arXiv:2409.15277v1 [cs.CL] 23 Sep 2024

Preprint

A PRELIMINARY STUDY OF 01 IN MEDICINE
ARE WE CLOSER TO AN AI DOCTOR ﬁﬁ‘ ?

Yunfei Xie'* Juncheng Wu'* Haoqin Tu'* Siwei Yang'*

Bingchen Zhao?

*equal technical contribution

1UC Santa Cruz 2University of Edinburgh

PUBHEALTH Ver.

PubMedQA MedNLI-Dis

MedQA 66 69 MIMIC4ED

MedMCQA--80.1 - 64.8 37.4 37.4 62733

LancetQA N4 g g MedBench

NEJMQA MedCalc-Bench
Medbullets

ol GPT-3.5 Llama3-8B
GPT-4 MEDITRON-70B

PICO

Yongshuo Zong? Qiao Jin®> Cihang Xie' Yuyin Zhou'

3National Institutes of Health

100%

90%

80% %
%

40%
30%
20%

10%

0%

ol GPT-3.5 Llama3-8B
GPT-4 MEDITRON-70B

Figure 1: Overall results of o1 and other 4 strong LLMs. Figure 2: Average accuracy of ol and
We show performance on 12 medical datasets spanning other 4 strong LLMs. o1 achieves
diverse domains. o1 demonstrates a clear performance the highest average accuracy of 74.3%

advantage over close- and open-source models.

across 19 medical datasets.

ABSTRACT

Large language models (LLMs) have exhibited remarkable capabilities across vari-
ous domains and tasks, pushing the boundaries of our knowledge in learning and
cognition. The latest model, OpenAl’s o1, stands out as the first LLM with an inter-
nalized chain-of-thought technique using reinforcement learning strategies. While
it has demonstrated surprisingly strong capabilities on various general language
tasks, its performance in specialized fields such as medicine remains unknown. To
this end, this report provides a preliminary exploration of o1 on different medical
scenarios, comprehensively examining 3 key aspects: understanding, reasoning,
and multilinguality. Specifically, our evaluation encompasses 6 tasks using data
from 37 medical datasets, including two newly constructed and more challenging
question-answering (QA) tasks based on professional medical quizzes from the
New England Journal of Medicine and The Lancet. These datasets offer greater
clinical relevance compared to standard medical QA benchmarks such as MedQA,
translating more effectively into real-world clinical utility. Our analysis of o1 sug-
gests that the enhanced reasoning ability of LLMs may (significantly) benefit their
capability to understand various medical instructions and reason through complex
clinical scenarios. Notably, o1 surpasses the previous GPT-4 in accuracy by an
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average of 6.2% and 6.6% across 19 datasets and two newly created complex QA
scenarios. But meanwhile, we also identify several weaknesses in both the model ca-
pability and the existing evaluation protocols, including hallucination, inconsistent
multilingual ability, and discrepant metrics for evaluation. We release our raw data
and model outputs at https://ucsc-vlaa.github.io/ol_medicine/
for future research.

1 INTRODUCTION

Intelligence, a complex and elusive concept, has puzzled psychologists, philosophers, and computer
scientists for years (Bubeck et al.||2023)). While there is no single agreed-upon definition of intelli-
gence, it is widely accepted that it spans a broad range of cognitive skills, rather than being confined
to a specific task (McCarthy et al., |1955). Creating artificial systems with such general intelligence
has been a long-standing and ambitious goal of Al research. The most exciting progresses in Al are
achieved by language models in these years, from the initial start of ChatGPT to its evolution and
other open-source projects (Touvron et al., 2023azb; |Jiang et al.,[2023}; |Bai et al.,|2023}; [Peng et al.,
2024).

Early LLM pioneers set out goals to understand and interact with human by exploring generalizable
reasoning mechanisms and building knowledge bases with vast amounts of commonsense information.
With parameters and data volume in place, the question of how to effectively prompt the model from
the user end and train it from the developer end has become a trending topic of exploration (Wei et al.|
2022; Ouyang et al.,[2022)). On the user side, varying prompting techniques can significantly impact
model performance. Chain-of-thought (CoT) prompting (Wei et al.,|2022; Dong et al.| 2022} |Saunders
et al.| 2022)), one of the most popular strategies, leverages the model’s internal reasoning patterns to
enhance its ability to solve complex tasks. OpenAl capitalized on this by embedding the CoT process
into model training, integrating reinforcement learning, and finally introduced the o1 model (OpenAll
2024)). While the o1 model demonstrates strong performance in general domains, its effectiveness in
specialized fields like medicine—where domain-specific training may be lacking—remains uncertain.
Moreover, current benchmarks for LLMs in the medical domain often evaluate models only on a
limited set of factors, often focusing on isolated aspects such as knowledge and reasoning (Nori et al.
2023b; |Liévin et al., [2024), safety (Han et al.,|2024), or multilinguality (Wang et al.,|2024)). These
factors make a comprehensive assessment of LLMs’ capabilities—especially for advanced models
like 01—in medical challenging tasks (Figure|[T).

This paper aims to provide an initiative to close this gap, focusing on ol. We identify three
fundamental aspects of LLMs in medicine: understanding, reasoning, and multilinguality. To
evaluate these capabilities, we assembled 35 existing medical datasets and developed two novel,
challenging QA datasets that include instructions and expected outputs, ensuring comprehensive
assessment. With evaluation on this extensive suite, our key findings include:

* o1 demonstrates improved transfer of clinical understanding and reasoning abilities, validating its
competence in real-world diagnostic scenarios compared with both close- and open-source models
as presented in Figure[I|and Figure 2}

* No single model excels across all tasks on our medical leaderboard, though o1 comes close to
dominating most evaluations;

* o1 still suffers from the long-standing issue of hallucination and complex multilingual medical
cases;

* Inconsistencies in metrics for medical NLP can significantly affect models’ standings, which calls
for a re-evaluation of reliable metrics for future LLMs;

* CoT prompting can further enhance o1 in medicine, despite its training having already integrated
CoT data.

In addition to these findings, we also elevate the discussion section as an initial attempt to address
the issues identified during our benchmarking in Section[5] Particularly, we highlight the potential
negative effects of o1, emphasize the urgent need for consistent and unified evaluation metrics for
future LLLMs, and advocate for improved instruction templates that can be applied to models with
embedded prompting strategies.


https://ucsc-vlaa.github.io/o1_medicine/
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Figure 3: Our evaluation pipeline has different (a) aspects with various (b) prompting strategies
using the latest (c) language models. We leverage a comprehensive set of (d) evaluations to present a
holistic view of model progress in the medical domain.

2 RELATED WORKS

Large Language Models with Enhanced Reasoning Ability. Large Language models (LLMs)
based on next token prediction pre-training (Touvron et al.| 2023alb; |Achiam et al., [2023) have
demonstrated promising capabilities on various language undersanding tasks. Instruction fine-tuning
further improved the abilites of these LLMs for following user instructions. However, recent studies
suggest that LLMs struggle with complex tasks involving logical reasoning. To address this issue,
some researches propose to instruct LLMs to mimic human thinking processes by producing a chain-
of-thought (CoT) (Feng et al.|[2024; Wei et al.,2022) before generating a final answer. Reinforcement
learning from human feedback (Ouyang et al.,[2022) has also been employed to enhance reasoning
while make sure the models align with human values (Tu et al.| [2023bja). Recently, OpenAl
introduced o1, which was trained on a vast amount of CoT data, further enhancing the capability of
LLMs in solving scientific problems. In this paper, we aim to investigate whether enhanced abilities
of o1 effectively transfer to the clinical medical domain.

Medical Large Language Models. Benefiting from the generalization capabilities of LLMs, general-
purpose models such as GPT-4 have demonstrated impressive performance on challenging medical
problems (Nori et al.,[2023aj; [Wu et al., [ 2024b). Some researchers have attempted to further equip
LLMs with biomedical knowledge by fine-tuning them using domain-specific corpora (Chen et al.,
2023} [Wang et al.,|2023; Wu et al., [2024a; [Li et al., |2023)). However, for clinical applications, LLMs
are not only required to understand medical domain-specific knowledge but also to produce reliable
responses by performing logical reasoning. In this paper, we aim to explore the potential of o1 as a
clinical viable model. Our experimental findings reveal that with enhanced understanding, reasoning,
and multilinguality medical capabilities, o1 makes a step closer to reliable clinical Al-system.

