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Loss of plasticity in deep continual learning

Shibhansh Dohare1 ✉, J. Fernando Hernandez-Garcia1, Qingfeng Lan1, Parash Rahman1, 
A. Rupam Mahmood1,2 & Richard S. Sutton1,2

Artificial neural networks, deep-learning methods and the backpropagation 
algorithm1 form the foundation of modern machine learning and artificial 
intelligence. These methods are almost always used in two phases, one in which the 
weights of the network are updated and one in which the weights are held constant 
while the network is used or evaluated. This contrasts with natural learning and many 
applications, which require continual learning. It has been unclear whether or not 
deep learning methods work in continual learning settings. Here we show that they  
do not—that standard deep-learning methods gradually lose plasticity in continual- 
learning settings until they learn no better than a shallow network. We show such loss 
of plasticity using the classic ImageNet dataset and reinforcement-learning problems 
across a wide range of variations in the network and the learning algorithm. Plasticity 
is maintained indefinitely only by algorithms that continually inject diversity  
into the network, such as our continual backpropagation algorithm, a variation of 
backpropagation in which a small fraction of less-used units are continually and 
randomly reinitialized. Our results indicate that methods based on gradient descent 
are not enough—that sustained deep learning requires a random, non-gradient 
component to maintain variability and plasticity.

Machine learning and artificial intelligence have made remarkable pro-
gress in the past decade, with landmark successes in natural-language 
processing2,3, biology4, game playing5–8 and robotics9,10. All these sys-
tems use artificial neural networks, whose computations are inspired by 
the operation of human and animal brains. Learning in these networks 
refers to computational algorithms for changing the strengths of their 
connection weights (computational synapses). The most important 
modern learning methods are based on stochastic gradient descent 
(SGD) and the backpropagation algorithm, ideas that originated at 
least four decades ago but are much more powerful today because of 
the availability of vastly greater computer power. The successes are 
also because of refinements of the learning and training techniques 
that together make the early ideas effective in much larger and more 
deeply layered networks. These methodologies are collectively referred 
to as deep learning.

Despite its successes, deep learning has difficulty adapting to chang-
ing data. Because of this, in almost all applications, deep learning is 
restricted to a special training phase and then turned off when the 
network is actually used. For example, large language models such as 
ChatGPT are trained on a large generic training set and then fine-tuned 
on smaller datasets specific to an application or to meet policy and 
safety goals, but finally their weights are frozen before the network 
is released for use. With current methods, it is usually not effective to 
simply continue training on new data when they become available. The 
effect of the new data is either too large or too small and not properly 
balanced with the old data. The reasons for this are not well understood 
and there is not yet a clear solution. In practice, the most common 
strategy for incorporating substantial new data has been simply to 
discard the old network and train a new one from scratch on the old and 

new data together11,12. When the network is a large language model and 
the data are a substantial portion of the internet, then each retraining 
may cost millions of dollars in computation. Moreover, a wide range 
of real-world applications require adapting to change. Change is ubiq-
uitous in learning to anticipate markets and human preferences and in 
gaming, logistics and control systems. Deep-learning systems would 
be much more powerful if they, like natural-learning systems, were 
capable of continual learning.

Here we show systematically that standard deep-learning meth-
ods lose their ability to learn with extended training on new data,  
a phenomenon that we call loss of plasticity. We use classic datasets, 
such as ImageNet and CIFAR-100, modified for continual learning, 
and standard feed-forward and residual networks with a wide variety 
of standard learning algorithms. Loss of plasticity in artificial neural 
networks was first shown at the turn of the century in the psychology 
literature13–15, before the development of deep-learning methods. Plas-
ticity loss with modern methods was visible in some recent works11,16–18 
and most recently has begun to be explored explicitly12,19–27. Loss of plas-
ticity is different from catastrophic forgetting, which concerns poor 
performance on old examples even if they are not presented again28–30.

