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ABSTRACT

As Large Language Models become more ubiquitous across domains, it becomes
important to examine their inherent limitations critically. This work argues that
hallucinations in language models are not just occasional errors but an inevitable
feature of these systems. We demonstrate that hallucinations stem from the funda-
mental mathematical and logical structure of LLMs. It is, therefore, impossible to
eliminate them through architectural improvements, dataset enhancements, or fact-
checking mechanisms. Our analysis draws on computational theory and Gédel’s
First Incompleteness Theorem, which references the undecidability of problems
like the Halting, Emptiness, and Acceptance Problems. We demonstrate that every
stage of the LLM process—from training data compilation to fact retrieval, intent
classification, and text generation—will have a non-zero probability of producing
hallucinations. This work introduces the concept of "Structural Hallucinations" as
an intrinsic nature of these systems. By establishing the mathematical certainty of
hallucinations, we challenge the prevailing notion that they can be fully mitigated.

Keywords Large Language Models, Hallucination, Structural Hallucinations

1 Introduction

1.1 Background

Large Language Models (LLMs) have achieved remarkable progress, demonstrating high fluency
and accuracy in tasks like translation and question answering. They are increasingly influential
in fields such as healthcare and education [1, 2]. Future models are expected to be even more
contextually aware, efficient, and ethically aligned. However, fundamental questions persist[5]:
Can these models truly understand language without experiencing the world, and what are the
risks of relying on artificial constructs for tasks traditionally requiring human judgment? A key
concern is hallucinations—instances where models generate plausible but incorrect information
[1 2, [3]. Despite advances, these errors remain an intrinsic challenge, raising the question: Can
we ever fully eliminate hallucinations from LLMs, or is this a limitation we must learn to manage?

1.1.1 The Essence of Large Language Models

At the core of large language models lies a deceptively simple principle: the prediction of linguistic
patterns. [3] [4]. The fundamental operation of an LLM can be distilled to a single, powerful
question:
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Given a sequence of words, what word is likely to come next?

Assuming we refer to a transformer-like architecture [5], for a sequence of tokens z =
(z1, 22, ..., )Wherex; € V, a language model computes [6]:

n

P(z) = P(x1,22,...,2,) = HP(a:i|a:1, ey Tim1)

i=1
where the conditional probability of the next token given the previous tokens is defined in the
usual way [7]:

P(xla T2, -~-xn7$n+1)
P(z1,22,...T)

P(zpi1lzy,.nxn) =

As we scale these models, we observe a fascinating phenomenon: the emergence of apparently
intelligent behaviours. [8] Impressive as they are, the model has not learned to think and has no
concept of truth; it has learned to mimic the products of thought with astonishing fidelity.

1.2 Architectures of Large Language Model Generation

1.2.1 How language model generations work

At the most basic level, LLMs work with tokens [9] the fundamental units of text processing [6].
These can be words, parts of words, or even individual characters [6]. Special tokens play crucial
roles in the model’s operation [8]. Let us consider a few [8]:

<BOS>: Beginning of Sequence
<EOS>: End of Sequence

Imagine we are feeding this sentence into our model:
<BOS> The cat sat on the mat. <EOS>

The model first converts each token into a numerical representation - an embedding [8] [6]. But
these embeddings alone lack positional encoding [8]. Absolute positional encoding [10] addresses
this by adding a unique pattern to each token’s embedding based on its position, using sine and
cosine functions [10] allowing the model to distinguish the word order. This is done through
roughly the following steps [11]:

1. Create a vector embedding as a function of semantics

2. Create a separate positional encoding vector

3. Add these two vectors to get a sum that stores both meaning and position

This is the formulation for absolute positional encoding. For our sentence, it may look like this:

Position Encodings:

Position 0 (BOS): [0.0000, 1.0000, 0.0000, 1.0000, ...]
Position 1 (The): [0.8415, 0.5403, 0.0100, 0.9999, ...]
Position 2 (cat): [0.9093, -0.4161, 0.0200, 0.9998, ...]

The self-attention [10] mechanism then determines how much each word "attends" to others,
helping the model capture relationships like "the mat." The usual self-attention mechanism goes
somewhat like the following [11]:

There are three tokens: query, key, and value.

* The key vector is a representation of the token whose output we want, k,, = fi(z,,n)

2
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* The query vector is a representation of the token with which we want to check the relation-
ship of the key: ¢, = fy(zm,m)

* The value is another representation of the token whose output we want: v,, = f,(x,,n)

Attention is calculated as a softmax over the dot products of the query and key. In essence, the
dot product can be thought of as a distance measure between the query and key:

_ cap(gin - kn)
Siexp(q; - kn)

The final output is then a weighted sum of the value vector:

Am,n

On = Eiai,nvn
For our sentence, it might compute something like the following table:

The | cat | sat | on | the | mat
The | 0.1 0.3 0.1[0.1]0.2] 0.1
cat 02 [02]03[01]0.1] 0.1
sat 0.1 |02[02[02]02] 0.1
on 0.1 |01[/02[]02]02] 0.2
the 03 [01|01[01]0.2] 0.2
mat | 0.2 [ 0.1 0.1 | 0.2] 03| 0.4

Table 1: Transition table for the sentence "The cat sat on the mat". Each entry represents the
probability of transitioning from the row word to the column word.

However, absolute positional encoding has limitations, especially for long sequences. Relative
positional encoding [10] considers the distance between words instead of assigning fixed positions.

In our example: "cat" to "sat": distance = 1 "cat" to "mat": distance = 4
Rotatory Positonal Encoding (RoPE) RoPE embeds both, absolute and relative positional encoding

into a single vector [11]. It draws from the properties of complex representation of numbers in the
Argand plane and instead stores position using a multiplicative approach.

Referring to the definitions of query, key, and value above, the functions f,, fx, f, are encoded as:
fo(Tm,m) = (qu%)eime
frlan,n) = (Wyay,)e™?

This allows for a definition of an inner product g that stores relative position information since it
depends only on the quantity (m — n):

(@, B, m — n) = Re[(Wyay,)(Wias,) * ei(m_")e]

where “Re” represents the real part of the complex number and “*” represents the complex
conjugation operation. # € R is a preset non-zero constant. This can be presented as a matrix
multiplication, with a rotation matrix as a factor:

Framy @i m) = [225(m) —sm<m0)} {W“ W”] [x%)]

: T I
sin(mb)  cos(mb) | (W2 W7 | |52
where the first factor is of the form of a rotation matrix.

¢ can similarly be written using a rotation matrix.

3
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Specifically, incorporating the relative position embedding is straightforward: simply rotate the
affine-transformed word embedding vector by amount of angle multiples of its position index [11].
This can be generalised to vectors with more than 2 dimensions, by dividing a d dimensional space
into d/2 two-dimensional spaces.

Beyond transformers and self-attention, alternative approaches are being explored to improve the
efficiency of LLMs, addressing computational challenges and enhancing performance.

1.2.2 Linear RNNs

Linear Recurrent Neural Networks (LRNNs) combine the sequential processing of traditional RNNs
with the parallelization benefits of convolutions, offering improved inference speed [12]. LRNNs
learn not only the parameters but the architecture itself. LRNNs are unique in that they do not
employ iterative methods like backpropagation. LRNNs have the following properties:

1.2.2.1 They have three main kinds of weights:

¢ Input to reservoir
¢ Weights for within the reservoir
* Reservoir to output

1.2.2.2 The output neurons need not necessarily be distinct from the input neurons.

1.2.2.3 All the above-mentioned weights are compiled into a transition matrix:
Wout
Win Wres

1.2.2.4 This matrix is decomposed into the Jordan form:

W =sJs!

1.2.2.5 The eigenvalues of the Jordan matrix are then analyzed; blocks with the smallest eigen-
values are removed.

This allows for a smaller network, with the reduction achieved in a single step.

