judging accuracy of our models on responses generated by the seed model Llama-
3-8B-Instruct. In the absence of human labeling, we measure the correlation between our model
and the currently strongest judge model, gpt-4-1106-preview. Our analysis employs two slightly
different settings, primarily differing in how they handle ties given by the judge models. We begin
with a fixed set of Open Assistant prompts that do not overlap with our training prompts.

For the GPT-4 Chosen Pairs setting, we generate two responses using the seed model for each
prompt. We then generate preference labels with GPT-4 judge using a prompt adopted from Al-
pacaEval (see Section A.1). To mitigate positional bias, we make two judgements by switching the
positions of the compared responses. We retain the data only where the two judgments agree, dis-
carding the rest. This process yields a total of 170 pairs with preference judge labels. Subsequently,
we use the model being evaluated to predict rankings on those pairs, employing the same procedure
as before by generating 11 judgments and averaging their scores. We calculate two metrics: agree-
ment (counting ties as 0.5) and agreement without ties (removing all ties predicted by the weaker
judge and assessing agreement on the remaining pairs).

For the Self-Chosen Pairs setting, we generate 7 responses from the seed model and rank them using
the target model. Again, we use the same procedure of averaging of 11 judgements. We select
the highest and lowest scoring responses as the predicted chosen and rejected pairs, respectively.
We then perform the same judgment using the strong GPT-4 model and report the agreement and
agreement without ties metrics.

The model improves in judging after performing judge training: Our analysis shown in Table 3
reveals significant improvements in the correlation between Meta-Rewarding and the strong GPT-4
judge compared to the Self-Rewarding baseline in both evaluation settings. The enhancement is
most notable in the agreement without ties metric. For Self-Chosen Pairs, the improvement reaches
up to +12.34% (Iteration 2) when comparing the same iterations of both models, while in the GPT-4
Chosen Pairs setting, the increase exceeds +6%. These results demonstrate the effectiveness of the
Meta-Rewarding methodology in refining the model’s judgment capabilities, bringing its evaluations
substantially closer to those of more sophisticated language models like GPT-4.

Meta-Rewarding training improve judging correlation with Human. We examine the judge’s
correlation with the human-ranked responses from the Open Assistant dataset. We use the same
average over 11 judgments to get the predicted ranking, and then measure the agreement as well as
the average Spearman correlation (over prompts). As shown in Appendix Table 7, there is a notable
increase in correlation with human judgement, especially in Meta-Rewarding LLMs. However, this
improvement is not sustained over later training iterations, likely due to a distribution shift in the
model-generated responses compared to the human responses.

8

Table 3: Judge agreement with GPT-4 on responses generated by the seed model: Evaluation
of the judge’s correlation with GPT4 on the Open Assistant test set, with responses generated by
Llama-3-8B-Instruct.

GPT-4 Chosen Pairs Self-Chosen Pairs
Model Agreement Agree wo Tie Agreement Agree wo Tie
Llama-3-8B-Instruct (Seed) 55.95% 56.49% 55.80% 61.03%
SFT on EFT 51.48% 51.79% 61.66% 73.51%
Self-Rewarding LLM (Yuan et al., 2024c) + LC

Iteration 1 56.54% 57.97% 55.17% 59.59%
Iteration 2 52.67% 53.43% 54.89% 60.00%
Iteration 3 55.65% 55.90% 61.13% 72.68%
Iteration 4 52.97% 53.12% 64.44% 78.42%

Meta-Rewarding LLM (Ours)
Iteration 1 56.54% 57.23% 60.06% 68.75%
Iteration 2 55.05% 56.58% 61.57% 72.34%
Iteration 3 58.63% 61.24% 63.43% 76.80%
Iteration 4 57.44% 59.54% 64.50% 79.33%

Table 4: Effect of Length-Control Parameter ρ on AlpacaEval: We find that the length-control
parameter ρ significantly impacts both the win rate and length-controlled (LC) win rate. Using a
larger threshold decreases the model generation length, and vise versa. While turning off the length-
control mechanism (ρ = 0) increases the win rate, it hurts the LC win rate and makes the responses
longer. Choosing a balanced length-control parameter provides a balanced final performance. We
also compare our length-control with a naive filtering based on the response length (Filter > 2500),
but this hurts both win rates, demonstrating the effectiveness our length-control mechanism.