3 EVALUATION PIPELINE

3.1 OVERALL TAXONOMY OF EVALUATIONS

First, we present the taxonomy of our evaluation, along with an overview of the evaluation pipeline as
shown in Figure 3] Firstly, we specify three aspects of the model capabilities, namely understanding,
reasoning, and multilinguality, that correspond to the real-world needs of clinical physicians. To
ensure a comprehensive evaluation, we collect a diverse range of medical tasks and datasets that
fall under these three aspects. Moreover, we explore three prompting strategies in our pipeline,
including (1) direct prompting, which instructs LLMs to solve specific problems directly, (2) chain-of-
thought, which requires models to think step-by-step before generating the final answer, (3) few-shot

"nttps://www.thelancet.com/
Thttps://www.nejm.org/
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Table 1: Six datasets across three fundamental aspects employed in our evaluation suite. Asterisks (*)
denotes the newly constructed datasets from public sources.

Aspect Task Dataset Description Metrics
BC5-disease (Li et al.|2016 Entity extraction for disease.
BC5Chem (Li et al. Entity extraction for chemical.
BC4Chem (Savery et al.|[2020 Entity extraction for chemical names from
PubMed article abstracts.
Species800 (Pafilis et al.|[2013 Extraction of organism names from PubMed Fl-score
article abstracts.
HoC (Baker et al.[[2016 Classification of the hallmarks of cancer given
Concept biomedical article abstracts.
%0 Recognition HumanDi§easeOnt010%.y Schriml et al.l 2019' Disease pntology-baseq entity extraction. BLEU, ROUGE,
E BioLORD (Remy et al. Elaboration of biomedical concepts. AlignScore, Mauve
% PMC-Patient (Zhao et al.|[2023 Patient-related entity (gender and age for ex-
2 ample) extraction from PubMed Central arti-
5 cles.
Information extraction of outcome, interven- Accuracy
tion, and participant from article abstracts.
Drug dose extraction given the drug informa-
tion.
Summarization of patient reports from emer-
gency departments.
Text umiarization of medical evidence from clin- By EU, ROUGE,
Summary ical studl'es in hteraturle reviews. AlignScore, Mauve
Summarization of patient notes, reports, and
health records.
QA data built on PubMed abstracts.
QA data for medical knowledge assessment.
QA data from AIIMS & NEET PG entrance
Knowledge exams. A
QA LancetQA[L] QA data crawled from Lancet picture quiz ceuracy
gallery.
NEJMQAE' QA and diagnostic challenge requests from
NEIM quiz.
Medbullets (Chen et al.}2024 QA data from Medbullets online medical
study platform.
DDXPlus (Fansi Tchango et al.|2022 Diagnostic decision making of synthesized
patient data.
SEER (Dubey et al.{[2023 Treatment planning for breast cancer cases.
g MIMIC4ED-Hospitalizafion (Xic et al. 2022} Prediction of clinical outcomes in emergency
E MIMICA4ED-72h ED Revisit (Xie et al.J[2022) <o\ Accurac
2 MIMIC4ED-Critical Triage (Xie etal.|[2027) medicine from MIMIC-IV-ED. v
I~ MedNLI-Dis. (Romanov & Shivade|[2018) Discriminative entailment task for clinical hy-
. potheses.
Clinical PUBHEALTH Ver. (Kotonya & Toni|[2020) Verification of health-related information
Decision Support from the public.
EBMS (Molla & Santiago-Martinez|2011) Justification verification using the EBMS cor-
pus.
PUBHE/ xp. (Kotonya & Tonif|2020) Explanation of health-related information B EU, ROUGE,
from the public. . . AlignScore, Mauve
ChatDoctor (L1 et al.[[2023 Patient-doctor dialogues from online medical
consultations.
MedNLI-Gen. (Romanov & Shivade!2018) Generative entailment task for clinical hy-
potheses.
Al Hospital (Fan et al.|[2024 Multi-agent task simulating dynamic medical
interactions in Chinese.
Agent AgentClinic (Schmidgall et al.|[2024 Agent benchmark in simulated clinical envi- Accuracy
ronments from MedQA and NEJMQA scenar-
ios.
Medical MedCalc-Bench (Khandekar et al.]|2024)  Medicine dose level calculation from ADE Accuracy
Calculation corpus.
.2 Knowledge XMedBench (Wang et al.|2024 Multilingual benchmark for medical under- Accuracy
% E] QA standing and interaction.
= %ﬁ Agent AT Hospital (Fan et al.|2024 Multi-agent task simulating dynamic medical Accuracy
- interactions in Chinese.
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prompting, which providing models with several examples to learn the input-output mapping on the
fly. Lastly, appropriate metrics are utilized to measure the discrepancy between generated responses
and ground-truth answers. Details about metrics utilized in each dataset are provided in Table [T}

3.2 ASPECTS AND TASKS

In Table [I] our evaluation efforts are structured into three main parts: aspect, task, and dataset.
Specifically, a dataset refers to the data itself along with the metrics used in the current context. We
utilize 35 existing datasets and create 2 additional challenging datasets for evaluation. A task is a
collection of multiple datasets that share a common goal or evaluate similar capabilities within the
model. We categorize all 37 datasets into 6 tasks for clearer evaluation and analysis. An aspect
describes a specific capability or property to understand how well the model performs in a particular
area. In our evaluation pipeline, we focus on three key aspects.

Formally, we illustrate these three evaluation aspects with their corresponding tasks as follows:

* Understanding refers to the model’s ability to utilize its internal medical knowledge to com-
prehend medical concepts. For example, in concept recognition task, the model is required to
extract or elaborate medical concepts from article (Savery et al.l 2020; [Pafilis et al., [2013} Nye
et al., 2018)) or diagnosis report (Zhao et al.,[2023). And in text summarization, the model need to
understand concepts in complex texts to generate a concise summary (Lee et al., 2021} [Wallace
et al.l [2021; Johnson et al.| 2019;2023).

* Reasoning is the ability to conduct multiple steps of logical thinking to arrive at the conclusion.
In question answering tasks, the model is prompted to select correct option from multi-choices
based on reasoning derived from the medical information provided in the question. In addition
to common question-answering datasets (Jin et al., [2019; [Pal et al., 2022} Jin et al., [2021), we
collect real-world clinical questions from The Lancet, the New England Journal of Medicine
(NEJM), and Medbullets (Chen et al., 2024) to better assess the clinical utility of LLMs. In the
clinical suggestion task, the model is required to provide treatment suggestions (Dubey et al.}
2023; L1 et al.| 2023) or diagnostic decisions (Xie et al.,2022; Fansi Tchango et al., 2022)) based
on patients’ information. In the AI Hospital (Fan et al.l 2024) and AgentClinic (Schmidgall
et al., [2024) datasets, we task the model with serving as a medical agent. Furthermore, in the
MedCalc-Bench (Khandekar et al.,|2024)) dataset, the model is required to perform mathematical
reasoning and calculate answers.

* Multilinguality is the ability to complete a task when the languages of input instruction and/or
output answers are changed to different languages. For example, XMedBench (Wang et al.} 2024)
dataset requires LLMs to answer medical questions in six languages, including Chinese, Arabic,
Hindi, Spanish, Chinese and English. In AI Hospital dataset (Fan et al.l 2024), the model is
required to serve as an agent using Chinese.

3.3 METRICS
In this section, we elaborate on metrics employed in our evaluation pipeline.

¢ Accuracy is used to directly measure the percentage of models’ generated answer which exactly
match with the ground-truth. We use accuracy for multi-choice question datasets, MedCalc-
Bench (Khandekar et al.,[2024)) dataset, and portions of clinical suggestion and concept recognition
datasets where the ground-truth answer is a single word or phrase.

* F1-score (Pedregosa et al., [2011)) is the harmonic mean of precision and recall. It is employed in
datasets where the model is required to select multiple correct answers.

¢ BLEU (Papineni et al.,[2002) and ROUGE (Lin & Hovy, |2002) are NLP metrics measuring the
similarity between the generated respond and the ground-truth. Specifically, we utilize BLEU-1
and ROUGE-1 for all free-form generation tasks in our evaluation.

* AlignScore (Zha et al., 2023) is a metric to measure the factual consistency of generated text. In
this paper, we use AlignScore for all free-form generation tasks to evaluate the extent of model’s
hallucination.