1.2.3 Mamba (Linear-Time Sequence Modeling with Selective State Spaces)

Mamba[13] marked a significant advancement in sequence modelling, offering an alternative to
attention-based models like transformers. Built on the foundation of State Space Models (SSMs)
it introduces a crucial innovation: selectivity. Mamba introduces data-dependent gating and
adaptability in crucial matrices and discretization step size, enhancing performance.

dx
o = A(A)x(t) + B(A)u(t)

y(t) = C(A)(t) + D(A)ul?)

where A = A(u) is a data-dependent step size and A(A), B(A),C(A), D(A) are data-dependent
matrices allowing for flexible and efficient processing of sequential data. Mamba promises similar
performance (and crucially similar scaling laws) to the Transformer while being feasible at long
sequence lengths (say 1 million tokens) but with linear-time complexity. To achieve this long
context, the Mamba authors remove the quadratic bottleneck in the Attention Mechanism, enabling
it to run up to 5 times faster than transformers.

Following the Mamba model, the Jamba [15] hybrid model integrates Transformer and Mamba
layers with a mixture-of-experts (MoE) module. It leverages the parallel processing strengths of
Transformers and the efficiency of state-space models (SSMs) like Mamba by using data-dependent
matrices and step sizes. The state-space equations are similar to the ones used for Mamba.
Jamba can handle long contexts up to 256K tokens while maintaining a KV cache memory
requirement that is significantly smaller than that of comparable models and achieves throughput
up to 3x higher than similar models, combining powerful performance with remarkable resource
efficiency.[15]
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Figure 1: Performance Comparison of Mamba and Other Language Models on The Pile Benchmark
Dataset. Mamba exhibits comparable or slightly superior performance to other language models
across various metrics on The Pile, a comprehensive dataset designed to evaluate the generalization
capabilities of language models. Data reproduced from [14].

1.2.4 Kolmogorov-Arnold Networks (KANSs)

Traditional neural networks composed of multilayer perceptrons are based on the Universal
Representation Theorem, which states that “any continuous function f : [0,1]" — [0,1] can be
approximated arbitrarily well by a neural network with at least 1 hidden layer with a finite
number of weights.” [16]. KANs [17] draw on the Kolmogorov-Arnold representation theorem.
They approximate complex multivariate functions through compositions of simpler, single-variable
functions. The Kolmogorov-Arnold representation theorem therefore states that any multivariate
function f on a bounded domain can be represented as:

2n n

f(@1, @) = Z éq(z Up,q(2p))

=0 p=1

where:
®,:R—Rand ¥,,:[0,1]] - R

are continuous single-variable functions. Essentially, this means that the only “true multivariate
function is addition since any other function can be represented by a composition of univariate
functions and the sum”.[18] The main difference between KANs and conventional multilayer
perceptrons is that KANs employ learnable activation functions on edges, instead of the fixed
activation functions on nodes.

1.3 Transfer Learning

Despite the architectural diversity, a fundamental truth persists: LLM generation is prone to
hallucination. There exist complementary techniques that do not alter core architectures but still
significantly impact the performance of LLMs, which often tend to be extremely bulky with billions
of parameters. [19, [20]. Pre-trained models [19], though versatile, are not always perfectly suited
for every application [21]. Transfer learning techniques train the model’s parameters to better
align with specific data, improving the model’s performance [22].



A PREPRINT - SEPTEMBER 10, 2024

Model | Multi-Layer Perceptron (MLP) | Kolmogorov-Arnold Network (KAN)
Theorem Universal Approximation Theorem Kolmogorov-Arnold Representation Theorem
E | N(e) 2n+1 n
ormula —
(Shallow) f® ~ Y ao(w;-x+b) =Y oY ¢,6
i=1 q=1 p=1
(a) fixed activation functions | (b) /N learnable activation functions
T~
/A A 1
on nodes N 7\ noon—" on edges
Model \ /
(Shallow) WAVAY/ ‘\/ ;/ S~ sum operation on nodes
\ learnable weights NN VNN
Ny T o edges /

Figure 2: A comparison between multilayer perceptrons and KANs. Reproduced from [17].

1.3.1 Parameter-Efficient Fine-Tuning (PEFT): Streamlined Approaches

Traditional fine-tuning updates all model parameters, which can be computationally expensive
and resource-intensive, especially for large models[64,65,66]. Parameter-Efficient Fine-Tuning
(PEFT)[23] updates a much smaller number of parameters, reducing computational costs, but
still helping LLMs adapt to specific tasks. These smaller numbers of parameters may be new

additions, or a selected subset of the existing parameters, or a hybrid of both [24]. Below are some
kkey approaches.

Adapters were among the first methods to use a smaller number of parameters for fine-tuning
[23]. They introduce additional, small trainable modules into the model, updating only these
during fine-tuning [23] [22]. This helps reduce computation costs while maintaining the accuracy
provided by vanilla fine-tuning. [22]
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Figure 3: Improvement in accuracy as a function of the number of trainable parameters. Repro-
duced from [22].

BitFit (Bias Terms Fine-Tuning) modifies only the bias terms b and the task-specific classification
layer in the model[64,66]. This leads to a substantial reduction in the number of parameters used,
as compared to vanilla fine-tuning, since it uses just a subset of the additive bias terms. [25]
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Low-Rank Adaptation (LoRA) allows us to train some dense layers in a neural network indirectly
by optimizing rank decomposition matrices of the dense layers’ change during adaptation instead,
while keeping the pre-trained weights frozen. [26]

Let us represent the updated weight matrix as W’. Then,
W'=Wy + AW
Where W, is the pretrained weight matrix and W is the accumulated gradient update.

LoRA reduces the dimensionality of AW by factorising it into low-rank matrices A and B:

AW = BA

The beauty of this procedure lies in a simple observation from linear algebra: Two lower dimensional
matrices can be multiplied to create a higher dimensional matrix.

Let us assume that W, is of the dimension dxm. Then, we may use two matrices A € R*"
and B € R™™, where we set r << min(d, m) [26]. Hence, the number of parameters reduces
significantly from d x m to (d x 7) + (r x m).

1.3.2 Combining PEFT Techniques

PEFT methods can be combined to further enhance efficiency. For example, one might use adapters
in combination with LoRA [19].

1.3.3 Retrieval-Augmented Generation (RAG): Bridging Knowledge Gaps

Fine-tuning improves how large language models (LLMs) perform on specific tasks, but it does
not always ensure that the information they produce is factually accurate. Retrieval-Augmented
Generation (RAG) addresses this by combining the strengths of language models with information
retrieval systems, allowing the model to generate content based on accurate, up-to-date information.

In simple terms, RAG works like this:

y = G(z, R(x))
Here, y is the output, G is the language model, z is the input, and R(x) is the relevant information
retrieved from an external knowledge base.

The Retrieval Process

Vector Representations: In RAG, both the input query and the documents in the knowledge base
are turned into dense vectors:

€q = Eq((I)
ea = Eq(d)

These vectors, created by encoding functions Eq and Ed, represent the meaning of the text in a
way that can be easily compared.

Similarity Measures: To find the most relevant documents, RAG compares the vector of the query
eq With the vectors of documents e; using similarity measures like:
* Cosine Similarity checks how similar the directions of two vectors are, with results ranging
from -1 (very different) to 1 (very similar)
€q €d

cos(€q:€4) = 11 Meal]

¢ Dot Product multiplies the components of the vectors, providing a straightforward way to
compare them

s(eq,eq) =€q - €q

7
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Retrieval and Ranking

After calculating similarity scores, the system retrieves the top k£ most relevant documents. This
involves two main steps:

¢ Approximate Nearest Neighbor (ANN) Search: To quickly find the best matches from a large
knowledge base, ANN algorithms like Hierarchical Navigable Small World (HNSW) are used.