Model LC win rate Win rate Length
Self-Rewarding LLM + LC

Iteration 3 (Base) 34.87% 34.59% 1967
Iteration 4 (ρ = 0) 34.68% 36.11% 2063
Iteration 4 (ρ = 0.1) 35.49% 35.37% 2005
Iteration 4 (ρ = 0.3) 35.83% 31.95% 1806
Iteration 4 (Filter > 2500) 32.90% 33.33% 1982

Meta-Rewarding LLM (Ours)
Iteration 3 (Base) 35.45% 37.24% 2064
Iteration 4 (ρ = 0) - - 2212
Iteration 4 (ρ = 0.3) - - 2127
Iteration 4 (ρ = 0.35) - - 2067
Iteration 4 (ρ = 0.4) 39.44% 39.45% 2003

3.5 ABLATIONS AND ANALYSIS

Length-Control Mechanism: Our length-control mechanism is essential in maintaining a balance
between comprehensiveness and conciseness of the model responses. We compare the last training
iteration with different length-control parameter choices ρ and present the results in Table 4. Us-
ing ρ = 0 is equivalent to not performing any length-control in the preference data selection. As
expected, training this way makes the model excessively verbose for both models, and negatively
affects the LC win rate as shown for Self-Rewarding LLMs.

Training with an External Reward Model: Meta-Rewarding employs an LLM-as-a-Judge prompt
to judge its own responses. Instead, we experiment with using a strong external reward model
Starling-RM-34B (Zhu et al., 2023) to select actor preference pairs. However, we find that Starling-
RM-34B failed to increase the LC win rate of AlpacaEval in the first iteration (24.63% vs 27.85%),
perhaps due to its length bias.

Meta-Judge Biases: After the first iteration of Meta-Rewarding training, the meta-judge becomes
more likely to prefer a higher score judgment nearly all the time, as shown in Table 5. This score-
bias, in turn, significantly shifts the scoring distribution of the judge towards the full score of 5. For

9

Table 5: Meta-Judge Statistics. We observe growing biases in the meta-judge towards preferring
higher score judgements or those in the first position.

Score Bias Positional Bias
Meta-Judge Higher Win Lower Win Same Score Diff Score All

Iteration 1 63.04% 36.96% 47.79% 41.12% 43.92%
Iteration 2 97.68% 2.32% 87.75% 56.18% 68.11%

3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00
Judge score

0.0

0.5

1.0

1.5

2.0

2.5

3.0
De

ns
ity

 (E
st

. b
y

KD
E)

Seed
SFT
Iteration 1
Iteration 2

Figure 5: Change in Scoring Distribution: Training the judge using the meta-judge changes its
score distribution significantly. Notably, the judge tends to concentrate more into giving a high
score. As a result, the mean score is increased from 4.1 to 4.7+ after two iterations of training.

the positional bias, we also see an increasing trend of during the training, especially for comparing
two judgments with the same score.

Judge Scoring Shift. To investigate the judge score distribution change during Meta-Rewarding
training iterations, we use the same validation prompts as used for reward modeling evaluation. We
generate 7 responses on each prompt using Llama-3-8B-Instruct, then generate 11 judgments for
each response. Figure 5 is a visualization of the scoring distribution, where the density is estimated
using Gaussian kernel density estimation (Davis et al., 2011). Training the judge using the meta-
judge further increases its likelihood of generating higher scores. However, we notice that the first 2
iterations of the judge training makes it prefer to assign scores 4.5, 4.75, 4.9 even though the scores
should be integers according to the instruction. Although these are high scores, they provide more
granularity and distinguishing ability for separating different quality responses.