Although standard deep-learning methods lose plasticity with 
extended learning, we show that a simple change enables them to 
maintain plasticity indefinitely in both supervised and reinforce-
ment learning. Our new algorithm, continual backpropagation, is 
exactly like classical backpropagation except that a tiny proportion 
of less-used units are reinitialized on each step much as they were 
all initialized at the start of training. Continual backpropagation is 
inspired by a long history of methods for automatically generating 
and testing features, starting with Selfridge’s Pandemonium in 1959 
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(refs. 19,20,31–35). The effectiveness of continual backpropagation 
shows that the problem of plasticity loss is not inherent in artificial  
neural networks.

Plasticity loss in supervised learning
The primary purpose of this article is to demonstrate loss of plasticity in 
standard deep-learning systems. For the demonstration to be convinc-
ing, it must be systematic and extensive. It must consider a wide range of 
standard deep-learning networks, learning algorithms and parameter 
settings. For each of these, the experiments must be run long enough 
to expose long-term plasticity loss and be repeated enough times to 
obtain statistically significant results. Altogether, more computation 
is needed by three or four orders of magnitude compared with what 
would be needed to train a single network. For example, a systematic 
study with large language models would not be possible today because 
just a single training run with one of these networks would require 
computation costing millions of dollars. Fortunately, advances in 
computer hardware have continued apace since the development of 
deep learning and systematic studies have become possible with the 
deep-learning networks used earlier and with some of the longer-lived 
test problems. Here we use ImageNet, a classic object-recognition test 
bed36, which played a pivotal role in the rise of deep learning37 and is 
still influential today.

The ImageNet database comprises millions of images labelled by 
nouns (classes) such as types of animal and everyday object. The typical 
ImageNet task is to guess the label given an image. The standard way to 
use this dataset is to partition it into training and test sets. A learning 
system is first trained on a set of images and their labels, then train-
ing is stopped and performance is measured on a separate set of test 
images from the same classes. To adapt ImageNet to continual learn-
ing while minimizing all other changes, we constructed a sequence of 
binary classification tasks by taking the classes in pairs. For example, 
the first task might be to distinguish cats from houses and the second 
might be to distinguish stop signs from school buses. With the 1,000 
classes in our dataset, we were able to form half a million binary clas-
sification tasks in this way. For each task, a deep-learning network was 

first trained on a subset of the images for the two classes and then its 
performance was measured on a separate test set for the classes. After 
training and testing on one task, the next task began with a different 
pair of classes. We call this problem ‘Continual ImageNet’. In Continual 
ImageNet, the difficulty of tasks remains the same over time. A drop 
in performance would mean the network is losing its learning ability, 
a direct demonstration of loss of plasticity.

We applied a wide variety of standard deep-learning networks to Con-
tinual ImageNet and tested many learning algorithms and parameter 
settings. To assess the performance of the network on a task, we meas-
ured the percentage of test images that were correctly classified. The 
results shown in Fig. 1b are representative; they are for a feed-forward 
convolutional network and for a training procedure, using unmodified 
backpropagation, that performed well on this problem in the first few 
tasks.

Although these networks learned up to 88% correct on the test set 
of the early tasks (Fig. 1b, left panel), by the 2,000th task, they had lost 
substantial plasticity for all values of the step-size parameter (right 
panel). Some step sizes performed well on the first two tasks but then 
much worse on subsequent tasks, eventually reaching a performance 
level below that of a linear network. For other step sizes, performance 
rose initially and then fell and was only slightly better than the linear 
network after 2,000 tasks. We found this to be a common pattern in 
our experiments: for a well-tuned network, performance first improves 
and then falls substantially, ending near or below the linear baseline. 
We have observed this pattern for many network architectures, 
parameter choices and optimizers. The specific choice of network 
architecture, algorithm parameters and optimizers affected when the 
performance started to drop, but a severe performance drop occurred 
for a wide range of choices. The failure of standard deep-learning 
methods to learn better than a linear network in later tasks is direct 
evidence that these methods do not work well in continual-learning 
problems.