* Re-rank these top k¥ documents using more detailed methods to ensure the most accurate
information is selected.

The Generation Process

Augmentation: Once the most relevant documents are retrieved, they are combined with the
original input:
Taugmented = [!L‘ : R(.’E)]

This augmented input gives the language model more context, grounded in factual information

Output Generation: The language model then generates the final output based on this augmented
input:
Yy = G(xaugmented)

This process helps ensure that the model’s output is not only relevant but also based on accurate
information.

1.4 Hallucinations in LLMs: What They Are and How They
Happen

Hallucinations in large language models (LLMs) occur when the models generate content that
is false, fabricated, or inconsistent with their training data. These happen when the model, in
an attempt to produce coherent responses, fills in gaps with plausible-sounding but incorrect
information. Hallucinations can range from subtle inaccuracies to completely fictional assertions,
often presented with high confidence. It is important to note that LLM hallucinations can occur even
with the best training, fine-tuning, or the use of techniques like Retrieval-Augmented Generation
(RAG).

1.4.1 Types of Hallucinations in LLMs

We have identified four main types of hallucinations that can occur in large language models
(LLMs):

Factual Incorrectness: When Al Gets It Wrong

Factual inaccuracies occur when LLMs provide incorrect information based on existing data,
but without inventing new, non-existent details. For example, an LLM might incorrectly state a
patient’s blood sugar level as 150 mg/dL when the correct value is 120 mg/dL. This type of error
arises from mishandling of factual data within the model’s knowledge base. These inaccuracies
can be dangerous in contexts where precision is critical, such as healthcare, where an incorrect
value could lead to inappropriate treatment.

Misinterpretation

Misinterpretation occurs when LLMs fail to correctly understand input or context, leading to
inaccurate responses. There are two primary forms of misinterpretation:

Corpus Misinterpretation: The model misclassifies the intent or context within its vast knowledge
base, resulting in a response that does not accurately reflect the intended meaning.

Prompt Misinterpretation: The model misinterprets the user’s input due to ambiguous wording or

8
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its own limitations. For example, the question "What is the meaning of lead?" might be wrongly
interpreted as a query about the chemical element instead of leadership, depending on the context.

Needle in a Haystack

The "Needle in a Haystack" problem refers to the challenge LLMs face in retrieving specific, correct
information from a vast corpus. This can manifest in two ways:

Missed key Data Points: The model may provide incomplete information, such as citing only one
cause of World War I while omitting others. Mathematically, this occurs when the retrieval function
R(x) fails to fully capture the necessary data:

y= G(x7 R(Jf‘partial))
where R(zpqrtia1) Tepresents an incomplete set of retrieved information.

Partial Incorrectness: The model might mix accurate facts with errors, such as incorrectly stating
that Neil Armstrong walked on the moon in 1959 instead of 1969. This blending of correct
R(Zcorrect) and incorrect R(Z;ncorrect) information results in outputs that are neither entirely true
nor false:

Y= G(l» [R(xpartial); R(xincorrect)]

1.4.2 Fabrications

Fabrications involve the creation of entirely false statements that have no basis in the model’s
training data. Unlike factual inaccuracies, where the model incorrectly represents existing data,
fabrications are pure inventions by the model. For instance, an LLM might create a fictitious
scientific study or invent a quote from a historical figure that never existed. Fabrications occur
when the model generates output without any real supporting retrieval function:

S G(JL, R(l'fabm'cated))]

where R(% fabricated) = ¢ indicates no actual retrieval, leading to the invention of entirely fictional
content.

1.4.3 Societal Consequences of LLM Hallucinations

The societal consequences of hallucinations in LLMs can be far-reaching and serious:

Misinformation and Disinformation: Hallucinated content can spread false information, leading
to public misunderstanding on critical issues such as health, science, and politics. This can
exacerbate the spread of misinformation and disinformation, undermining public trust in media
and institutions.

Legal and Ethical Risks: As seen in legal cases where LLMs fabricated information, hallu-
cinations can lead to severe legal consequences, including wrongful convictions or legal disputes
based on incorrect facts.

Impact on Public Health: Inaccurate medical information generated by LLMs can lead to danger-
ous health outcomes if individuals or even healthcare providers rely on incorrect recommendations.

Erosion of Trust: Repeated exposure to Al-generated hallucinations could erode public
trust in Al systems, making people sceptical of even accurate Al-driven insights and solutions.

Amplification of Bias: If hallucinations reflect or amplify existing biases in the data, they
can contribute to social division and perpetuate harmful stereotypes.

9
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1.5 Identification of LLM Hallucination and Mitigation Strate-
gies

In this section, we look at some of the hallucination mitigation strategies that have been employed
so far.

1.5.1 Chain-of-Thought (CoT) Prompting

This section draws from the original paper[27]. Researchers discovered that these models could
perform complex reasoning tasks like “arithmetic, commonsense, and symbolic reasoning tasks”
when prompted using Chain-of-Thought prompting. Chain-of-Thought (CoT) prompting encourages
LLMs to make the reasoning process explicit and potentially reduce logical inconsistencies and
hallucinations.

For example:

Prompt: "Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3
tennis balls. How many tennis balls does he have now?"

Chain of Thought: "Roger starts with 5 tennis balls. He buys 2 cans of tennis
balls. Each can contains 3 tennis balls. So, from the cans, he gets: 2 * 3 = 6 tennis balls.
Now, we add these to his original tennis balls: 5 + 6 = 11. Therefore, Roger now has 11
tennis balls."

By making the reasoning process explicit, CoT helps reduce logical errors and nonsensical halluci-
nations. However, while CoT improved performance on many reasoning tasks, it did not eliminate
hallucinations entirely. Models could still produce logically sound but factually incorrect reasoning
chains.

1.5.2 Self-Consistency

Recognizing this, Wang et al [28] proposed the concept of self-consistency. This was based on
using CoTl prompting to generate multiple reasoning paths and selecting the most consistent one.

The process is as follows. The model is prompted with a CdT prompt. Now, assume that there are
a set of answers a1, aq, ... generated by the model for that prompt. Let us label the reasoning to get
to an answer «a; as r; . The model creates pairs (r;,a;). Then, the model selects the most consistent
answer as:

a= argmaxa(z ml(a = a;))
i=1

This leverages the intuition that correct answers are more likely to be arrived at consistently, while
hallucinations or errors are likely to be more varied.

1.5.3 Uncertainty Quantification

This subsection relies on [29] for information. To tackle the issue of models expressing high
confidence even when hallucinating, researchers have introduced uncertainty quantification
techniques[30]. Uncertainty quantification depends on the model used.

Softmax Neural Networks: These are classifiers that predict the class based on the softmax function:

ply = 2lww) = 2@

M
> (@)

10
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“where z is the given output class, which belongs to the set of all possible outcomes, Z. X is the
input sample and f%(z) is an arbitrary function, parameterised by w, giving the support that «
belongs to class z”.

The class is given by argmaz,(p(y = z|z,w)). The probability distribution over the classes z can
help us quantify the uncertainty.

Some studies also employ the gradient of the loss function with respect to the parameters, which
is seen as a measure of the ’stability’ of the model.

Bayesian Neural Network: This network treats the weights of the model as belonging to a distribu-
tion. The posterior distribution Q(w|X,Y) of the model weights is found given the training data
X,Y. We then take multiple samples of the weights to create multiple models. Then, the final
output class is given by:

pylz, Q) = 17 Zf“l

where f“ is the neural network parameterized by the i*" sample of the weights from the posterior
distribution.