4 RELATED WORK

RLHF Significant efforts have been made towards aligning LLMs with human values. These align-
ment strategies can be broadly classified into aligning with a reward model or aligning directly based
on a preference dataset. Ziegler et al. (2019); Stiennon et al. (2020); Ouyang et al. (2022); Bai et al.
(2022a) train a fixed reward model from human preference data, and then use the reward model
to train via reinforcement learning (RL), e.g. via Proximal Policy Optimization (PPO) (Schulman
et al., 2017). To further reduce engineering costs, P3O (Wu et al., 2023) derived the contrastive
policy gradient, which has shown superior performance over PPO while removing the need for a
value function. In contrast, methods such as Direct Preference Optimization (DPO) (Rafailov et al.,
2024) avoid training the reward model entirely, and instead directly train the LLM using human
preferences. Several other such competing methods exist as well (Xu et al., 2023; Zhao et al., 2023;
Zheng et al., 2023; Yuan et al., 2024a). Iterative DPO (Xu et al., 2023) uses a reward model to build
preference data from model responses for multiple rounds of DPO training, with improved results.

LLM-as-a-Judge Using LLM-as-a-Judge for evaluation (Li et al., 2024; Dubois et al., 2023; 2024b;
Saha et al., 2023; Bai et al., 2024) and training reward models (Lee et al., 2023; Zhu et al., 2023;
Chen et al., 2023; Li et al., 2023) has become a standard practice. Some works, such as Kim et al.

10

(2023; 2024), have investigated how to construct datasets for training a LLM-as-a-Judge. However,
these approaches typically use human data or data coming from a much stronger model. In contrast,
our approach emphasizes self-improvement of judgment skills.

Super Alignment The idea of aligning a very capable model that even surpasses human level is
called super alignment. Since current AI alignment methods mostly rely on either supervised fine-
tuning (SFT) with human-provided demonstrations (Sanh et al., 2021; Wei et al., 2021; Chung et al.,
2024) or reinforcement learning from human feedback (RLHF) (Ziegler et al., 2019; Stiennon et al.,
2020; Ouyang et al., 2022), their capabilities would be inherently limited as humans cannot always
provide helpful demonstrations or supervision on the hard tasks beyond their expertise (Sharma
et al., 2023). Several promising directions toward super alignment exist, including using models
to assist human supervision (Scalable oversight (Bowman et al., 2022; Saunders et al., 2022; Leike
et al., 2018; Lightman et al., 2023)), automatic search for problematic behaviors or internals (Inter-
pretability (Perez et al., 2022; Bills et al., 2023; Templeton, 2024)) and more. Perhaps the closest
direction to our work is using AI to produce feedback for training AI, which is also known as RLAIF
(Zhu et al., 2023; Lee et al., 2023). For example, Constitutional AI (Bai et al., 2022b) uses an LLM
to give feedback and refine responses, and uses this data to train a reward model, which is then used
to train the language model via RL. McAleese et al. (2024) trained CriticGPT to write critiques that
highlight inaccuracies in ChatGPT answers. Self-Rewarding Yuan et al. (2024c), the closest work
to ours which we build upon, is an iterative training scheme where the model acts as a judge to
evaluate its own responses and then that feedback is used in the preference optimization. However,
as far as we know, less work has focused on training the actor and the judge simultaneously during
self-improvement.

5 LIMITATIONS

A deficiency in our experimental setup is the 5-point judging system that we chose, following Yuan
et al. (2024b). We discovered that this scoring method often results in ties due to minimal quality
differences between responses, necessitating careful averaging of multiple judgments to differentiate
between them. Moreover, as training progressed, responses increasingly approached the maximum
score, making further improvements difficult to detect. A more nuanced scoring system that covers
diverse aspects (Wang et al., 2024) or a comparison-based approach might address these issues.