Algorithms that explicitly keep the weights of the network small were 
an exception to the pattern of failure and were often able to maintain 
plasticity and even improve their performance over many tasks, as 
shown in Fig. 1c. L2 regularization adds a penalty for large weights; 
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Fig. 1 | Plasticity loss in Continual ImageNet. a–c, In a sequence of binary 
classification tasks using ImageNet pictures (a), the conventional 
backpropagation algorithm loses plasticity at all step sizes (b), whereas the 
continual backpropagation, L2 regularization and Shrink and Perturb 

algorithms maintain plasticity, apparently indefinitely (c). All results are 
averaged over 30 runs; the solid lines represent the mean and the shaded 
regions correspond to ±1 standard error.
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augmenting backpropagation with this enabled the network to con-
tinue improving its learning performance over at least 5,000 tasks. 
The Shrink and Perturb algorithm11, which includes L2 regularization, 
also performed well. Best of all was our continual backpropagation 
algorithm, which we discuss later. For all algorithms, we tested a wide 
range of parameter settings and performed many independent runs for 
statistical significance. The presented curves are the best representa-
tive of each algorithm.

For a second demonstration, we chose to use residual networks, 
class-incremental continual learning and the CIFAR-100 dataset. Resid-
ual networks include layer-skipping connections as well as the usual 
layer-to-layer connections of conventional convolutional networks. The 
residual networks of today are more widely used and produce better 
results than strictly layered networks38. Class-incremental continual 
learning39 involves sequentially adding new classes while testing on 
all classes seen so far. In our demonstration, we started with training 
on five classes and then successively added more, five at a time, until 
all 100 were available. After each addition, the networks were trained 
and performance was measured on all available classes. We continued 
training on the old classes (unlike in most work in class-incremental 
learning) to focus on plasticity rather than on forgetting.

In this demonstration, we used an 18-layer residual network with  
a variable number of heads, adding heads as new classes were added. 

We also used further deep-learning techniques, including batch nor-
malization, data augmentation, L2 regularization and learning-rate 
scheduling. These techniques are standardly used with residual net-
works and are necessary for good performance. We call this our base 
deep-learning system.

As more classes are added, correctly classifying images becomes 
more difficult and classification accuracy would decrease even if the 
network maintained its ability to learn. To factor out this effect, we 
compare the accuracy of our incrementally trained networks with net-
works that were retrained from scratch on the same subset of classes. 
For example, the network that was trained first on five classes, and then 
on all ten classes, is compared with a network retrained from scratch 
on all ten classes. If the incrementally trained network performs better 
than a network retrained from scratch, then there is a benefit owing 
to training on previous classes, and if it performs worse, then there is 
genuine loss of plasticity.

The red line in Fig. 2b shows that incremental training was initially 
better than retraining, but after 40 classes, the incrementally trained 
network showed loss of plasticity that became increasingly severe. By 
the end, when all 100 classes were available, the accuracy of the incre-
mentally trained base system was 5% lower than the retrained network  
(a performance drop equivalent to that of removing a notable algorith-
mic advance, such as batch normalization). Loss of plasticity was less 
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Fig. 2 | Plasticity loss in class-incremental CIFAR-100. a, An incrementally 
growing image-classification problem. b, Initially, accuracy is improved by 
incremental training compared with a network trained from scratch, but after 
40 classes, accuracy degrades substantially in a base deep-learning system, less 
so for a Shrink and Perturb learning system and not at all for a learning system 
based on continual backpropagation. c, The number of network units that are 
active less than 1% of the time increases rapidly for the base deep-learning 

system, but less so for Shrink and Perturb and continual backpropagation 
systems. d, A low stable rank means that the units of a network do not provide 
much diversity; the base deep-learning system loses much more diversity than 
the Shrink and Perturb and continual backpropagation systems. All results are 
averaged over 30 runs; the solid lines represent the mean and the shaded 
regions correspond to ±1 standard error.
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severe when Shrink and Perturb was added to the learning algorithm (in 
the incrementally trained network) and was eliminated altogether when 
continual backpropagation (see the ‘Maintaining plasticity through 
variability and selective preservation’ section) was added. These addi-
tions also prevented units of the network from becoming inactive or 
redundant, as shown in Fig. 2c,d.

This demonstration involved larger networks and required more 
computation, but still we were able to perform extensive systematic 
tests. We found a robust pattern in the results that was similar to what 
we found in ImageNet. In both cases, deep-learning networks exhib-
ited substantial loss of plasticity. Altogether, these results, along with 
other extensive results in Methods, constitute substantial evidence of 
plasticity loss.