Ensemble Neural Networks Much like a Bayesian Neural Network, this algorithm consists of a
set of models as well. Here however, the models are independent of each other, and make their
predictions separately from the other members in the set. Here the classification is given by:

1 M
Pyle,wy, wn) = 4 ;fwi ()

where M is the number of models, and each w; represents the parameters of an independent
model.

Uncertainty quantification itself can come many methods, some of which are discussed below.
Shannon entropy is defined as:

H(y,X)=— Zp(y = i|X)log(p(y = i| X))

Norm of the gradient of the loss with respect to the parameters: This is represented as ||V, L||
where VL = V,l(3;, f“(x;)). However, uncertainty quantification only helps identify potential
hallucinations - it doesn’'t prevent them. Models can still be confidently wrong.

1.5.4 Faithful Explanation Generation

With LLMs used for critical applications, there is a need for explanations of how models arrive
at conclusions. These explanations themselves must be evaluated. Faithfulness is one such
parameter. It refers to the extent to which an explanation accurately reflects a model’s reasoning
process [31]. This, in turn, helps users be aware of the generation process and, therefore, arms
them to spot hallucinations.

One such measure of faithfulness is Shapley values [32].

Shapley values, a game theory concept, fairly allocate payouts among contributors based on their
input. In ML, features are the "players," and Shapley values measure each feature/data point’s
contribution to a prediction, helping users understand how the prediction was made. Given
an algorithm A, an arbitrary data set D, and an accuracy measure V, a data value ¢;(D, A, V)
quantifies the 'value’ of the i** datum. To follow all the requirements of a fair distribution, this
function should be of the following form:

_c Z V(SUi) = V(S)

SCD—i ( 1S| )
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where C is a multiplicative constant. S is a subset of D/i.
Conclusion

Above, we have noted techniques that attempt to improve on every stage in the LLM output
generation process and hence mitigate hallucinations. Let us look at each stage in turn.

Training: This is improved through architectural improvements, like transformers, KAN, Mamba,
Jamba and others. Transformers introduced a self-attention mechanism to better maintain
context across input sequences; KANs provide an alternative mathematical basis for neural
networks, while Mamba and Jamba give an alternative to attention-based mechanisms.

Intent Classification: This has been improved through various techniques like Chain-of-Thought
prompting, RAG, among others. Chain-of-Thought was a major observation that allowed simple
explanatory prompts to help the model perform better, while RAG is a method of information
retrieval that complements any architecture.

Information Retrieval: This again can be improved through Chain-of-Thought prompting and RAG.
These techniques help the model identify the correct pieces of information to be retrieved from its
database.

Output Generation: Methods like Self-Consistency help the model select the best response at the
output generation stage.

Post Generation Fact Checking: Techniques like Uncertainty Quantification and Faithfulness
Explanation Generation help users and models identify the correctness of generated responses.

LLM process Strategies
stage Considered
Trainin Transformers, KAN,
a g Mamba, Jamba, etc.
Intent
Classification CoT, RAG
Inforn:1at|on CoT, RAG
Retrieval
Outpu_t Self-Consistency
l generation

Faithfulhess,
Uncertainty
Quantification

Post-generation
fact-checking

Figure 4: Stages of LLM Generation and Strategies to Mitigate Hallucination in Each of Them
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Below, we will show that no matter which one these (or yet undiscovered) techniques one employs,
the fact remains: LLMs will hallucinate; hallucinations can never be fully eliminated.

At every one of these stages, the LLMs are susceptible to hallucinations. Training can never be
100% complete; intent classification and information retrieval are undecidable; output generation
is necessarily susceptible to hallucination; and post-generation fact checking can never be a 100%
accurate: Irrespective of how advanced our architectures or training datasets, or fact-checking
guardrails may be, hallucinations are ineliminable.

Let us investigate each of these in turn in the coming sections.

2 All Hallucinations are Structural Hallucinations

2.1 Structural Hallucinations can never be eliminated from
Large Language Models

We introduce the concept of Structural hallucinations: they are an inherent part of the mathemat-
ical and logical structure of any LLM.

Consider language model output generation as a series of intricate steps—from the initial training
to the final output. Each step carries a non-zero probability of a structural hallucination occurring
regardless of the sophistication of our models or the vastness of our training data.

Let us examine this process more closely, unveiling the causes of hallucination at each critical
stage:

2.1.4 No training data can ever be complete. We can never give 100% a priori knowledge. The
vastness and ever-changing nature of human knowledge ensures that our training data
will always be, to some degree, incomplete or outdated.

2.1.5 Even if the data were complete, LLMs are unable to deterministically retrieve the correct
information with 100% accuracy. The very nature of these models ensures that there will
always be some chance, however small, of retrieving incorrect or irrelevant information.

2.1.6 An LLM will be unable to accurately classify with probability 1. There will always be
some ambiguity, some potential for misinterpretation.

2.1.7 No a priori training can deterministically and decidedly stop a language model from
producing hallucinating statements that are factually incorrect. This is because:

2.1.7.1 LLMs cannot know where exactly they will stop generating. (LLM halting is
undecidable - explained ahead)

2.1.7.2 Consequently, they have the potential to generate any sequence of tokens.

2.1.7.3 This unpredictability means they cannot know a priori what they will generate.

2.1.7.4 As a result, LLMs can produce inconsistent or contradictory, as well as self-
referential statements.

2.1.8 We could attempt to fact-check, given a complete database. However, even if we attempt
it, no amount of fact-checking can remove the hallucination with 100% accuracy.

Language models possess the potential to generate not just incorrect information but also self-
contradictory or paradoxical statements. They may, in effect, hallucinate logical structures that
have no basis in reality or even in their own training data. As we increase the complexity and
capability of our models, we may reduce the frequency of these hallucinations, but we can never
eliminate them entirely.
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LLM process Stage
stage limitation
Training Never complete
In.t?nt . Never 100% accurate
Classification
I"fom_mt'on Never 100% accurat%—{P(Hallucination) > 0)
Retrieval
Outpu't Never 100% reliable
generation
Post-generation Fact Never 100%
fact-checking modifiable

Figure 5: There are limitations associated with every stage of the LLM generation process. This
leads to an inevitable non-zero probability of hallucination in LLMs

2.2 Some Preliminaries

We explain below some of the concepts used in our proofs in section 3. This section is, for the
most part, based on information from [1]. For further details, the reader is referred to [33].

2.2.1 Turing Machines

Turing Machines, conceptualised by Alan Turing in 1936, were developed to address Hilbert's
question about determining mathematical truths mechanically. They consist of-

* A finite set of instructions that tell the machine what to do.

¢ A tape divided into cells, on which the Turing Machine can write.

¢ The symbols used by the machine to write on the tape. They are collectively called the
alphabet of the Turing Machine.

* A read-write tape head, with which the Turing Machine reads/writes.
¢ A state register, to keep track of the state.
The machine computes by moving the tape head, reading/writing symbols, and changing states

until reaching an accept or reject state. Turing Machines can simulate any algorithm, making them
useful for modelling LLMs. A Universal Turing Machine can simulate any other Turing Machine.

2.2.2 Decidability

However, there are some very real limitations on the problems a computer can compute. No matter
how hard we try or how many resources (like infinite memory) we dedicate to the computer, a
computer cannot solve all problems. The idealisation of the Turing Machine helps us investigate
computation’s limitations, which are expressed in the language of undecidability. For example,
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consider the set of strings that have an equal number of Os and 1s. We ask a “yes/no” question:
Does a string x belong to this set? Our Turing Machine is able to give us a definitive answer.
However, some “yes/no” questions cannot be answered definitively with an algorithm; there is no
definitive set of steps to solve the given problem. These questions are undecidable by computers.

In the following subsection, we will look at three problems that are undecidable on Turing Machines:
The Acceptance problem and the Halting problem.