* Mauve (Pillutla et al.| 2021)) is a measure of gap between distribution of generated and human-
written text. It is employed for all free-form generation tasks.
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All metrics range from 0 to 100, and a higher number indicates better quality output from the model.

4 EXPERIMENTS

4.1 EXPERIMENT DETAILS

Prompting strategies. For most datasets, we employ the same prompting strategy as described in
previous literature (Wu et al., [2024b; Nori et al., 2023bja): For knowledge QA tasks, agent tasks,
medical calculation tasks, and multilingual-related tasks, we use the direct prompting evaluation
method, which is consistent with the settings of these benchmarks. For other tasks derived from
MedS-Bench (Wu et al., [2024b), we follow their benchmark settings, leveraging a few-shot (3-
shot) prompt strategy with its template shown in Section[A.1] As officially suggested by OpenAl,
common prompting techniques such as Chain-of-Thought (CoT) (Wei et al., 2022) and in-context
examples may not boost o1’s performance as it has implicit CoT built in. To further validate this
claim, we also investigate the effect of several advanced promptings in our evaluation (e.g., CoT,
Self-Consistency (Wang et al., 2022), and Reflex (Shinn et al., 2024)), the detailed input instruction
formats are in Section[A.]

Models for evaluation. We choose the following models to evaluate: GPT—-3.5 (gpt-3.5-turbo-
0125 an advanced language model by OpenAl known for its enhanced contextual understanding;
GPT-4 (gpt-4-0125-preview) (Achiam et al 2023), the successor to GPT—-3.5 with significant
improvements in reasoning and language comprehension; o1 (ol-preview-2024-09-12) (OpenAl,
2024), the lastest LLM model that is capable of performing highly complex reasoning by employing
chain-of-thought reasoning. Apart from these close-source models, we have also incorporated two
open-source ones in our experiments: MEDITRON-70B (Chen et al.,[2023)), an LLM trained with
medical-centric data and Llama3-8B (Metal [2024), the latest and strongest open LLM right now.

4.2 MAIN RESULT: Yes! WE ARE ONE STEP CLOSER TO AN AI DOCTOR

Enhanced ability of ol transfers to its clinical understanding. Given the established results from
o1, which underscore its remarkable effectiveness in knowledge and reasoning abilities such as
mathematical problem-solving and code generation (OpenAl,|2024), we observe that this superior
capability can also be transferred to the specific clinical knowledge understanding. Results presented
in Table[2]demonstrate that o1 outperforms other models on the understanding aspect in most clinical
tasks. We also present these statistics in Figure[T| where we observe that o1 has a larger cover radius
across various medical datasets. For instance, on 5 concept recognition datasets that use F1 as the
metric, o1 outperforms both GPT—4 and GPT-3. 5 by an average of 7.6% and 26.6%, respectively
(i.e., 72.6% vs. 65.0% vs. 46.0%), with a notable 24.5% average improvement on the widely used
BC4Chem dataset.

Additionally, on the summarization task in Table |3] o1 achieves a 2.4% and 3.7% increase in
ROUGE-1 score over GPT-4 and GPT-3.5 (i.e., 31.4% vs. 29.0% vs. 27.7%), demonstrating its
enhanced capacity for real-world clinical understanding. This improved performance confirms that
advancements in general NLP capabilities for LLMs can effectively translate to enhanced model
understanding in the medical domain.

The o1 model demonstrates strong reasoning in clinical diagnosis scenarios. On the reasoning
aspect, ol takes a significant step forward in demonstrating its advantages in real-world diagnostic
situations. In our newly constructed challenging QA tasks, NEJMQA and LacentQA, o1 showcases
an average accuracy improvement of 8.9% and 27.1% over the performance of GPT-4 (79.6%) and
GPT-3.5 (61.5%) on the respective datasets (Table2). Another noteworthy improvement in o1 is
its capacity for mathematical reasoning, elevating the baseline of MedCalc-Bench to 34.9%, which
surpasses GPT—4 by a significant 9.4%. In more complex reasoning scenarios that involve multi-turn
conversations and environmental simulations, o1 outperforms both GPT—-4 and GPT—-3.5 on the
AgentClinic benchmark, achieving accuracy gains of at least 15.5% and 10% with scores of 45.5%
and 20.0% on its MedQA and NEJM subsets, respectively. These observations serve as compelling
evidence of 01’s competence in complex real-world diagnosis and clinical utility scenarios.

Shttps://platform.openai.com/docs/models/gpt-3-5-turbo/
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Table 2: Accuracy (Acc.) or F1 results on 4 tasks across 2 aspects. Model performances with * are
taken from |Wu et al.| (2024b) as the reference. We use the gray background to highlight o1 results.
And we present the average score (Average) of each metric in the table

MEDITRON* Llama3#*
Aspect Task Datasets Metric  © gy GFT-4 GPT-3.5 (70B) (8B)
PMC-Patient (Zhao et al.|[2023) Acc. 764 757 74.4 722 96.0
PICO-Participant (Nye et al.[[2018) Acc. 75.0 75.0 52.5 72.1 58.2
8P PICO-Intervention (Nye et al.|{[2018) Acc. 71,5 750 75.0 46.6 79.1
12 PICO-Outcome (Nye et al.[[2018) Acc. 67,5 650 60.0 51.2 582
K] Concept ADE Corpus (Gurulingappa et al.|[[2012) Acc. 783 783 71.6 95.7 69.6
4 Recognition Average Acc. 749 738 66.7 67.6 722
<
5 BC5-disease (Li et al.|[2016) F1 695 63.0 38.9 1.4 25.3
BC5Chem (Li et al.[[2016) F1 722 712 43.1 4.2 37.9
BC4Chem (Savery et al.[|2020) Fl1 734 65.1 32.7 2.0 19.5
Species800 (Pafilis et al.|2013) F1 71.6 66.8 554 0.4 11.9
HoC (Pafilis et al.||2013) F1 763 59.0 59.8 23.7 38.3
Average F1 726 650 46.0 6.3 26.6
DDXPlus (Fansi Tchango et al.|[2022) Acc. 640 56.0 41.0 29.6 33.8
SEER (Dubey et al.[|2023) Acc. 80.0 69.6 5.0 68.3 56.1
Clinical »Hl\c/g;l:/i[tla(lziiglil)on (Xie et al.|[2022) Acc. 640 61.0 62.0 56.3 39.1
Decision Support MiMIC4ED ; 1
. 72h ED Revisit (Xie et al.|[2022) Acc. 59.7 58.0 53.6 48.5 9.3
g MIMICAED o oran 0022)  Ace. 617 667 587 457 8.8
s -Critical Triage
g MedNLI-Dis. (Romanov & Shivade|2018) Acc. 88.0 84.0 57.0 60.9 63.9
= PUBHEALTH Ver. (Kotonya & Ton1}|2020)  Acc. 764  75.7 74.4 32.7 63.9
Average Acc. 705 673 50.2 48.9 39.3
PubMedQA (Jin et al.|2019) Acc. 750 528 25.4 74.4 73.0
MedQA (Jin et al.|[2021) Acc. 755 69.7 53.8 479 60.9
Knowledge MedMCQA (Pal et al.[[2022) Acc. 950 795 58.8 59.2 50.7
QA Medbullets (Chen et al.;[2024) Acc. 90.6 66.9 50.7 - -
LancetQA Acc. 81.5 76.0 61.0 - -
NEJMQA Acc. 912 835 65.0 - -
Average Acc. 848 714 52.5 60.5 61.5
Medical Calculation ~ MedCalc-Bench (Khandekar et al.||2024) Acc. 349 255 10.8 - -

Table 3: BLEU-1 (B-1) and ROUGE-1 (R-1) results on 3 tasks across 2 aspects. We use the gray
background to highlight o1 results. We also present the average score (Average) of each metric

ol GPT-4  GPT-3.5 MED(%;;)ON* leigr%af*
Aspect Task Datasets

B-1+ R14 B-11 R-11 B-11 R-11B-11 R-11 B-11 R-17

g0 MIMIC-IV-Ultrasound (Johnson et al.|2023) 22.2 28.8 159 27.0 11.0 21.1 3.8 6.1 18.1 20.0
= Text MIMIC-IV-CT (Johnson et al./[2023) 19.0 264 157 227 187 259 163 239 245 294
g Summary RCT-Text (Wallace et al.|[2021) 195 234 195 234 206 242 4.0 164 154 146
g MedQSum (Lee et al.[2021) 39.2 468 363 43.0 265 39.6 156 23.1 225 25.1
] Average 250 314 21.8 29.0 192 277 99 174 20.1 223
= Concept HumanDO (Schriml et al.|[2019) 249 331 97 162 122 194 7.7 254 149 188
Recognition BioLORD (Remy et al.|[2024) 23.0 31.8 147 218 12.8 19.1 11.8 227 89 146
Average 24.0 325 122 190 125 193 98 241 119 167

g EBMS (Molla & Santiago-Martinez{[2011) 16.2 204 12.0 163 154 194 11.6 158 165 16.5
'E Clinical PUBHEALTH Exp. (Kotonya & Ton1{2020) 15.8 23.6 15.1 22.0 16.6 23.6 6.1 8.7 16.8 20.3