Plasticity loss in reinforcement learning
Continual learning is essential to reinforcement learning in ways that 
go beyond its importance in supervised learning. Not only can the 
environment change but the behaviour of the learning agent can also 
change, thereby influencing the data it receives even if the environment 
is stationary. For this reason, the need for continual learning is often 
more apparent in reinforcement learning, and reinforcement learning 
is an important setting in which to demonstrate the tendency of deep 
learning towards loss of plasticity.

Nevertheless, it is challenging to demonstrate plasticity loss in 
reinforcement learning in a systematic and rigorous way. In part, this 
is because of the great variety of algorithms and experimental set-
tings that are commonly used in reinforcement-learning research. 
Algorithms may learn value functions, behaviours or both simulta-
neously and may involve replay buffers, world models and learned 
latent states. Experiments may be episodic, continuing or offline. All 
of these choices involve several embedded choices of parameters. 
More fundamentally, reinforcement-learning algorithms affect the 
data seen by the agent. The learning ability of an algorithm is thus 
confounded with its ability to generate informative data. Finally, and in 

part because of the preceding, reinforcement-learning results tend to 
be more stochastic and more widely varying than in supervised learn-
ing. Altogether, demonstration of reinforcement-learning abilities, 
particularly negative results, tends to require more runs and gener-
ally much more experimental work and thus inevitably cannot be as 
definitive as in supervised learning.

Our first demonstration involves a reinforcement-learning algorithm 
applied to a simulated ant-like robot tasked with moving forwards as 
rapidly and efficiently as possible. The agent–environment interaction 
comprises a series of episodes, each beginning in a standard state and 
lasting up to 1,000 time steps. On each time step, the agent receives a 
reward depending on the forward distance travelled and the magnitude 
of its action (see Methods for details). An episode terminates in fewer 
than 1,000 steps if the ant jumps too high instead of moving forwards, 
as often happens early in learning. In the results to follow, we use the 
cumulative reward during an episode as our primary performance 
measure. To make the task non-stationary (and thereby emphasize 
plasticity), the coefficient of friction between the feet of the ant and 
the floor is changed after every 2 million time steps (but only at an 
episode boundary; details in Methods). For fastest walking, the agent 
must adapt (relearn) its way of walking each time the friction changes. 
For this experiment, we used the proximal policy optimization (PPO) 
algorithm40. PPO is a standard deep reinforcement-learning algorithm 
based on backpropagation. It is widely used, for example, in robotics9, 
in playing real-time strategy games41 and in aligning large language 
models from human feedback42.

PPO performed well (see the red line in Fig. 3c) for the first 2 million  
steps, up until the first change in friction, but then performed worse 
and worse. Note how the performance of the other algorithms in 
Fig. 3c decreased each time the friction changed and then recovered 
as the agent adapted to the new friction, giving the plot a sawtooth 
appearance. PPO augmented with a specially tuned Adam optimizer24,43 
performed much better (orange line in Fig. 3c) but still performed 
much worse over successive changes after the first two, indicating 
substantial loss of plasticity. On the other hand, PPO augmented with 
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L2 regularization and continual backpropagation largely maintained 
their plasticity as the problem changed.

Now consider the same ant-locomotion task except with the coef-
ficient of friction held constant at an intermediate value over 50 million 
time steps. The red line in Fig. 4a shows that the average performance 
of PPO increased for about 3 million steps but then collapsed. After 
20 million steps, the ant is failing every episode and is unable to learn 
to move forwards efficiently. The red lines in the other panels of Fig. 4 
provide further insight into the loss of plasticity of PPO. They suggest 
that the network may be losing plasticity in the same way as in our 
supervised learning results (see Fig. 2 and Extended Data Fig. 3c). In 
both cases, most of the network’s units became dormant during the 
experiment, and the network markedly lost stable rank. The addition 
of L2 regularization mitigated the performance degradation by pre-
venting continual growth of weights but also resulted in very small 
weights (Fig. 4d), which prevented the agent from committing to good 
behaviour. The addition of continual backpropagation performed bet-
ter overall. We present results for continual backpropagation only with 
(slight) L2 regularization, because without it, performance was highly 
sensitive to parameter settings. These results show that plasticity loss 
can be catastrophic in both deep reinforcement learning as well as 
deep supervised learning.