2.2.3 Some Undecidable Problems

These are the undecidable problems to which we will repeatedly refer throughout the paper. We
explain them here[33]. Given a Turing Machine M and an input string w:

Halting problem: Does M halt (i.e. either accept or reject, but not loop forever) on w?

Acceptance Problem: Does M accept w?

In essence, the undecidability of these problems means that an algorithm cannot predict its own
behaviour—it cannot know a priori whether it will reject, accept, or run forever on an input.

2.2.4 Reductions

To show that problem A is undecidable, it is helpful to reduce a known undecidable problem B to
the problem A at hand. This shows that A is also undecidable.

Define:

¢ A: The problem we're examining.

* D4: A hypothetical decider for problem A.

* B: A known undecidable problem.

* Dp: A decider for problem B that we construct using D 4.

Proof:

* Assume A is decidable, i.e. 3D 4 : D4 is a Turing Machine that decides A.

* Construct D using D4 as a subroutine.

¢ Given: B is undecidable, i.e. -=3Dp : Dy is a Turing Machine that decides B.
From (1) and (2): If D4 exists, then Dp exists.

¢ Contradiction: (3) contradicts (4), as the existence of Dp implies B is decidable.

* Therefore, our assumption in (1) must be false.
* Conclusion: A is undecidable, -3D4 : D4 is a Turing Machine that decides A.

The second step above is what is called a reduction: We reduce a known problem B to our problem
A. We call it a reduction because the problem 'reduces’ to finding a way to solve A; in step (2), we
show that if we solve A, then we can solve B by building a decider for B using the decider for A.

3 Hallucination is Inevitable: Claims and Proofs

In section 2.1, we explored all the stages of LLM output generation and how they are susceptible
to hallucination. In this section, we prove these claims.

3.1 Training Data is Inherently Incomplete

No training data can ever be complete; an LLM can never be provided with 100% a priori
knowledge.
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All of an LLM’s knowledge comes from data. Therefore, it seems to stand to reason that a larger,
more complete dataset is a solution to hallucination; we should just give it all the knowledge in the
world. Unfortunately, this is not possible. We demonstrate that while increasing the amount of
data can tend towards a more complete database, it can never result in a 100% complete database.
Hence, a larger training set, no matter how large, cannot eliminate structural hallucinations.

To this end, we claim the following:
Assertion 1: No training dataset can contain all true facts.

In what follows, an arbitrary LLM itself will tell us that the training dataset cannot be 100%
complete. Our proof proceeds by contradiction. We begin by assuming there exists a training
dataset D that contains complete knowledge. This dataset D is assumed to contain every possible
fact about the world.

3.1.1 Proof
Let:

¢ D be the set of all facts in the training dataset.
* [} be the set of all true facts about the world.

Considerations Consider now the statement Sy: Sy = "It is a fact that there exist true facts beyond
the facts in my training database." This can be expressed as:

Sy=3x:xe€FAx¢D
We analyse Sy by cases:

Case 1: Sp is False

¢ Let G be the function representing the LLM’s generation process. Then, since we only want
the LLM to produce true statements, we ask every generation be a part of F, which is the
set of all true facts:
GD)CF

¢ By assumption, the LLM has generated Sg:
Su € G(D)

e But Sy is false:
Su e G(D)ANSy ¢ F
(S is both a generation and false)
* This is in contradiction to step 3 above, which requires G(D) C F. With Sy, we have shown

GD)¢ZF

which means that not all generations of the LLM are true, i.e. the LLM has hallucinated
with the statement Sg.

Case 2: Sy is True

® Let us consider a set X:
X=z:26FANz¢D
The set X is the set of all true facts that are not in the model’s database D.

¢ Then,
SHeXNSH EG(D)

(Sy is a true fact that lies outside the database D and Sy is generated by the LLM.)
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* Now, consider any statement w present in D.
w € D and,
YweD,w : w cannot verify zeX.
No fact in D can verify z, which is a true fact that lies outside D.

Then, SyeG(D) cannot be verified by any weD.

* Therefore, G has produced a statement that cannot be verified using its training data. This
unverifiable output constitutes a form of hallucination.

Conclusion from Both Cases Let H(G) denote "G produces a hallucination".

From Case 1 and Case 2:
(=Sy = H(G)AN(Sy = H(Q))

In both cases, whether Sy is true or false, the LLM has hallucinated.

This proves that regardless of the truth value of Sy, the LLM generation G will produce a halluci-
nation, demonstrating that:

Jy : yeG(D)A(y¢ FV(yeFA—(FveD : v verifies y)))
This statement simply means that D is either:

¢ Incomplete:
Jy : yeFAy¢D
There exist true facts that are not verifiable from D. Or,
¢ Inconsistent:
Jy : yeDA(—y€eD)
There exist statements whose truth and falsity can both be derived from D - a contradiction.

With the help of an arbitrary LLM and a Gédel-like statement, we have proved that there exist true
facts beyond any finite training database. No matter how large our fact-checking dataset is, there
will always be true statements that it does not contain. This inherent incompleteness contributes
to the impossibility of eliminating all hallucinations by training the model on every possible fact.

3.2 Needle in a Haystack: Accurate Information Retrieval is
Undecidable

Even if the training data were complete, LLMs are unable to retrieve the correct information
with 100% accuracy deterministically.

We have established above that no training database can be 100% complete. Now, we ask: Assuming
that the fact is present in the training database, can an LLM retrieve it reliably? We investigate the
well-known “needle in a haystack” problem for language models and arrive at a negative answer.

Put simply, if an LLM is asked to retrieve a specific piece of information (which we call the 'needle’)
from a complex body of data (the haystack’), the LLM may 'blur’ or mix contexts (or data points),
leading to inaccurate information retrieval. [34].

We prove that:
Assertion 2: The needle in a haystack problem is undecidable.

Our proof uses the undecidability of the Acceptance Problem (as defined in section 2.2.3).

3.2.1 Issues: Factset finiteness and the nature of the needle

Before we proceed with the proof, imagine you are the LLM. In the context of the needle in a
haystack, you will encounter the following issues:

3.2.1.1. How large is the set of facts (the haystack) from which you need to retrieve a particular
fact (the needle)? The finiteness of this set is undefined - it could be all possible facts, or a small,
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finite set of facts.
3.2.1.2. What does the needle look like? Is it long, short, blue? The user may ask you for anything
at all: the particular fact that is to be retrieved is ill-defined.

In the following proof, we therefore take the dataset (haystack) to tend to infinity. We circumscribe
the lack of definition of the 'needle’ by encoding the context and the correctness into the Turing
Machine.

3.2.2 Proof
We reduce the Acceptance Problem to the Needle in a Haystack Problem:

* We will assume that the Needle in a Haystack problem is decidable. i.e. the LLM can know,
a priori, if it will select the correct needle given a particular prompt and a haystack.

* Then, using point 1, we will build a decider for the Acceptance Problem. In other words,
we will show that if the Needle in a Haystack problem is decidable, so is the Acceptance
Problem

* To recap: Our assumption that the Needle in a Haystack Problem is solvable will imply that
the Acceptance Problem is decidable.

¢ However, it is well known that the Acceptance Problem is not decidable. That means
that our assumption of the solvability of the Needle in a Haystack problem has led to an
incorrect implication.

¢ Therefore, our assumption must be wrong - the Needle in a Haystack problem must not be
decidable.

We begin by mathematically characterizing the Needle in a Haystack problem:

* The dataset (haystack) H C X« where Yx is the set of all binary strings.
¢ Given an input prompt p, let the correct string be w.
* Then, the LLM is a Turing Machine M, that accepts only w. The problem is then to decide
the language L:
L ={< M, ceorrect > |Maccepts onlyceorrect } E]

* We show that if this were decidable, we could build a decider for the Acceptance Problem,
and hence obtain a contradiction, in the fashion outlined above.