Another significant limitation lies in the judge training process. Despite our efforts to mitigate po-
sitional bias of our meta-judge, this issue persists and hindered further improvements in Iteration 3.
The judge also demonstrated a tendency to assign higher scores, which accelerated score saturation
and reduced its ability to discriminate between responses. Furthermore, the judge showed limited
improvement in evaluating non-self-generated responses in our evaluations. We believe there is sub-
stantial room for improvement if these issues can be effectively addressed, which could significantly
boost the overall effectiveness of our approach.

6 CONCLUSION

In this work, we propose a novel mechanism for improving the judging skill of models by using a
meta-judge that assigns meta-rewards to select chosen and rejected judgments for preference opti-
mization. This addresses a major limitation of the Self-Rewarding framework (Yuan et al., 2024c),
specifically the lack of training the judge. To make Meta-Rewarding training work, we additionally
introduce a new length-control technique to mitigate the issue of length explosion when training with
AI feedback. The effectiveness of our method is demonstrated through auto-evaluation benchmarks
AlpacaEval, Arena-Hard, and MT-Bench. Remarkably, even without additional human feedback,
our approach significantly improves upon Llama-3-8B-Instruct and surpasses both Self-Rewarding
and SPPO (Wu et al., 2024), a strong baseline that relies heavily on human feedback. Furthermore,
when we evaluate our model’s judging ability, it shows significant improvement in correlation with
both human judges and strong AI judges like gpt-4-1106-preview. Overall, our findings provide
strong evidence that self-improving the model without any human feedback is a promising direction
for achieving super alignment.

11

REFERENCES

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022a.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harm-
lessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022b.

Yushi Bai, Jiahao Ying, Yixin Cao, Xin Lv, Yuze He, Xiaozhi Wang, Jifan Yu, Kaisheng Zeng, Yijia
Xiao, Haozhe Lyu, et al. Benchmarking foundation models with language-model-as-an-examiner.
Advances in Neural Information Processing Systems, 36, 2024.

Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya Sutskever,
Jan Leike, Jeff Wu, and William Saunders. Language models can explain neurons in lan-
guage models. URL https://openaipublic. blob. core. windows. net/neuron-explainer/paper/index.
html.(Date accessed: 14.05. 2023), 2, 2023.

Samuel R Bowman, Jeeyoon Hyun, Ethan Perez, Edwin Chen, Craig Pettit, Scott Heiner, Kamilė
Lukošiūtė, Amanda Askell, Andy Jones, Anna Chen, et al. Measuring progress on scalable over-
sight for large language models. arXiv preprint arXiv:2211.03540, 2022.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbren-
ner, Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, et al. Weak-to-strong general-
ization: Eliciting strong capabilities with weak supervision. arXiv preprint arXiv:2312.09390,
2023.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vijay
Srinivasan, Tianyi Zhou, Heng Huang, et al. Alpagasus: Training a better alpaca with fewer data.
arXiv preprint arXiv:2307.08701, 2023.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
guage models. Journal of Machine Learning Research, 25(70):1–53, 2024.

Richard A Davis, Keh-Shin Lii, and Dimitris N Politis. Remarks on some nonparametric estimates
of a density function. Selected Works of Murray Rosenblatt, pp. 95–100, 2011.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback, 2023.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled al-
pacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024a.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback. Advances in Neural Information Processing Systems,
36, 2024b.

Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, Shayne Longpre, Hwaran Lee, Sangdoo Yun,
Seongjin Shin, Sungdong Kim, James Thorne, et al. Prometheus: Inducing fine-grained evalua-
tion capability in language models. In The Twelfth International Conference on Learning Repre-
sentations, 2023.