%  Decision Support ChatDoctor (Li et al./[2023) 122 27.6 209 4.7 140 270 - - - -

é MedNLI-Gen. (Romanov & Shivade![2018) 17.0 26.0 169 258 100 183 44 141 213 228
Average 153 244 162 172 140 221 74 129 182 199

In addition to delivering higher accuracy, o1 provides more concise and straightforward answers. In
the example illustrated in Figure ] o1 generates shorter interpretations while offering the correct
answer. In contrast, GPT—-4 tends to generate hallucinated explanations alongside incorrect answers.
We believe o01’s improvement in both knowledge and reasoning is primarily attributed to the enhanced
data and infrastructure employed during the training process (e.g., CoT data and the reinforcement
learning technique).

These results together provide a positive answer to the question we raised in this paper: Yes! We are
getting closer to an automatic Al doctor with the latest o1 model.
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Table 4: AlignScore and Mauve results on 3 tasks across 2 aspects

AlignScore 1 Mauve 1
Aspect Task Datasets ol GPT-4 GPT-3.5 ol GPT-4 GPT-3.5
Ed MIMIC-IV-Ultrasound (Johnson et al./2023} 27.5 30.9 23.6 6.1 7.4 7.3
k] Text MIMIC-IV-CT (Johnson et al.|[2023} 144 133 13.8 0.4 0.5 0.5
§ Summary RCT-Text (Wallace et al.[[202T) 49 49 5.7 3.1 2.7 11.9
4 MedQSum (Lee et al.|[202T) 345 371 13.6 42.1 52.7 0.6
§ Average 203 21.6 142 129 158 5.1
= Concept HumanDO (Schriml et al.![2019) 17.5 55 52 8.2 0.4 0.4
Recognition BioLORD (Remy et al.||2024) 13.0  19.0 17.9 51.6 42 1.1

Average 15.3 12.3 11.6 299 23 0.8
20 EBMS (Molla & Santiago-Martinez|[2011} 9.0 6.6 5.7 19.5 1.9 23
'g Clinical PUBHEALTH Exp. (Kotonya & Tom2020) 14.8  19.0 17.9 2.1 0.8 1.1
] Decision Support ChatDoctor (Li et al.[|2023} 26.5 20.4 16.6 0.7 0.5 0.6
§ MedNLI-Gen. (Romanov & Shivade!2018) 6.8 9.7 2.5 53 4.5 0.9

Average 14.3 13.9 10.7 6.9 1.9 1.2

Question: A 2-month-old infant with a 1-month history of a generalised persistent blistering rash (figure) and a 4-day
history of vomiting and poor oral intake attended our hospital with her mother. What is the most likely cause of the
rash that appears at 1 month of age and resolves naturally by 2 months?

Options:

A) Congenital candidiasis B) Congenital CMV infection C) Congenital syphilis D) Herpes simplex infection

Answer: C) Congenital syphilis

Reasoning:

The infant presented with a generalized persistent blistering rash that began at 1 month of age and

resolved by 2 months. Among the options, congenital syphilis is known to present with bullous skin

lesions (pemphigus syphiliticus) in infants, typically appearing around this age. These lesions can be

generalized and involve the palms and soles. The vomiting and poor oral intake could be associated
o1 y ic symp of congenital syphilis. The other options are less likely: congenital candidiasis

usually presents earlier and isn't characterized by a generalized blistering rash; congenital CMV

typically presents at birth with petechial rashes; neonatal herpes simplex infection usually presents

within the first few weeks of life.

Answer: A) Congenital candidiasis x

Reasoning:

To determine the most likely cause of the rash that appears at 1 month of age and resolves

naturally by 2 months in a 2-month-old infant, we need to consider the clinical presentation and

natural course of the diseases listed in the options.

Option A: Congenital candidiasis typically presents shortly after birth and is not known to

spontaneously resolve within a month. It usually requires antifungal treatment.

Option B: Congenital CMV infection can present with a rash, but it is unlikely to resolve naturally

by 2 months. It often comes with other systemic symptoms like hepatosplenomegaly, petechiae,

and neurological findings.

Option C: Congenital syphilis can cause a rash, but it often persists and can be accompanied by

other systemic signs such as rhinitis, hepatosplenomegaly, and bone abnormalities. The rash does
GPT-4 not typically resolve on its own without treatment.

Option D: Herpes simplex infection may present with a generalized blistering rash in neonates,

and some cases can resolve on their own. However, herpes simplex infection can be severe and

often requires antiviral treatment, especially with systemic or CNS involvement, which can lead

to vomiting and poor oral intake.

Given the data, the best fit for a self-resolving rash by 2 months of age among these options is

congenital candidiasis, as it may manifest early and is less likely to cause severe systemic illness

leading to hospitalization mainly for rash concerns. The other conditions generally do not have a

natural history of resolution without medical intervention.

Figure 4: Answers from o1 and GPT-4 on a question from LancetQA. o1 provides a more concise
and accurate reasoning process compared to GPT—4.

4.3 FURTHER ANALYSIS

No model excels across all tasks in the medical domain. Table[2]and Table [3]indicate that, for now,
there are always trade-offs (even under the same metric) to be made when selecting a model to use in
the medical domain. One example is the clinical decision support task in Table |2} o1 outperforms
both GPT-4 and GPT-3. 5 on most datasets, but lags far behind GPT-4 on the MIMIC4ED-Critical
Triage dataset by 5% in accuracy. Interestingly, we also found the recent released open LLM—
Llama3 takes a lead in PMC-Patient and PICO-Intervention datasets with an unexpected 19.6%
accuracy gap between ol and L1ama3 on PMC-Patient (76.4% vs. 96.0%). Nevertheless, o1 comes
close to being the best in most situations, it boasts a leading position across datasets in clinical
decision support, knowledge QA, and medical calculation. This claim is supported by the average
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Table 5: Accuracy of LLMs on two agentic benchmarks

AT Hospital AgentClinic
Tasks (Fan et al.|2024) (Schmidgall et al.}||2024)
Medical Diagnostic Diagnostic Treatment
Symp. Exam. Results Rationales Plan MedQA NEIM
ol 67.0 434 45.1 45.1 39.9 45.5 20.0
GPT-4 66.7 45.0 44.2 45.8 38.2 30.4 10.0
GPT-3.5 62.0 40.7 35.8 36.3 24.7 25.2 7.5

Table 6: Accuracy results of model results with/without CoT prompting on 5 knowledge QA datasets

Datasets ol ol (CoT) GPT-4 GPT-4 (CoT)
PubMedQA (Jin et al.||2019) 75.0 75.2 52.8 62.2
MedQA (Jin et al.}[2021) 95.0 95.2 79.5 86.1
MedMCQA (Pal et al.||2022) 75.5 81.9 69.7 72.6
LancetQA 81.5 85.5 76.0 81.5
NEJMQA 91.2 96.3 83.5 86.4

result over 19 dataset accuracy in Tableand Figure 0l (74.3%) > GPT-4 (68.1%) > GPT-3.5
(53.2%)

Advanced prompting can partially help models trained with CoT data. o1 was released using
chain-of-thought (CoT) data embedding in the training process; however, we found that applying the
CoT prompting still enhances o01’s performance on knowledge QA tasks in medicine, as shown in
Table[6] The table reveals an average boost of 3.18% over the original 83.6% accuracy of o1. While
this improvement is not as significant as with GPT-4, CoT proves to be a promising way for guiding
o1 in medical tasks. However, when it comes to other fancy promptings, such as self-consistency
(SC) (Wang et al.l 2022) and reflex (Shinn et al.| |2024), this conclusion may not stand still. We
witness an average performance decline of 12.8% using these two strategies compared to only CoT
on LancetQA (Table[7).