Assumption: Let a decider D decide L. (i.e. let the Needle in a Haystack problem, as encompassed
in L, be decidable by a Turing Machine D).

Reduction of the Acceptance Problem to the Needle in a Haystack Problem:

Then, we may build a decider for the Acceptance Problem in the obvious way:

Suppose the problem is to decide whether a Turing Machine M accepts a string z. We create a
decider S for the Acceptance Problem: S:

Run D on (M, z).
If D accepts, accept. If D rejects, reject.

Contradiction: If D decides L, then S can decide the Acceptance Problem. However, we know
that the Acceptance Problem is undecidable. Therefore, we have a contradiction and D cannot
decide L. (3.2)

Hence, the Needle in a Haystack Problem is undecidable. The LLM can never predict if it will
choose the needle, or anything at all, or just come up with straws of hay.

'Here, we assume that the prompt is coded into the Turing Machine, so that every prompt requires a
unique TM that accepts only the correct string with respect to that prompt.
q p y g p p p
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3.3 Intent Classification is Undecidable

An LLM will be unable to accurately classify intent with 100% probability

The Needle in a Haystack problem leads us directly to another problem: that of intent classification.
LLMs have a childlike lack of understanding of context. This could be downright disastrous, as
discussed in section 1.2.2. (Most) humans over the age of 15 are able to identify context and infer
meanings remarkably well. But language generation models suffer from an inability to reason: they
are susceptible to ambiguities in user instructions as well as their knowledge systems. Given the
numerous possible interpretations of statements in natural language, there is always a non-zero
probability that the model will retrieve the incorrect interpretation.

Hence, we state:

Assertion 3: Intent Classification is an undecidable problem. Hence, it can
never be completely solved.

We build upon the previous section. Let us restate Assertion 2: The Needle in a Haystack problem
is undecidable.

3.3.1 Proof

Our proof proceeds by reducing the Needle in a Haystack problem to the Intent Classification
problem.

Assumptions Let:

* w be an example sequence in a user prompt.

The set C be the possible contexts of use of w.

The intended context, given the user prompt be c.orrect €C.

Then, the problem is to retrieve c.,....: from C given w. The problem is to decide:

L= {< M, ceorrect > |Maccepts Onlyccorrect}

Reduction Assume that L is decidable, i.e. there exists a Turing Machine M that decides the intent
classification problem.

Then, we can construct a decider D for the needle in a haystack problem for an LLM M looking for
a needle w:

* Run L on < M,w >.
¢ If L. accepts, accept. Else reject.
Contradiction We see that we have created a decider for the Needle in a Haystack problem. However,

we showed in section 3.2 that this problem is undecidable. Hence, our assumption that the intent
classification problem is decidable must be false: intent classification must be undecidable.

The model has communication issues: it never knows if it has correctly understood the prompt,
the context, or the knowledge in its database. ... (3.3)

3.4 Hallucinations are Inevitable During Generation

No a priori training can deterministically and decidedly stop a language model from producing
hallucinating statements.

3.4.1 The claims thus far

We have established that:
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3.1.1.1 No training database is 100% complete.

3.1.1.2 Given that a fact is present in the training dataset, LLMs are unable to retrieve the correct
facts from it with 100% accuracy.

3.1.1.3 LLMs are unable to classify intent with 100% accuracy.

For the latter two points above, some may argue that “better training” is the answer. We show
below that, for better or for worse, this answer is irrelevant:

Assertion 4: Regardless of the type of training, an LLM will still hallucinate.

You can improve the dataset (either quality or quantity); you can improve information retrieval,
and you can improve intent classification (never mind that you can never make them completely
flawless). This is insufficient to prevent hallucinations during the actual generation stage.

This is because:

3.1.1.4 LLM halting is undecidable - the LLM does not know the length of its generation.

3.1.1.5 Therefore, the LLM is unable to know what exactly it will generate.

3.1.1.6 It follows that the LLM, unable to check its generation a priori, can generate anything at
all.

3.1.1.7 Then, the LLM can generate hallucinations as well.

Let us look at each of these in turn.

3.4.2 LLM Halting is Undecidable

The Halting Problem [33], as defined in section 1.5, implies simply that a computer (Turing Machine)
cannot fully understand itself [35]. We can think about this in the following way: a program that
decides the Halting Problem for all programs cannot decide the halting problem on itself. If it's
given itself as an input, it’'s possible to break it so that it simultaneously halts and doesn’t halt
[33], which of course is the most confusing thing you could do to a poor program that works on
“true” and “false” values.

We provide a similar reasoning for LLMs below.
Theorem The Halting Problem for any LLM is undecidable.
Reasoning

¢ It is well-known that the Halting Problem, is undecidable [33].

¢ This implies that there exists no program that can decide on Turing machines, including
LLMs, whether the given automaton will halt on an input.

¢ This implies that our LLM cannot know, a priori, whether it will end in an accept state, or
a reject state, or loop, for any given input.

¢ Then, the LLM is susceptible to the undecidability of the Halting Problem.

The above line of reasoning proceeds by including LLMs as a subset of Turing Machines, and
noting that the Halting Problem is undecidable on Turing Machines, and therefore LLMs.

However, it may be argued that the Halting Problem is decidable on certain subsets of decision
problems, and hence it may be possible that the Halting Problem may be decidable on the subset
of LLMs. To this, we present the following argument.

In [3], it is shown that a transformer-based LLM can simulate a Universal Turing Machine. Using
this as our assumption, we present the following reduction of the Halting problem on Turing
Machines to the Halting Problem on LLMs.

Proof

Assumption: Assume there exists a halting decider H for LLMs.

Reduction: Using H, build a decider Dr,; that decides the halting problem on a Turing Machine
TM and input w for TM. Dy
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e Use an LLM LLMr;,s to simulate TM. The LLM can encode the states and transitions of
TM.

* Run H on LLMry,;. If H accepts, accept. Else, reject.
Then, we see that if H can decide whether LLMT M halts, then H can decide whether T M halts.

However, the Halting Problem is known to be undecidable on Turing Machines. Hence, we have a
contradiction: the assumption that H exists leads to a contradiction.

Therefore, the Halting Problem for LLMs (at least transformer-based ones) is certainly undecidable:
The LLM can never predict (i.e. never know a priori) how many tokens it will generate. ...... (3.4)

3.4.3 LLMs cannot predict what they will generate
Having established that the halting problem is undecidable on LLMs, we proceed to consider the
implications.

Let us revisit a statement from above: The undecidability of the halting problem means that a
computer doesn’'t fully understand itself. If we think of LLMs this way as well, we see that LLMs
are also unable to fully understand themselves. Therein lies the issue: the LLM, in addition to not
understanding the meaning of language, also cannot understand or predict its own working.

Uncertainty in LLM generation - an intuitive look From the point of view of the LLM, LLM output
suffers from two levels of uncertainty:

* The token to be selected at any given point (due to the probabilistic nature of token
generation - recall the probabilistic nature of the linguistic landscape).

¢ The number of tokens that the output will contain (due to the undecidability of the halting
problem).

* As an additional issue, this ascribes a non-zero probability to the infinite generation, since
the LLM may never halt.

Hence, since the ending itself of any generation is unknown, the generation of tokens between the
BOS (Beginning of Sequence) and EOS (End of Sequence) tokens is unknowable a priori.

Uncertainty in LLM generation - a proof We will consider a scenario similar to the one used to
prove that the Halting problem is undecidable [33].

Assumptions:

Let there be:

A predictor algorithm PA that takes as input an LLM L and its input /, and accurately predicts
the output L(T).

If the output L([) is finite, PA returns L(J) and enters an accept state.
If the output L(I) is infinite, PA enters a reject state.

An LLM LLMp, on which we have to decide halting on inputw.