Maintaining plasticity
Surprisingly, popular methods such as Adam, Dropout and normaliza-
tion actually increased loss of plasticity (see Extended Data Fig. 4a).  
L2 regularization, on the other hand, reduced loss of plasticity in many 
cases (purple line in Figs. 1, 3 and 4). L2 regularization stops the weights 
from becoming too large by moving them towards zero at each step. 
The small weights allow the network to remain plastic. Another existing 
method that reduced loss of plasticity is Shrink and Perturb11 (orange 
line in Figs. 1 and 2). Shrink and Perturb is L2 regularization plus small 
random changes in weights at each step. The injection of variability 
into the network can reduce dormancy and increase the diversity of the 
representation (Figs. 2 and 4). Our results indicate that non-growing 
weights and sustained variability in the network may be important for 
maintaining plasticity.

We now describe a variation of the backpropagation algorithm that 
is explicitly designed to inject variability into the network and keep 
some of its weights small. Conventional backpropagation has two main 
parts: initialization with small random weights before training and 
then gradient descent at each training step. The initialization provides 
variability initially, but, as we have seen, with continued training, vari-
ability tends to be lost, as well as plasticity along with it. To maintain 
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the variability, our new algorithm, continual backpropagation, reini-
tializes a small number of units during training, typically fewer than 
one per step. To prevent disruption of what the network has already 
learned, only the least-used units are considered for reinitialization. 
See Methods for details.

The blue line in Fig. 1c shows the performance of continual back-
propagation on Continual ImageNet. It mitigated loss of plasticity in 
Continual ImageNet while outperforming existing methods. Similarly, 
the blue lines in Fig. 2 show the performance of continual backpropa-
gation on class-incremental CIFAR-100 and its effect on the evolution 
of dormant units and stable rank. Continual backpropagation fully 
overcame loss of plasticity, with a high stable rank and almost no dead 
units throughout learning.

In reinforcement learning, continual backpropagation was 
applied together with L2 regularization (a small amount of regulari-
zation was added to prevent excessive sensitivity to parameters in 
reinforcement-learning experiments). The blue line in Fig. 3 shows 
the performance of PPO with continual backpropagation on the 
ant-locomotion problem with changing friction. PPO with contin-
ual backpropagation performed much better than standard PPO, 
with little or no loss of plasticity. On the ant-locomotion problem 
with constant friction (Fig. 4), PPO with continual backpropagation 
continued improving throughout the experiment. The blue lines in  
Fig. 4b–d show the evolution of the correlates of loss of plasticity when 
we used continual backpropagation. PPO with continual backpropaga-
tion had few dormant units, a high stable rank and an almost constant  
average weight magnitude.

Our results are consistent with the idea that small weights reduce 
loss of plasticity and that a continual injection of variability further 
mitigates loss of plasticity. Although Shrink and Perturb adds vari-
ability to all weights, continual backpropagation does so selectively, 
and this seems to enable it to better maintain plasticity. Continual 
backpropagation involves a form of variation and selection in the space 
of neuron-like units, combined with continuing gradient descent. The 
variation and selection is reminiscent of trial-and-error processes in 
evolution and behaviour44–47 and has precursors in many earlier ideas, 
including Keifer–Wolfowitz methods48 and restart methods49 in engi-
neering and feature-search methods in machine learning31–35,50. Con-
tinual backpropagation brings a form of this old idea to modern deep 
learning. However, it is just one variation of this idea; other variations 
are possible and some of these have been explored in recent work25,27. 
We look forward to future work that explicitly compares and further 
refines these variations.