Hallucination remains a significant challenge. We use AlignScore (Zha et al.,|2023)) to evaluate
hallucination in LLMs. In Table ] the o1 model demonstrates a 1.3% decrease in AlignScore
compared to GPT—4 across five text summarization datasets. Moreover, the overall improvements
of o1 across three tasks (Table ) in AlignScore significantly lag behind those of other evaluation
metrics—averaging 0.7 in AlignScore compared to 9.9 in Mauve relative to GPT-4. This indicates
that o1 is still susceptible to language hallucination, highlighting that such problem remains a
persistent challenge in LLMs.

ol struggles in reasoning over complex multilingual tasks. Advanced LLMs are expected to
demonstrate equivalent reasoning abilities to languages other than English. However, as o1 con-
sistently outperforms other models in multilingual QA tasks: ol (85.2%) > GPT-4 (75.7%) >
GPT-3.5 (54.1%) on average (Table [§), it falls short in a much more complex Chinese agent
benchmark in Table [5}—showing a 1.6% accuracy drop in the medical examinations scenario over
GPT-4 (43.4% vs. 45.0%), leaving its multilingual reasoning in complex situations to be desired.
This interesting outcome might be attributed to the lack of multilingual CoT data during o1’s training,
as learning complex reasoning routes generally requires more efforts than plain instructions in the
few-shot paradigm (Kim et al., [2023} |Singh et al.;|[2024). We present a failure example of o1 on Al
Hospital in Figure[5] We identified instances of mixed language output in the generation from the
doctor, which contribute to the suboptimal performance of o1 in this context.

LLM:s are facing biased judgement using different metrics. Choosing different metrics can lead
to varied results of LLM evaluation (Liang et al., 2022), in our experiments, we observe a similar
unaligned trend even leveraging traditional NLP metrics such as BLEU-1, ROUGE-1, and Mauve. In
most cases from Table 3} o1 surpasses GPT—-4 in both two traditional reference-based measurements
(i.e., BLEU-1, ROUGE-1) on average. One exception arises in the BLEU-1 comparison for clinical
suggestion tasks. While o1 significantly triumph over GPT—-4 in ROUGE-L (24.4% vs. 17.2%),
it surprisingly underperforms in BLEU-1: o1 (15.3) < GPT-4 (16.2). When considering Mauve
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Table 7: Accuracy ablation results of using different promptings using o1 on our LancetQA

CoT SC Reflex | Accuracy

81.5
85.5
84.5
v 61.0

SNENEN
\

Table 8: Accuracy of models on the multilingual task, XmedBench (Wang et al., [2024)

Models English Chinese French Spanish Arabic Hindi Average
ol 76.4 80.2 95.4 95.0 74.9 89.3 85.2
GPT-4 75.7 61.0 89.4 91.2 60.8 76.3 75.7
GPT-3.5 72.0 474 58.9 74.2 39.7 325 54.1
Meditron-70B* 58.7 443 533 59.7 19.3 31.3 444

scores, although o1 consistently surpasses GPT—4 in both averaged BLEU-1 and ROUGE-1 for text
summarization tasks, it still falls short by 2.9 points in Mauve, even when evaluated on the same
output texts. A similar anomaly can also be observed in the comparison between accuracy and F1
score. While L1 ama3 significantly outperforms o1 in accuracy on two concept recognition datasets,
it consistently falls behind o1 in F1 on the same cases. These findings underscore the urgent need to
identify or devise more reliable metrics for modern LLMs.

5 DISCUSSION

What adverse impacts does ol bring? The model o1 has made significant strides in both general
NLP and the medical domain—as demonstrated in this paper. But what adverse impacts does o1
have on users compared to the previous generations of LLMs? While embedding the Chain of
Thought (CoT) process during generation by default requires more time (OpenAl,|2024)), what exactly
distinguishes o1 from other OpenAl models? In Table[T0] we see that o1 has more than 2x and 9x
longer decoding time cost on four medical tasks compared to GPT-4 and GPT-3. 5, respectively
(13.18s vs. 6.89s vs. 1.41s). This increased decoding time can lead to significant waiting periods
when handling complex tasks.

Additionally, o1 does not always outperform other models, with inconsistent performance across
different tasks. For instance, in the concept recognition task detailed in Table[2] o1 underperforms
compared to other LLMs on half of the datasets. This discrepancy may relate to recent findings
suggesting that CoT data is most advantageous in more complex reasoning tasks (Sprague et al.,
2024). However, in tasks that do not require complex reasoning, such as concept recognition, o1
does not have significant advantages over them.

Rethinking evaluation metrics for stronger LLMs. Traditional evaluation metrics like BLEU and
ROUGE, which rely on n-gram overlap, have long been criticized for their limitations in capturing the
quality of generated text, particularly for LLMs. As a result, using models like GPT-4 as evaluators,
i.e., “LLM-as-a-judge”, has gained popularity for assessing the outputs of other models. However,
this approach may not be valid when applied to the most advanced models such as o1, as GPT-
4 is even less capable and thus may produce less reliable evaluation. This is especially true for
specialized domain like medicine. Therefore, there is a growing need to develop more robust and
nuanced evaluation metrics that can better assess the performance of state-of-the-art LLMs in complex
scenarios.

Call for reliable prompting techniques for future LLMs. As noted in Section[4.3] not all advanced
prompting techniques positively impact o1’s performance. As future LLMs like o1 may continue to
evolve with internal prompts for efficient user instruction, new prompting methods should consider
their adaptability to existing strategies. One potential exploration could be the integration of two
prompting strategies (Wang et al.,|2022; Zheng et al.| 2024)).
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Limitations. While we conduct comprehensive evaluations in the medical domain on understand-
ing, reasoning, and multilingual capabilities, there are many other dimensions to consider such as
safety (Han et al.| [2024) and we leave them for future work. Additionally, we leave more advanced
prompting techniques such as retrieval augmented generation (RAG) (Lewis et al.,[2020) for future
work, which may enhance the factuality and mitigate hallucination. It is worth noting that current
GPT-like models may still underperform BERT-based specialists in classification tasks (Nor1 et al.|,
2023b). However, we focus on GPT-like generalists in this paper due to their greater flexibility as
zero-shot learners.

6 CONCLUSION

This preliminary study assesses 3 important aspects across 35 existing and 2 novel medical datasets
using the latest o1 model. It marks the first step towards a holistic evaluation of o1 in medicine,
and we present our initial results, analysis, and discussion over the benchmark. The findings provide
convincing evidence that o1 is narrowing the gap between Al and human doctors, shaping the vision
of an ideal AI doctor closer to reality.
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A  SUPPLEMENTAL MATERIAL

A.1 PROMPTING STRATEGIES

Base Prompt for MCQ.

Question:
{question}

Options:

{Format Constraint}

Format Constraint Examples for MCQ.

Default:

Answer only with the option index such as A/B/C/D in plain text.
True/False Statement Questions:

Answer only with Yes/No in plain text.

Few-Shot Prompt.

Casel: ...
Case2: ...
Case3: ...

{Manually Written Definitions }
Please learn from the few-shot cases to see what content you have to output.
{Input Case}

CoT Format Constraint.

Reason step-by-step before answering. {Base Format Instruction}. Your final output should strictly follow
this format:
(Reason){your step-by-step reasoning} (/Reason ) (Answer){your answer } (/Answer)

Self Consistency.

Given the following question and the {n_sample} answers, please select the most consistent response with
other answers and the question. {Base Format Constraint} in strictly this format: (Answer){your final
answer } (/Answer).

# Question: {Base Prompt with CoT}

# Answer 1:
{Model Answer 1}

# Answer 2:
{Model Answer 2}

# Answer 3:
{Model Answer 3}
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Prompt for Critic Generation for Reflex.

{Base Prompt with CoT Format Constraint}

# Response:
{Model Response}

Please review the answer above and criticize on where might be wrong. If you are absolutely sure it is
correct, output ‘True’.

Prompt for Reflected Answer Generation for Reflex.

{Base Prompt with CoT Format Constraint}

# Original Answer:
{Model Answer}

# Critic:
{Model Critic}

Given previous attempts and feedback, carefully consider where you could go wrong in your latest attempt.
Using insights from previous attempts, try to solve the task better.

| '
\

Prompt for Final Answer Generation for Reflex.