Seungone Kim, Juyoung Suk, Shayne Longpre, Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham
Neubig, Moontae Lee, Kyungjae Lee, and Minjoon Seo. Prometheus 2: An open source language
model specialized in evaluating other language models. arXiv preprint arXiv:2405.01535, 2024.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith
Stevens, Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richárd Nagyfi, et al. Openassistant
conversations-democratizing large language model alignment. Advances in Neural Information
Processing Systems, 36, 2024.

12

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Lu, Thomas Mesnard, Colton Bishop, Victor
Carbune, and Abhinav Rastogi. Rlaif: Scaling reinforcement learning from human feedback with
ai feedback. arXiv preprint arXiv:2309.00267, 2023.

Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and Shane Legg. Scalable
agent alignment via reward modeling: a research direction. arXiv preprint arXiv:1811.07871,
2018.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E Gon-
zalez, and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and
benchbuilder pipeline. arXiv preprint arXiv:2406.11939, 2024.

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Luke Zettlemoyer, Omer Levy, Jason Weston, and
Mike Lewis. Self-alignment with instruction backtranslation. arXiv preprint arXiv:2308.06259,
2023.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Nat McAleese, Rai Michael Pokorny, Juan Felipe Ceron Uribe, Evgenia Nitishinskaya, Maja Tre-
bacz, and Jan Leike. Llm critics help catch llm bugs. arXiv preprint arXiv:2407.00215, 2024.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Ryan Park, Rafael Rafailov, Stefano Ermon, and Chelsea Finn. Disentangling length from quality
in direct preference optimization. arXiv preprint arXiv:2403.19159, 2024.

Ethan Perez, Saffron Huang, Francis Song, Trevor Cai, Roman Ring, John Aslanides, Amelia
Glaese, Nat McAleese, and Geoffrey Irving. Red teaming language models with language models.
arXiv preprint arXiv:2202.03286, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Swarnadeep Saha, Omer Levy, Asli Celikyilmaz, Mohit Bansal, Jason Weston, and Xian Li.
Branch-solve-merge improves large language model evaluation and generation. arXiv preprint
arXiv:2310.15123, 2023.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai, An-
toine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted training
enables zero-shot task generalization. arXiv preprint arXiv:2110.08207, 2021.

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan
Leike. Self-critiquing models for assisting human evaluators. arXiv preprint arXiv:2206.05802,
2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Mrinank Sharma, Meg Tong, Tomasz Korbak, David Duvenaud, Amanda Askell, Samuel R Bow-
man, Newton Cheng, Esin Durmus, Zac Hatfield-Dodds, Scott R Johnston, et al. Towards under-
standing sycophancy in language models. arXiv preprint arXiv:2310.13548, 2023.

Prasann Singhal, Tanya Goyal, Jiacheng Xu, and Greg Durrett. A long way to go: Investigating
length correlations in rlhf. arXiv preprint arXiv:2310.03716, 2023.

13

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–3021, 2020.

Adly Templeton. Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet.
Anthropic, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi Zeng, Gerald Shen, Daniel Egert, Jimmy J Zhang,
Makesh Narsimhan Sreedhar, and Oleksii Kuchaiev. Helpsteer2: Open-source dataset for training
top-performing reward models. arXiv preprint arXiv:2406.08673, 2024.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Tianhao Wu, Banghua Zhu, Ruoyu Zhang, Zhaojin Wen, Kannan Ramchandran, and Jiantao Jiao.
Pairwise proximal policy optimization: Harnessing relative feedback for llm alignment. arXiv
preprint arXiv:2310.00212, 2023.

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play
preference optimization for language model alignment. arXiv preprint arXiv:2405.00675, 2024.

Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason Weston. Some things are more cringe than
others: Preference optimization with the pairwise cringe loss. arXiv preprint arXiv:2312.16682,
2023.

Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Wei Wang, Songfang Huang, and Fei Huang. Rrhf: Rank
responses to align language models with human feedback. Advances in Neural Information Pro-
cessing Systems, 36, 2024a.