Discussion
Deep learning is an effective and valuable technology in settings in 
which learning occurs in a special training phase and not thereafter.  
In settings in which learning must continue, however, we have shown 
that deep learning does not work. By deep learning, we mean the existing 
standard algorithms for learning in multilayer artificial neural networks 
and by not work, we mean that, over time, they fail to learn appreciably 
better than shallow networks. We have shown such loss of plasticity 
using supervised-learning datasets and reinforcement-learning tasks 
on which deep learning has previously excelled and for a wide range of 
networks and standard learning algorithms. Taking a closer look, we 
found that, during training, many of the networks’ neuron-like units 
become dormant, overcommitted and similar to each other, hampering 
the ability of the networks to learn new things. As they learn, standard 
deep-learning networks gradually and irreversibly lose their diversity 
and thus their ability to continue learning. Plasticity loss is often severe 
when learning continues for many tasks, but may not occur at all for 
small numbers of tasks.

The problem of plasticity loss is not intrinsic to deep learning. Deep 
artificial neural networks trained by gradient descent are perfectly 

capable of maintaining their plasticity, apparently indefinitely, as we 
have shown with the Shrink and Perturb algorithm and particularly with 
the new continual backpropagation algorithm. Both of these algorithms 
extend standard deep learning by adding a source of continuing vari-
ability to the weights of the network, and continual backpropagation 
restricts this variability to the units of the network that are at present 
least used, minimizing damage to the operation of the network. That is, 
continual backpropagation involves a form of variation and selection 
in the space of neuron-like units, combined with continuing gradient 
descent. This idea has many historical antecedents and will probably 
require further development to reach its most effective form.
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Methods

Specifics of continual backpropagation
Continual backpropagation selectively reinitializes low-utility units 
in the network. Our utility measure, called the contribution utility, is 
defined for each connection or weight and each unit. The basic intuition 
behind the contribution utility is that the magnitude of the product of 
units’ activation and outgoing weight gives information about how valu-
able this connection is to its consumers. If the contribution of a hidden 
unit to its consumer is small, its contribution can be overwhelmed by 
contributions from other hidden units. In such a case, the hidden unit 
is not useful to its consumer. We define the contribution utility of a hid-
den unit as the sum of the utilities of all its outgoing connections. The 
contribution utility is measured as a running average of instantaneous 
contributions with a decay rate, η, which is set to 0.99 in all experiments. 
In a feed-forward neural network, the contribution utility, ul[i], of the 
ith hidden unit in layer l at time t is updated as

∑i η i η[ ] = × [ ] + (1 − ) × × , (1)l l l i t
k

n

l i k t, ,
=1

, , ,

l+1

u u h w∣ ∣ ∣ ∣

in which hl,i,t is the output of the ith hidden unit in layer l at time t, wl,i,k,t 
is the weight connecting the ith unit in layer l to the kth unit in layer l + 1 
at time t and nl+1 is the number of units in layer l + 1.

When a hidden unit is reinitialized, its outgoing weights are initial-
ized to zero. Initializing the outgoing weights as zero ensures that the 
newly added hidden units do not affect the already learned function. 
However, initializing the outgoing weight to zero makes the new unit 
vulnerable to immediate reinitialization, as it has zero utility. To protect 
new units from immediate reinitialization, they are protected from a 
reinitialization for maturity threshold m number of updates. We call 
a unit mature if its age is more than m. Every step, a fraction of mature 
units ρ, called the replacement rate, is reinitialized in every layer.

The replacement rate ρ is typically set to a very small value, meaning 
that only one unit is replaced after hundreds of updates. For example, 
in class-incremental CIFAR-100 (Fig. 2) we used continual backpropa-
gation with a replacement rate of 10−5. The last layer of the network in 
that problem had 512 units. At each step, roughly 512 × 10−5 = 0.00512 
units are replaced. This corresponds to roughly one replacement after 
every 1/0.00512 ≈ 200 updates or one replacement after every eight 
epochs on the first five classes.

The final algorithm combines conventional backpropagation with 
selective reinitialization to continually inject random units from the 
initial distribution. Continual backpropagation performs a gradient 
descent and selective reinitialization step at each update. Algorithm 1 
specifies continual backpropagation for a feed-forward neural network. 
In cases in which the learning system uses mini-batches, the instantane-
ous contribution utility can be used by averaging the utility over the 
mini-batch instead of keeping a running average to save computation 
(see Extended Data Fig. 5d for an example). Continual backpropagation 
overcomes the limitation of previous work34,35 on selective reinitializa-
tion and makes it compatible with modern deep learning.