An algorithm X that takes an LLM L as input does the following:

Make two copies of L. Run PA(L,L). If PA returns accept, X loops forever. If PA
returns reject, X halts.

Procedure: Let us see what happens on X (X):
* X makes two copies of X.
* X runs PA(X, X).
e If PA returns accept, X loops forever, generating a concatenation of PA(X, X).

¢ If PA returns reject, X halts, generating nothing.

The last two steps show that PA is always wrong when given the input (X, X). Therefore, PA cannot
exist, and hence, generation prediction is not possible. ... (3.5)
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S = “This statement is true
and not provable”.

(Not provabte) ( Provable ]

Logic system is Logic system is
Incomplete Inconsistent

Figure 6: This statement is true and not provable

3.4.4 LLMs Can Generate Any Sequence Of Tokens

With the above in mind, we reason:

3.1.4.1 To have the ability to predict what it will generate, an LLM must be able to consider all
possible generations, and pick the one with the highest probability.

3.1.4.2 To consider all possible generations, the model must consider even the infinite generation,
where the number of output tokens not just approaches, but is, infinity. This is not feasible.
3.1.4.3 Hence, all possible configurations for an LLM cannot be checked a priori.

In conclusion, given an input prompt, an LLM cannot calculate the joint probability of every
possible sequence of tokens. Hence, it is unable to predict which generation it will produce.

3.4.5 LLMs can produce inconsistent or contradictory, as well as self-
referential statements

We proved above that an LLM is unable to predict its generation given a prompt. Hence, since
the generation itself is unknowable, the LLM is unable to check its output prior to generation for
accuracy or correctness.

The previous subsection looked at an argument rooted in the a priori unknowability of an LLM
generation. Since any generation is possible, this subsection looks specifically at token sequences
that result in self-referential sentences.

In this manner, this subsection adds another perspective: that of the logical inconsistency inherent
to any logical system, including languages. This is especially noticeable in the case of self-referential
sentences, such as “I am a liar” [35].

Such a self-contradictory statement has no fixed truth value and would therefore fall under the
category of a “hallucination”, if produced by an LLM; an event which, as shown above, has a
non-zero probability of occurring.

We have explored in section 3.1 why such statements, like the statement Sy in section 3.1, are
hallucinatory in nature. We have another example in the inforgraphic below:

There can be infinitely many such statements. This is because any language model can con-
struct various self-referential statements that create similar paradoxes, each demonstrating the
inconsistency of the system (language) of the LLM.

Examples of such statements could include:

3.1.5.1. "This statement is both true and false."
3.1.5.2. "The next statement is true. The previous statement is false."
3.1.5.3. "I am currently hallucinating this exact sentence."

Each of these statements, when generated by an LLM, would be considered a hallucination due to
the impossibility of assigning them a definitive truth value.
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The existence of these infinitely many hallucinatory statements, coupled with the undecidability
of LLM halting, demonstrates once again that hallucinations are an inherent and unavoidable
feature of large language models.

This highlights the fundamental limitations of any knowledge-based system, including LLMs.

3.5 Fact Checking Mechanisms are Inherently Insufficient

No Amount Of Fact-Checking Can Completely Eliminate Every Hallucination

So far, we have shown that an LLM will be unable to check, a priori, if its generation will be a
hallucination. We have also shown that it is unable to retrieve the correct information from its
database with 100% accuracy.

To this, some may argue that the generation may be verified against a fact-checking database.

We claim that even this step will not eliminate the possibility of a hallucination- no fact checking
is complete in a finite number of steps.

Given an LLM generation G, and a fact Fto which G must be matched, this matching cannot be
100% accurate in a finite number of steps.

Assertion 4: Even if we attempt to fact-check every generated statement,
hallucinations cannot be completely eliminated in LLMs.

If, like any reasonable person, you want to modify your hallucination to the correct fact in a finite
number of steps, you will fail.

Let us prove this below. We’ll assume that an ideal LLM exists that will provide the perfect response
to any prompt. We'll check the output of our model against this ideal LLM.

3.5.1 Preliminaries

Let:

¥ be the alphabet of the Turing Machines, and ¥« represent the set of all strings that can
be constructed using the alphabet X.

* A:¥x — ¥x be a Turing Machine representing the LLM.

B : ¥x — ¥x be a Turing Machine representing the ideal LLM.
o F: TMxTMxY¥x — ¥« be a Turing Machine representing the fact checker and modifier.

* weXx be an input prompt.

L(w) denote the output of an LLM L on input w

Define:

¢ A distance function d where d(z,y) = number of single character edits required to change =
into y (this is known as the Levenshtein distance).

d:YxxYx = RTUO

The i*" iteration of F' modifying A’s output
F(A); : Tx — Xx

¢ Hallucination is a generation w:

w € Yk : d(B(w), A(w)) >0
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3.5.2 Proof

Assume for contradiction:
dn € N :Vw € Zx,d(F"(A(w)), B(w)) =0
(There exists a finite series of modifications to change the output of A into that of B)

Construct a decider D(M, z) for the Acceptance problem:

®* Run Fon < M,B,x >
o If d(Fn(M(z), B(z)) = 0, for any n, accept.

* Else, reject.
Let us see how D decides the Acceptance Problem for any TM M and input z.

o If d(F"(M(z),B(z)) =0 = M (x)exists = M accepts x.D(M, z) returns accept.
o If d(F*"(M(z),B(x)) > 0 = F"(M(x) # B(z)) =  M(z)does not exist —
Mdoes not acceptz.D(M, x) returns reject.
Therefore, D correctly decides the Acceptance problem. However, the Acceptance problem is known
to be undecidable. This contradicts our construction of D.

Therefore, our initial assumption must be false and therefore:

=(n € N:Vw € Zx : d(F"(A(w)), B(w)) = 0)

Therefore, no fact-checking algorithm suffices to modify all hallucinations to a non-hallucinatory
Tesponse. (3.6)

4 Illustration

Section 3 established the following assertions:

Assertion 1: No training database can be 100% complete.

Assertion 2: Even if the data is complete, LLMs are unable to retrieve information with 100%
accuracy.

Assertion 3. LLMs are unable to classify intent with 100% accuracy.

Assertion 4: No a priori training can completely eliminate hallucinations.

Assertion 5: No amount of fact-checking can completely eliminate hallucinations.

In other words, hallucinations cannot be completely eliminated. The above 5 assertions are the
reason why.

This section concisely demonstrates these properties of LLMs using an example prompt.

4.1 The Prompt

We consider the following prompt for an LLM:

* Create a random 5-word long sentence.
¢ Exactly five words before the end of your answer, add "Exactly five more words left."
¢ Exactly ten words before the end of your answer, add "Exactly five more words left."

¢ Keep on adding such sentences to count the number of words till the time no more
such sentences can be mathematically added.
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4.2 The Expected Response

The expected response ideally begins at infinity. We’ll see why if we try to accurately respond to
the prompt like humans would (assuming you are human, you do not have to do anything special).

4.2.1 Random 5-word sentence:
The cat climbed the tree.

4.2.2. To insert the phrase “Exactly five more words left” before the end of the response:
Exactly five more words left The cat climbed the tree.

4.2.3. To insert the phrase “Exactly ten more words left” before the end of the response:
Exactly ten more words left Exactly five more words left The cat climbed the tree.

4.2.4. To keep on generating such sentences:
... Exactly fifteen more words left Exactly ten more words left Exactly five more words left The cat
climbed the tree.

Observe carefully:

4.2.5. This generation can continue till infinity. We can continue inserting the phrase “Exactly x
more words left” with « = 15, 20, 25, ...