{Base Prompt with CoT Format Constraint}

# Answer 1:
{Reflected Answer 1}

# Answer 2:
{Reflected Answer 2}

# Answer 3:
{Reflected Answer 3}

Please summarize the previous attempts and feedback and provide a final answer. {Base Format Constraint}
in strictly this format: (Answer){your final answer}(/Answer).

A.2 DETAILS ABOUT DATASETS

In this paper, we present a summary of 36 medical-related datasets spanning 6 distinct tasks, as
outlined in Table[T} Notably, the inclusion of commercial models, particularly o1, leads to significant
costs and response latency. To address this, for some tasks we randomly sampled a subset of test
cases, which are detailed below.

Concept Recognition

* BC4Chem (Savery et al.|[2020) is a dataset comprising 10,000 PubMed abstracts with 84,355
chemical entity mentions, manually annotated by expert chemistry literature curators. The task
is to extract chemical names from the given abstracts. For evaluation, we randomly sample 300
instances from the test set.

* BC5Chem and BC5Disease are from BC5CDR 2016), a widely-used resource in
biomedical natural language processing, annotated for chemical and disease entities and their
relationships. Following MedS-Bench (Wu et al.| 2024b), BC5CDR is split into 2 datasets:
chemical name extraction and disease name extraction. For evaluation, we randomly sample 300
instances from each task’s test set.

* Species800 (Pafilis et all 2013)) comprises 800 PubMed abstracts with annotated organism
mentions. The task is to extract organism names from the given abstracts. For evaluation, we
randomly sample 300 instances from the test set.
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* HoC (Baker et al.,2016) is a specialized dataset containing 1,852 PubMed publication abstracts,
expertly annotated according to a taxonomy of cancer hallmarks. The task is to classify the
hallmarks of cancer based on the given biomedical publication abstracts. For evaluation, we use
the entire test set consisting of 158 instances.

¢ HumanDiseaseOntology (Schriml et al., 2019)) is a database providing consistent, reusable, and
sustainable descriptions of human disease terms, phenotype characteristics, and related medical
vocabularies. The task is to explain specified medical professional entities, with the database
descriptions serving as ground truth. For evaluation, we randomly sample 300 instances.

¢ BioLORD (Remy et al.|[2024)) comprises pairs of biomedical concept names and descriptions. The
task is to elaborate on concise concepts by generating long, detailed definitions. For evaluation,
we randomly sample 300 instances.

o PMC-Patient (Zhao et al.,2023) is a collection of 167,000 patient summaries extracted from case
reports in PubMed Central (PMC), annotated with basic patient information. The task is to extract
patient gender and age information from given clinical texts. For evaluation, we randomly sample
300 instances.

* PICO-Participant, PICO-Intervention and PICO-Outcome are three datasets derived from
PICO (Nye et al., 2018]), consisting of 5,000 abstracts from medical articles on randomized
controlled clinical trials. The tasks involve extracting information about study participants,
interventions, and outcomes from given sentences. For evaluation, we use the entire test set of 43
instances for each task.

* ADE Corpus (Gurulingappa et al.,[2012)) provides information on drugs and their corresponding
adequate doses within sentences. The task is to extract the dosage levels of specified drugs from
given sentences and drug names. We use the dataset prompted by Super-Instruction with a 9:1
ratio for instruction tuning and evaluation. The test set consists of 23 instances.

Text Summary

¢ MIMIC-IV-CT and MIMIC-IV-Ultrasound (Johnson et al.| [2023; [Wallace et al.| 2021) are
subsets of MIMIC-IV Report, a large deidentified medical dataset of patients admitted to the
Beth Israel Deaconess Medical Center. The task is to summarize radiology reports, treating the
impression part as a general summary of the findings. Following (Wu et al.,|[2024b), we randomly
sampled 500 cases from body region part of Chest CT and 100 cases from ultrasound modality for
evaluation.

¢ RCT-Text (Wallace et al [2021)) is a dataset for summarizing medical evidence from clinical
studies in literature reviews. The task is to output the primary conclusions of each study given the
titles and abstracts. For evaluation, we randomly sample 100 instances.

* MedQSum (Lee et al.,[2021) is derived from a large database of de-identified health-related data.
The task is to generate a summary of detailed findings from imaging diagnostic reports, with the
conclusion of the note serving as ground truth. For evaluation, we randomly sample 100 instances.

Knowledge QA

* MedQA (Jin et al.;[2021) is a collection of medical multiple-choice questions in English. We use
the 4-option English version with the official split. The test set contains 1273 samples.

* PubMedQA (Jin et al., 2019) is an English question-answering dataset based on PubMed abstracts.
The task is to answer research questions with yes/no/maybe. We use the PQA-L subset as the test
set, containing 1000 samples.

* MedMCQA (Pal et al.| [2022) is a large-scale English multiple-choice question-answering dataset
from AIIMS & NEET PG entrance exams. We use the official test split containing 4183 questions,
each with 4 choices.

¢ LancetQA and NEJMQA are datasets curated from The Lancet and the New England Journal of
Medicine case challenges, focusing on patient diagnosis based on symptoms. We use 200 samples
for LancetQA and 100 samples for NEJMQA.

e Medbullets (Chen et al.| 2024) is a dataset curated from the Medbullets online platform, compris-
ing 308 USMLE Step 2&3 style questions. Each question includes a case description, four answer
choices, and an explanation.
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Clinical Decision Support

* DDXPlus (Fansi Tchango et al., [2022) is a dataset for Automatic Symptom Detection and
Automatic Diagnosis systems, featuring synthesized patient data. The task is to make diagnostic
decisions based on dialogues. For evaluation, we randomly sample 300 instances.

* SEER (Dubey et al.}[2023)) is a treatment planning dataset based on the Surveillance, Epidemiology,
and End Results breast cancer databases. The task is to recommend treatment plans from five
types. For evaluation, we randomly sample 300 instances.

¢ MIMIC4ED-Hospitalization, MIMIC4ED-72h ED Revisit, and MIMIC4ED-Critical Triage
are datasets from the MIMIC4ED Benchmark (Xie et al.,[2022) for predicting clinical outcomes
in emergency medicine. For each dataset, we randomly sample 300 instances for evaluation.

¢ MedNLI-Dis. (Discriminative) and MedNLI-Gen. (Generative) are derived from MedNLI (Ro{
manov & Shivadel [2018)), a natural language inference dataset for the clinical domain. The dataset
involve discriminative and generative entailment based on clinical premises. For each task, we
randomly sample 300 instances for evaluation.

* EBMS (Molla & Santiago-Martinez, 2011 is a justification verification dataset. We use the entire
test set of 304 instances for evaluation.

« PUBHEALTH Exp. (Explanation) (Kotonya & Toni}[2020) requires models to provide explana-
tions for specified claims using supporting material from given paragraphs. For evaluation, we
randomly sample 300 instances.

 PUBHEALTH Ver. (Verification) (Kotonya & Toni, |2020)) is a fact verification task where models
determine if a claim contradicts evidence in a given paragraph. For evaluation, we randomly
sample 300 instances.

* Chatdoctor (Li et al.}|2023) is based on 100K patient-physician conversations from an online
medical consultation websiteﬂ The task involves engaging in medical consultations based on this
data.

Agent

* Al Hospital (Fan et al., 2024) is a multi-agent framework simulating medical interactions in
Chinese. It includes Patient, Examiner, Chief Physician, and Doctor agents, with 506 cases from
diverse departments. The task involves simulating clinical scenarios through dialogue. Evalua-
tion uses Chief Physician’s 1-4 scale scoring across five dimensions: symptoms, examinations,
diagnostic results, rationales, and treatment plan. 200 cases are sampled for evaluation.

* AgentClinic (Schmidgall et al.| [2024) is a clinical environment benchmark with 107 patient
agents from MedQA and 15 multimodal agents from NEJM challenges. The task is patient
diagnosis through dialogue and data collection. Evaluation considers diagnostic accuracy and
patient perception metrics in biased scenarios.

Medical Calculation

e MedCalc-Bench (Khandekar et al., 2024) evaluates LLMs’ medical calculation abilities using
1,047 instances across 55 tasks. It requires computing medical values from patient notes and
questions. Evaluation compares LLM outputs to ground truth, with exact matches for rule-based
and 5% tolerance for equation-based calculators.