Algorithm 1. Continual backpropagation for a feed-forward  
network with L layers

Set replacement rate ρ, decay rate η and maturity threshold m
Initialize the weights w0,…, wL−1, in which wl is sampled from distri-

bution dl

Initialize utilities u1,…, uL−1, number of units to replace c1,…, cL−1, and 
ages a1,…, aL−1 to 0

For each input xt do
Forward pass: pass xt through the network to get the prediction yt



Evaluate: receive loss l( , )t tx y
Backward pass: update the weights using SGD or one of its variants
For layer l in 1: L − 1 do

Update age: al = al + 1
Update unit utility: see equation (1)
Find eligible units: neligible = number of units with age greater than m
Update number of units to replace: cl = cl + neligible × ρ
If cl > 1
Find the unit with smallest utility and record its index as r
Reinitialize input weights: resample wl−1[:,r] from distribution dl

Reinitialize output weights: set wl[r,:] to 0
Reinitialize utility and age: set ul[r] = 0 and al[r] = 0
Update number of units to replace: cl = cl − 1
End For
End For

Details of Continual ImageNet
The ImageNet database we used consists of 1,000 classes, each of 700 
images. The 700 images for each class were divided into 600 images for 
a training set and 100 images for a test set. On each binary classification 
task, the deep-learning network was first trained on the training set of 
1,200 images and then its classification accuracy was measured on the 
test set of 200 images. The training consisted of several passes through 
the training set, called epochs. For each task, all learning algorithms 
performed 250 passes through the training set using mini-batches 
of size 100. All tasks used the downsampled 32 × 32 version of the  
ImageNet dataset, as is often done to save computation51.

All algorithms on Continual ImageNet used a convolutional network. 
The network had three convolutional-plus-max-pooling layers, fol-
lowed by three fully connected layers, as detailed in Extended Data 
Table 3. The final layer consisted of just two units, the heads, corre-
sponding to the two classes. At task changes, the input weights of the 
heads were reset to zero. Resetting the heads in this way can be viewed 
as introducing new heads for the new tasks. This resetting of the out-
put weights is not ideal for studying plasticity, as the learning system 
gets access to privileged information on the timing of task changes 
(and we do not use it in other experiments in this paper). We use it here 
because it is the standard practice in deep continual learning for this 
type of problem in which the learning system has to learn a sequence 
of independent tasks52.

In this problem, we reset the head of the network at the beginning 
of each task. It means that, for a linear network, the whole network is 
reset. That is why the performance of a linear network will not degrade 
in Continual ImageNet. As the linear network is a baseline, having a 
low-variance estimate of its performance is desirable. The value of 
this baseline is obtained by averaging over thousands of tasks. This 
averaging gives us a much better estimate of its performance than 
other networks.

The network was trained using SGD with momentum on the 
cross-entropy loss and initialized once before the first task. The momen-
tum hyperparameter was 0.9. We tested various step-size parameters 
for backpropagation but only presented the performance for step sizes 
0.01, 0.001 and 0.0001 for clarity of Fig. 1b. We performed 30 runs for 
each hyperparameter value, varying the sequence of tasks and other 
randomness. Across different hyperparameters and algorithms, the 
same sequences of pairs of classes were used.

We now describe the hyperparameter selection for L2 regularization, 
Shrink and Perturb and continual backpropagation. The main text 
presents the results for these algorithms on Continual ImageNet in 
Fig. 1c. We performed a grid search for all algorithms to find the set of 
hyperparameters that had the highest average classification accuracy 
over 5,000 tasks. The values of hyperparameters used for the grid 
search are described in Extended Data Table 2. L2 regularization has 
two hyperparameters, step size and weight decay. Shrink and Perturb 
has three hyperparameters, step size, weight decay and noise variance. 
We swept over two hyperparameters of continual backpropagation: 
step size and replacement rate. The maturity threshold in continual 
backpropagation was set to 100. For both backpropagation and L2 
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regularization, the performance was poor for step sizes of 0.1 or 0.003.  
We chose to only use step sizes of 0.03 and 0.01 for continual back-
propagation and Shrink and Perturb. We performed ten independ-
ent runs for all sets of hyperparameters. Then we performed another  
20 runs to complete 30 runs for the best-performing set of hyperpa-
rameters to produce the results in Fig. 1c.