Weizhe Yuan, Ilia Kulikov, Ping Yu, Kyunghyun Cho, Sainbayar Sukhbaatar, Jason Weston, and
Jing Xu. Following length constraints in instructions. arXiv preprint arXiv:2406.17744, 2024b.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu,
and Jason E Weston. Self-rewarding language models. In Forty-first International Conference on
Machine Learning, 2024c. URL https://openreview.net/forum?id=0NphYCmgua.

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf:
Sequence likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425, 2023.

Chujie Zheng, Pei Ke, Zheng Zhang, and Minlie Huang. Click: Controllable text generation with
sequence likelihood contrastive learning. arXiv preprint arXiv:2306.03350, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu, and Jiantao Jiao. Starling-7b: Improving llm
helpfulness & harmlessness with rlaif, 2023.

14

https://openreview.net/forum?id=0NphYCmgua

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

A APPENDIX

A.1 JUDGE PROMPT

Pointwise Judge Prompt

Review the user’s question and the corresponding response using the additive 5-point scoring
system described below. Points are accumulated based on the satisfaction of each criterion:

- Add 1 point if the response is relevant and provides some information related to
the user’s inquiry, even if it is incomplete or contains some irrelevant content.
- Add another point if the response addresses a substantial portion of the user’s question,
but does not completely resolve the query or provide a direct answer.
- Award a third point if the response answers the basic elements of the user’s question in a
useful way, regardless of whether it seems to have been written by an AI Assistant or if it
has elements typically found in blogs or search results.
- Grant a fourth point if the response is clearly written from an AI Assistant’s perspective,
addressing the user’s question directly and comprehensively, and is well-organized and
helpful, even if there is slight room for improvement in clarity, conciseness or focus.
- Bestow a fifth point for a response that is impeccably tailored to the user’s question
by an AI Assistant, without extraneous information, reflecting expert knowledge, and
demonstrating a high-quality, engaging, and insightful answer.

User: {query}

<response>{response}</response>

After examining the user’s instruction and the response:

- Briefly justify your total score, up to 100 words.
- Conclude with the score using the format: “Score: <total points>”

Remember to assess from the AI Assistant perspective, utilizing web search knowledge as
necessary.

We adopt the same judge prompt as in Yuan et al. (2024c).

15

A.2 GPT4 JUDGE PROMPT

alpaca eval clf gpt4 turbo

<|im start|>system
You are a highly efficient assistant, who evaluates and selects the best large language model
(LLMs) based on the quality of their responses to a given instruction. This process will be
used to create a leaderboard reflecting the most accurate and human-preferred answers.
<|im end|>
<|im start|>user
I require a leaderboard for various large language models. I’ll provide you with prompts
given to these models and their corresponding outputs. Your task is to assess these
responses, and select the model that produces the best output from a human perspective.

Instruction

{
“instruction”: ““{instruction}””,

}

Model Outputs

Here are the unordered outputs from the models. Each output is associated with a
specific model, identified by a unique model identifier.

{
{

“model identifier”: “m”,
“output”: ““{output 1}””

},
{

“model identifier”: “M”,
“output”: ““{output 2}””

}
}

Task

Evaluate the models based on the quality and relevance of their outputs, and select
the model that generated the best output. Answer by providing the model identifier of the
best model. We will use your output as the name of the best model, so make sure your
output only contains one of the following model identifiers and nothing else (no quotes, no
spaces, no new lines, ...): m or M.

Best Model Identifier
<|im end|>

We adopt this prompt from AlpacaEval, which is proved to have high correlation with human judges.

A.3 TRAINING DETAILS

For the SFT model, we train for a total of 10 epochs using a learning rate 5× 10−8 and global batch
size of 32. We employed cosine learning rate scheduling and saved a checkpoint after every epoch.
We selected checkpoint from epoch 5 as the final model.