Multilinguality

* XMedBench (Wang et al.,2024) is a multilingual medical benchmark in six languages: English,
Chinese, Hindi, Spanish, French, and Arabic. It uses multiple-choice questions from various
sources, including translated versions for Arabic and Hindi. The task evaluates LLMs’ medical
knowledge across languages, using accuracy as the primary metric.

* Al Hospital (Fan et al., 2024) is a multi-agent framework simulating medical interactions in
Chinese. We also include this dataset into the multilinguality aspect because it is in Chinese.

*www.healthcaremagic.com
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A.3 MODEL-BASED EVALUATION

As discussed in Section 5] Rethinking evaluation metrics for stronger LLMs, we also explore using
techniques such as "LLM-as-a-judge” to assess the quality of generated outputs. Table [9]shows
that o1 achieves nearly the same score as GPT—4 and outperforms GPT-3.5 (i.e., 3.3% vs. 3.3%
vs. 3.0%), which contrasts with the traditional evaluation metrics in Table E} This indicates that
the “LLM-as-a-judge” method may be unreliable when applied to advanced models like o1, as
GPT-4, being less capable, may provide less accurate evaluations. This limitation is particularly
evident in specialized domains such as medicine. The prompt used for "LLM-as-a-judge” is shown
in Figure[A.3

Table 9: GPT Evaluation Score Comparison

GPT Score
Task Datasets ol GPT-4 GPT-3.5
medqsum 4.1 3.8 4.1
Text Summarization RCT-Text 2 3.2 3.1
MIMIC-IV-Ultrasound | 3.8 3.8 3.4
MIMIC-IV-CT 3.8 3.8 3.7
MedNLI-Generative 2.3 2.4 2.5
EMBS Justification Ver. | 3.1 3.0 3.0
Clinical Suggestion PUBHEALTH Exp. 3.0 3.3 3.2
g8 Do Entity Exp. 37 36 33
BioLORD Concept Exp. | 3.3 33 3.0
ChatDoctor 2.5 2.6 -
Average |33 33 3.3

You are a senior medical expert. Please evaluate the quality of the medical text material provided by medical
interns based on the expert medical text material as a reference answer. The quality is divided into five
levels:

5. The assistant result completely matches the reference.

4. The assistant result is generally consistent with the reference, with only a small part of omissions or
eITors.

3. The assistant result partially matches the reference, but there are some omissions and errors.

2. The assistant result is mostly inconsistent with the reference, with many omissions and errors.

1. The assistant result is completely inconsistent with the reference.

{Input Medical Questions}
Assistant Result: {Result}
Reference Answer: {Reference}

Please note:
(1) Focus on the factual content of the medical answers, without concern for style, grammar, punctuation,
and non-medical content. (2) Your response should be in the format. Rating: (int)

A.4 DECODING TIME

We evaluated the model’s time cost and the average number of decoding tokens across various tasks,
including Knowledge QA, Clinical Decision Support, Text Summary, and Concept Recognition. For
each task, we select a representative dataset and perform inference on 50 samples. The time and
decoded tokens are then averaged to obtain the results for each response, as illustrated in Table.
The decoding time for o1 is significantly higher than both GPT-4 and GPT-3. 5, taking more than
double the time of GPT-4 and over nine times that of GPT—3. 5 across four medical tasks (13.18s
compared to 6.89s and 1.41s, respectively).
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Table 10: Model time cost and averaged number of decoding tokens for 4 datasets across 4 tasks

Prompt Completion Reasoning Total

Task Dataset  Model Time (s) Tokens Tokens Tokens Tokens
Knowledse ol 11.13 24778 95342  924.16 1201.20
OA g MedQA GPT-4 0.83 23620  9.26 0 245.46
GPT-3.5 052 23620  10.02 0 246.22

Clinical ol 1140 122.64 112744  83.84 1250.08
Decision Sunpor ChatDoctor GPT-4  18.88 12424 509.28 0 633.52
PP GPT-3.5 240 12424  150.10 0 27434

Text ol 20.56 1305.54 1080.54  1057.28 1373.32
Summa MIMIC-IV GPT-4 626 125484 162.68 0 141752
Ty GPT-3.5 2.02 1254.84 159.94 0 1414.78
Concent ol 9.62 29278 1080.54  1057.28 1373.32
Reow nigon BCSChem GPT-4 1.60 297.24  19.64 0 316.88
g GPT-3.5 0.68 29724  12.80 0 310.04

H
6 ) 1547, BWETEE?
GPTo  EE AWEREE -
BIREHALMER, REMNHESNTEEREEH, HEX—FECBIEKAT, A
patient
BOCHERERR, ERSRNANESD?

RAEMERT, BRSRNKAIEA.
B RIEESRIERNESD?

B, FFMERANANEZD. MERREEEFRIERSAREMAA/ND?

T2, IBESANAK/NI TSRS ST ARIFEER. MREREBRNEANAIMER,
BINEBHFHTRENERSEE, RTAOERS. XD R EmtiTHhEaER.
—fgims, ERSPAMTFIERBLER, JLUSEERNR, §6-120B88—k; NMESH
AFER, HEEEHARREER, WEEEEFAR, LIGILEETENG, EEER
BRIEARIEERG, RIITUH—SICRESEINETHE.

fER : (1) EEXAER. WIS (1) ARHAIEERNGEA. (2) iR ERRIEEER
RENER, SRR IBERSA. ISEKIE: (1) MEFNERIEENTFESAFRE. (2)
ERE—FAHIMEAES. ATAR: (1) BIRPEREEESRRIERK/INOSARFAHE,

LUHSEERERS, (2) RIBEANANMIERIEE, &REEnEREETFARR. —#RE
W, B larger than 1 EKEGRURIEAE, EINFAETT.

Figure 5: Failure case of o1 on Al Hospital. The model struggles with generating the right diagnosis
and outputs mixed-language, resulting to its suboptimal performance in this context.

A.5 CASE STUDY

To demonstrate how the advanced o1 model outperforms previous methods in potential clinical
applications, we present comparative case studies. As shown in Figure [6]and Figure when
responding to questions from NEJMQA and LancetQA, o1 provides the correct answer with a more
concise and precise reasoning process. In contrast, GPT—4 generates a longer reasoning path while
leading to an incorrect answer. in Figure [/, when offering diagnosis and treatment based on patient
records, ol delivers a more accurate diagnosis and practical treatment plan, closely aligning with
human experts and outperforming GPT-4. These cases demonstrate that o1 more closely resembles
an Al Doctor.
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Question: A 60-year-old left-handed woman presented to the emergency department with pain in her left forearm. The
arm was swollen and tender, especially with passive pronation and supination. The overlying skin was intact, and the
results of neurovascular examination were normal. Radiographs of the left forearm were performed (upper image,
anteroposterior view; lower image, lateral view). The findings should raise concern for which contributory factor?

Options:
A) Assault B) Fall C) Malignancy D) Osteoporosis E) Repetitive strain

Answer: A) Assault

Reasoning:

The patient is a 60-year-old woman presenting with swelling and tenderness in the left forearm, which
is exacerbated by passive pronation and supination. The overlying skin is intact, and neurovascular
examination is normal, suggesting a closed fracture without neurovascular compromise. Radiographs
were performed to assess for possible fractures.

In this age group, osteoporosis is common and can lead to fractures from minimal trauma. However,
osteoporotic fractures typically occur in the distal radius (Colles' fracture) after a fall on an
outstretched hand. The pain with pronation and supination indicates involvement of the
forearm bones rather than the wrist.

01 An isolated fracture of the ulnar shaft, known as a nightstick fracture, results from a direct blow to the
ulna. This type of injury is classically associated with a defensive action when a person raises
their forearm to protect themselves from an overhead strike, often in the context of an assault.
The intact skin suggests there was no penetrating injury, aligning with a blunt force trauma.

Therefore, the radiographic findings of an isolated ulnar fracture in this clinical context should
raise concern for assault as the contributory factor.

Answer: D) Osteoporosis x

Reasoning:

The patient presents with pain, swelling, and tenderness in her left forearm following some
unwitnessed event, with an emphasis on particular pain during passive movements (pronation and
supination), but with intact skin and normal neurovascular findings. The key elements to analyze
include the patient's age, the nature of the injury, and what can be deduced from the symptoms
and radiographic findings without seeing the images.

1. Assault: While an assault can lead to trauma presenting with pain and swelling, there is no
specific evidence or context provided that indicates an assault occurred. This option might
be considered if there were additional signs of defensive wounds or if the history provided such
information.