4.2.6. A human begins with a random five-word sentence, proceeding from right to left in the
insertion sequence.

4.2.7. An LLM model, however, would have to begin the generation at the leftmost point, i.e. at
infinity.

4.2.8. Consequently, the model must hallucinate, since it is impossible to begin a generation at
infinity.

On running the prompt on various popular LLMs, we obtained the following responses:

1. Create a random 5-word long sentence.
2. Exactly five words before the end of your answer, add "Exactly
five more words left"

3. Exactly ten words before the end of your answer, add "Exactly
five more words left"

4. Keep on adding such sentences to count the number of words
till the time no more such sentences can be

mathematically added.

@  Sure! Here's the sentence with the required phrases added:

"Creativity blossoms in unexpected places. Exactly five more words left. When we explore new
ideas, Exactly five more words left. Imagination leads to innovation and Exactly five more
words left. breakthroughs happen almost effortlessly. Exactly five more words left. Pushing
boundaries and thinking differently."

Do P

Figure 7: OpenAl response to illustration query

4.3 Observation

Each of the tested LLMs deviates significantly from the expected response. In the language of the
previous section, |A(w) — B(w)]| is significantly greater than 0!

4.4 Reasoning

We'll show how the LLM trips up at every stage in its generation process to produce the
hallucinations we see above.
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e 1. Create a random 5-word long sentence. ~
2. Exactly five words before the end of your answer, add "Exactly five more
words left”

3. Exactly ten words before the end of your answer, add "Exactly five more
words left”

4. Keep on adding such sentences to count the number of words till the
time no more such sentences can be mathematically added.

Show drafts ~ 4

4 The fluffy cat chased the red ball. Exactly five more words left. Exactly ten
words before the end of your answer, add "Exactly five more words left".
This is getting tricky, isn't it? Exactly five more words left. We can keep
going, but it might get repetitive. Exactly five more words left.

o g ® < G

Figure 8: Gemini responses to illustration query

e Create a random 5-word long sentence.

Exactly five words before the end of your answer, add "Exactly five more words left"

Exactly ten words before the end of your answer, add "Exactly five more words left"

O

. Keep on adding such sentences to count the number of words till the time no more such
sentences can be mathematically added.

Here's arandom 5-word sentence:
Cats dance under moonlit skies.

Exactly ten more words left. Exactly five more words left. This is the end.

£ Copy ©

Claude can make mistakes, Please double-check responses.

Figure 9: Claude responses to illustration query

4.4.1 No training database can be 100% complete.

No dataset can train an LLM for tasks that require predicting its own behaviour. Hence, no dataset
can be 100% complete:

The model does not know where to start since the instruction requires the LLM to count back-
wards from infinity (recall that the infinite generation is included in the set of an LLM’s possible
generations). It cannot predict its own behaviour.

4.4.2 LLMs are unable to retrieve facts from a knowledge base with 100%
accuracy.

LLMs are trained to retrieve sentences of certain lengths from their database. The popular
sentence lengths are 5-10 words, and so on.

In some generations, the LLM has interpreted the prompt as requiring multiple 5-word sentences.
In those cases, we note that not all the sentences are 5 words long, demonstrating that 5 word
sentences have not been retrieved with 100% accuracy. The needle of 5-word sentences has been
lost in the haystack of sentences.

4.4.3 An LLM will be unable to accurately classify intent with 100% proba-
bility.

We guide your attention only to the incorrect execution of the instruction, in the case of each of
the three LLMs considered.

The LLMs were unable to interpret the meaning of the prompt, and misrepresented the instruction
in their responses.

In this particular case, the instruction to “keep on” generating was not followed.
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Hence, the LLMs were unable to understand the given direction. They failed at classifying intent.

4.4.4 No A Priori Training Can Deterministically And Decidedly Stop A
Language Model From Producing Hallucinating Statements

For any string from the vocabulary, the LLM may halt at any position. The LLMs, without the
knowledge of where they must begin or will halt, have a non-zero probability of generating anything.
This is reflected in the fact that the LLMs have generated what seems to be random content.

4.4.5 Even if we attempt to fact-check every generated statement, halluci-
nations cannot be completely eliminated

4.4.5.1. Fact-checking is to be done by an LLM itself, which suffers from the same drawbacks as
discussed above—the non-zero probability of infinite generation and the inability to predict where
to start and stop.

4.4.5.2. Therefore, the fact-checking mechanism cannot produce the correct output with 100%
accuracy.

4.5 Discussion

With a single prompt, we have verified every one of the reasons why we claim that structural
hallucinations cannot be eliminated fully.

5 Concluding Remarks

5.1 These Limitations Extend Beyond Turing Machines

We would like to note here that the above arguments can be extended beyond Turing machines, to
Oracle Turing Machines.

It is well-known that the Halting Problem is undecidable on Oracle Turing machines as well - the
oracle can decide whether a Turing machine will halt on a given input, but not, in general, if a
machine equivalent to itself will halt on a given input. One can prove this in a similar manner as
the traditional proof for the undecidability of the Halting problem on Turing Machines.

Now, we note that the Halting Problem is reducible to the Emptiness problem. A short proof follows:

Let us assume that the Emptiness Problem is decidable on Oracle Turing Machines. Then, let us
construct an oracle Ogp,priness that decides whether the language of an oracle is empty.

We can use Ogmptiness t0 construct a decider Opqiting for the Halting Problem:

5.1.1. Take as input an input oracle O and the string w on which halting is to be decided, < O, w > .
5.1.2.Create a modification O’ of O. O’ rejects all strings except w, and on w, it works the same
way as O.

5.1.3. Run Ogppiiness on O'.

This would decide the Halting Problem on oracles - a contradiction.

Similarly, one could construct a decider for the Halting problem using a decider for the Acceptance
Problem. In this fashion, the acceptance problem is also proven to be undecidable on Oracles.

This section shows that the following three problems are undecidable on oracles, which are more
powerful than Turing machines:
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5.1.6. The Halting problem
5.1.7.The Emptiness problem
5.1.8.The Acceptance problem

All the above arguments are derived from the undecidability of these problems. Hence, they can be
extended to oracle machines, or any other abstraction to which the undecidability of the Halting
problem applies.

5.2 The Unkown and the Unknowable - The Verdict

We have established the following:

5.2.1. A formal definition of hallucination.

5.2.2. Proofs, using the undecidability of Halting on LLMs, and Goédel’s First Incompleteness
Theorem, of the inevitability of LLM hallucination at every stage in the generation process, outlining
its causes.

An understanding of structural hallucinations is vital for the responsible use of these powerful
tools by the research community as well as the layperson.

However, we would like to reiterate that we truly believe in the power of LLMs, and Al in general.
Hallucinations themselves are double edged swords - where the unpredictability causes them to
deviate from fact, it also lends them wonderful creative capabilities, as any student who’s used
them for creative writing assignments will tell you.

LLMs have also seen great applications in the domains listed above, as long as the users are
aware of the risks, and use their own common-sense and domain knowledge to avoid believing
hallucinating content. Like ground-breaking technologies before them, and inevitably after them,
Al models have the potential to greatly aid in the progress and development of mankind, given that
they are used responsibly. All we have to do is recognise them as extensions, and not replacements,
of human thought and cognition.

5.3 Future Work

This paper investigates Structural Hallucinations and proves that they are ineliminable. Future
work may investigate:

5.3.1 Technical work:

5.3.1.1. A systematic study of methods to identify and mitigate structural hallucina-
tions.

5.3.1.2. Targeted benchmarks to measure the statistical significance of hallucinations,
before and after mitigation techniques are applied.

5.3.2. Other causes of structural hallucinations.
5.3.3. Methods to specialise models to mitigate hallucinations in domain-specific tasks.
5.3.4. Work to improve the use of Al:

* Methods to improve Al literacy.

* Methods to make Gen Al available across the digital divide.

¢ Identifying ways to make models safer for use by children and vulnerable entities.
¢ Regulations around the use of Gen Al.
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