For all DPO training, we also trained for 10 epochs, with a learning rate of 5 × 10−6, β = 0.1 and
global batch size of 32. We adopted cosine learning rate scheduling.

For Self-Rewarding training, during Iteration 1 we set ρ = 0 for actor data creation and applied a
filter to exclude pairs where the chosen response length exceeded 2500 characters. We selected the
checkpoint from epoch 5 for this iteration. In both Iteration 2 & 3 we continue with ρ = 0 and chose
checkpoints from epoch 1 and epoch 2 respectively. For Iteration 4, we adjust ρ to 0.1 and selected
the checkpoint from epoch 2.

For Meta-Rewarding training in Iteration 1 we set ρ = 0 for actor data creation, and we filtered
out pairs with chosen response length exceeding 2500 characters. Additionally, for the judge data
creation, we filtered out pairs if the chosen judgment length exceeded 1100. We selected checkpoint

16

Figure 6: Distribution of Prompts: A t-SNE to visualization of three sources of prompts: training
prompts, AlpacaEval prompts and Arena-Hard prompts. The embedding of the prompts are cal-
culated by text-embedding-3-small. Our training prompts are closer in distribution to AlpacaEval
prompts, while Arena-Hard is more concentrated into a subset of the distribution.

Table 6: MT-Bench: Since our training mainly focus on the first-turn capability, we observe a
significant improvement in the Turn 1 Score. While the Self-Rewarding baseline suffer from a large
drop in Turn 2 score, our Meta-Rewarding only sacrifice slightly and even improving the Turn 2
score in Iteration 3 & 4.

Model Score Turn 1 Turn 2 Length
Llama-3-8B-Instruct 8.116 8.319 7.911 1568
SFT on EFT 7.943 8.138 7.747 1511
Self-Rewarding LLM + LC

Iteration 1 7.909 8.144 7.671 1576
Iteration 2 7.894 8.200 7.588 1570
Iteration 3 7.984 8.231 7.734 1528
Iteration 4 8.028 8.381 7.675 1539

Meta-Rewarding LLM
Iteration 1 7.994 8.263 7.725 1555
Iteration 2 8.198 8.794 7.595 1577
Iteration 3 8.341 8.731 7.950 1596
Iteration 4 8.288 8.738 7.838 1592

from epoch 6 for this iteration. In Iteration 2, we increased ρ to 0.32 and set the threshold to 1000
for judge data filtering, we selected the checkpoint from epoch 4. In Iteration 3 we maintain ρ at
0.32 and chose the checkpoint from epoch 2. Finally, in Iteration 4, we further increased ρ to 0.4
and again selected the checkpoint from epoch 2.

17

Table 7: Judge’s Correlation with Human: We measure the judge’s agreement (with and without
ties) with humans on the Open Assistant test set. Spearman correlation represent the ranking spear-
man correlation with the ground truth averaged over prompts.

Model Agreement Agree wo Tie Spearman corr.
Llama-3-8B-Instruct 62.81% 64.18% 0.315
SFT on EFT 63.20% 64.59% 0.321
Self-Rewarding LLM + LC

Iteration 1 63.04% 65.04% 0.298
Iteration 2 64.14% 67.17% 0.347
Iteration 3 60.23% 61.63% 0.251
Iteration 4 61.48% 62.22% 0.283

Meta-Rewarding LLM
Iteration 1 57.73% 61.98% 0.210
Iteration 2 66.64% 68.33% 0.382
Iteration 3 63.35% 65.24% 0.329
Iteration 4 62.96% 64.82% 0.326

18

	Introduction
	Meta-Rewarding
	Actor Preference Dataset Creation
	Judge Preference Dataset Creation

	Experiments
	Experimental Setup
	Evaluation Methods
	Instruction Following Evaluation
	Reward Modeling Evaluation
	Ablations and Analysis

	Related work
	Limitations
	Conclusion
	Appendix
	Judge Prompt
	GPT4 Judge Prompt
	Training Details