2. Fall: A fall, especially in a 60-year-old, can easily result in fractures due to decreased bone
density that comes with age. This option seems plausible since falls can cause direct trauma
leading to the symptoms described. However, without explicit information about a fall or the
mechanism of injury, it cannot be conclusively selected based solely on the symptoms.

3. Malignancy: While malignancy could theoretically present with bone pain or pathological
fractures, the acute presentation in the emergency department more closely matches trauma or
injury. A malignancy would likely have a more insidious onset and possibly other systemic
symptoms.

4. Osteoporosis: In a 60-year-old woman, osteoporosis is a significant risk factor for fractures,
especially with minimal or no trauma. Osteoporosis could make bones more susceptible to
fracture from otherwise non-severe impacts. Given the age and gender of the patient, this is a
factor that could contribute to the ease of which a fracture or injury could occur, especially
under stress or minor trauma conditions that might not affect a younger individual or
someone without osteoporosis.

5. Repetitive strain: This typically presents with soft tissue injuries rather than fractures and is
more chronic in nature. The described acute presentation and radiographs (implied to show a
fracture or some abnormal finding) do not fit the typical pattern of a repetitive strain injury,
which more commonly affects tendons and muscles rather than resulting in acute bony

injury.

Considering these options and reasoning, Osteoporosis seems the most plausible
contributory factor to the concern raised by the radiographs. It is a common condition
affecting older adults, especially women, where decreased bone density increases the risk of
fractures from minimal trauma that would not typically cause injury in individuals with healthy bone
density.

Figure 6: Comparison of the answers from GPT-o1 and GPT-4 for a question from NEJMQA. ol
provides a more concise and accurate reasoning process compared to GPT-4.
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iR BEEBRBEREZRT, BROERHESIHBEIIMMEE. SEERR. BS, B

BofE. RAGEER. BORMERS. STVOIRDE. IZMZEE. WM. CHFIYE, IRERTEIER. LI BETMEME

JnZHERT.

o IMEM: - OREE: 3.20*1079/L - LT4AAE: 3.68*107M12/L - METEEH: 132g/L - LT4AMBIEFR: 39.20% - F15
MATERRE: 337g/L

5 - BAREHAE: - T BEEFEREE, E41.7cm
- Rl - BRI
Symptoms: The patient was being treated for a recurrent gastric ulcer. After gastroscopy, the pathological
diagnosis was gastric antrum signet ring cell carcinoma. The patient had acid reflux and belching, but no stomach
Patient Record  distension, fever and chills, consciousness disorders, nausea and vomiting, cough and sputum, hemoptysis,

palpitations and chest tightness. Diet and bowel movements were normal. He was admitted to the hospital with

the diagnosis of “malignant tumor of the gastric antrum”.

* Blood routine: - White blood cells: 3.20*1079/L - Red blood cells: 3.68*10712/L - Hemoglobin: 132g/L -
Hematocrit : 39.20% - Mean hemoglobin concentration: 337g/L

* Imaging tests: - CT: local thickening of the gastric wall, about 1.7cm thick

* Pathology: - Signet ring cell carcinoma of the antrum of the stomach

iCHA: 1. BEEENARAES 2. BEERMY
ialT . BENREHITARRNES, BFAETEE, TEERAAR. RPRAIITE. 2%, TiEK, 8
SEERAPPERL2cm, BIRERRIZ FAP400.5cm*1.3cm, BMRBEXMES. REAETHUESR. DHSERD

™= RIS
Diagnosis: 1. gastric antral signet ring cell carcinoma 2. gastric wall mass
(6 1 Treatment: The patient was admitted to the hospital for preoperative preparation. There were no contraindications

to surgery, so a radical gastrectomy was performed. No liver or pelvic metastases were found during the operation,

Human Expert there was no ascites, and the mass in the antrum of the stomach was about 2 cm in diameter, while the subserosal
mass in the body of the stomach was 0.5 cm x 1.3 cm. The relevant lymph nodes were removed. After the
operation, the patient was given anti-infective, anti-acid and rehydration treatments.

iZHA (score 4/5): B EEEBENAZHARIE

f&iE: (1) AR : BEKIERTE, RER. BS, #REERINE, B8R0, XUERIRREE8
AIRETFTER L.

Q) EFNE: TRTREESIEE, RREEGREIRENIETRE.

(3) RIRIOE: BENERESRIERREIAMAIEE, M2/ BEma—FHEEREEL,

iffT(score 4/5): (1) FAATT: BIVRRETIRIGUEFATIRR, SEBHEMUAIBIIRR LERIHELES
B, UEMRERMEF O servERmit. BARFARS AT HE BN EERIELARIENHHE.

(2) f7: TRIBMESEFIF RSN, AIRER BRI EIHETT, LAGEN\IPIE. TERAE
R, PRESRNED,

(3) BFe 3T ARIRGMIBGEEFSHS, MIFRIFIIEFIS, BT IESATIZEIEHERES.

(4) DEESTHS: HSEENRETROERES, BINSREWAGOIESTRF, (REFFIREMAIOE.

(c) EHISE: ATERECHEE, #TER. MEFEERE, WUHEEEN, RERIFILIERTRER
SREEER.

Diagnosis(score 4/5): cancer of the gastric antrum with signet ring cells (score 4/5).

Basis: (1) Clinical symptoms: The patient had long-term stomach discomfort, acid reflux, belching, and
occasional heartburn, which worsened after eating. These symptoms suggested that there might be a lesion in
the stomach.

(2) Imaging examination: CT showed local thickening of the stomach wall, suggesting abnormal growth or the
possibility of a tumor.

(3) Pathology: Biopsy of the antrum of the stomach showed signet ring cell carcinoma, a specific type of gastric
cancer.

Treatment(score 4/5): (1) Surgical treatment: Radical surgical resection, including gastrectomy of the diseased
area and necessary lymph node dissection, is recommended as soon as possible to remove the primary tumor
and possible metastatic lesions. The specific surgical method needs to be determined by the gastrointestinal
surgeon based on the actual situation.

(2) Chemotherapy: Depending on the stage of the tumor and the surgical situation, preoperative neoadjuvant
chemotherapy or postoperative adjuvant chemotherapy may be required to reduce the tumor, eliminate
residual cancer cells, and reduce the risk of recurrence.

(3) Nutritional support: Preoperative and postoperative nutritional support should be strengthened to maintain
a good nutritional status, which helps improve treatment tolerance and promote recovery.

(4) Psychological support: A cancer diagnosis can bring psychological stress. It is recommended to seek
professional psychological support to maintain a positive and optimistic attitude.

(5) Regular follow-ups: After treatment, regular follow-ups are required to monitor changes in the condition and
to detect and deal with possible relapses or metastases in a timely manner.

o1

iZHfi(score 1/5): BRERAHHE (GERD)

f&iE: (1) ERER, SEBRNE. SRS LRIIBKRTSHEBRER BRI

(2) LR EE R, SN R ERRIIXEE

(3) EIBHERGRISERR T BRIRIRA SNSRI iRm S EU AT REE

ififT(score 1/5): (1) IREVE: BRI, FARSRBMRE, LESE, #HRidH

() Z5aTT . BREEERBERRT DGR (PP) SARSAETG, LIS BERS WAIEMRAEK

() EESKE: RIFRERAE, BRI, HERSRSEIRENRIERZY) (REELE

STT)

Diagnosis(score 1/5): Gastroesophageal reflux disease (GERD)

Basis: (1) Description of symptoms, including typical GERD symptoms such as stomach discomfort, gas coming up,
GPT-4 and acid reflux (2) A history of a stomach ulcer, which may increase the risk of GERD (3) An upper endoscopy that

ruled out other possibilities such as damage to the stomach lining or an active ulcer

Treatment(score 1/5): (1) Diet: Avoid greasy, spicy and other irritating foods, eat small amounts at frequent

intervals, and avoid overeating (2) Medication: Consult your doctor about using proton pump inhibitors (PP1) or

histamine receptor antagonists to reduce gastric acid secretion and relieve symptoms

(3) Lifestyle improvements: Maintain a healthy weight, avoid eating or drinking immediately after lying down, and

stop or reduce the use of medications that may worsen symptoms (under the guidance of a doctor)

Figure 7: Comparison of the answers from GPT-ol and GPT-4 for a case from the Chinese dataset Al
Hospital, along with its English translation. ol offers a more precise diagnosis and practical treatment
suggestions compared to GPT-4.
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