Class-incremental CIFAR-100
In the class-incremental CIFAR-100, the learning system gets access to 
more and more classes over time. Classes are provided to the learning 
system in increments of five. First, it has access to just five classes, then 
ten and so on, until it gets access to all 100 classes. The learning system 
is evaluated on the basis of how well it can discriminate between all the 
available classes at present. The dataset consists of 100 classes with 
600 images each. The 600 images for each class were divided into 
450 images to create a training set, 50 for a validation set and 100 for 
a test set. Note that the network is trained on all data from all classes 
available at present. First, it is trained on data from just five classes, 
then from all ten classes and so on, until finally, it is trained from data 
from all 100 classes simultaneously.

After each increment, the network was trained for 200 epochs, for 
a total of 4,000 epochs for all 20 increments. We used a learning-rate 
schedule that resets at the start of each increment. For the first 60 
epochs of each increment, the learning rate was set to 0.1, then to 
0.02 for the next 60 epochs, then 0.004 for the next 40 epochs and 
to 0.0008 for the last 40 epochs; we used the initial learning rate and 
learning-rate schedule reported in ref. 53. During the 200 epochs of 
training for each increment, we kept track of the network with the best 
accuracy on the validation set. To prevent overfitting, at the start of 
each new increment, we reset the weights of the network to the weights 
of the best-performing (on the validation set) network found during 
the previous increment; this is equivalent to early stopping for each 
different increment.

We used an 18-layer deep residual network38 for all experiments on 
class-incremental CIFAR-100. The network architecture is described in 
detail in Extended Data Table 1. The weights of convolutional and linear 
layers were initialized using Kaiming initialization54, the weights for 
the batch-norm layers were initialized to one and all of the bias terms 
in the network were initialized to zero. Each time five new classes were 
made available to the network, five more output units were added to 
the final layer of the network. The weights and biases of these output 
units were initialized using the same initialization scheme. The weights 
of the network were optimized using SGD with a momentum of 0.9, a 
weight decay of 0.0005 and a mini-batch size of 90.

We used several steps of data preprocessing before the images were 
presented to the network. First, the value of all the pixels in each image 
was rescaled between 0 and 1 through division by 255. Then, each pixel 
in each channel was centred and rescaled by the average and stand-
ard deviation of the pixel values of each channel, respectively. Finally, 
we applied three random data transformations to each image before 
feeding it to the network: randomly horizontally flip the image with 
a probability of 0.5, randomly crop the image by padding the image 
with 4 pixels on each side and randomly cropping to the original size, 
and randomly rotate the image between 0 and 15°. The first two steps 
of preprocessing were applied to the training, validation and test sets, 
but the random transformations were only applied to the images in 
the training set.

We tested several hyperparameters to ensure the best performance 
for each different algorithm with our specific architecture. For the 
base system, we tested values for the weight decay parameter in 
{0.005, 0.0005, 0.00005}. A weight-decay value of 0.0005 resulted 
in the best performance in terms of area under the curve for accuracy 
on the test set over the 20 increments. For Shrink and Perturb, we used 
the weight-decay value of the base system and tested values for the 
standard deviation of the Gaussian noise in {10−4, 10−5, 10−6}; 10−5 resulted 

in the best performance. For continual backpropagation, we tested 
values for the maturity threshold in {1,000, 10,000} and for the replace-
ment rate in {10−4, 10−5, 10−6} using the contribution utility described in 
equation (1). A maturity threshold of 1,000 and a replacement rate of 
10−5 resulted in the best performance. Finally, for the head-resetting 
baseline, in Extended Data Fig. 1a, we used the same hyperparameters 
as for the base system, but the output layer was reinitialized at the start 
of each increment.

In Fig. 2d, we plot the stable rank of the representation in the penul-
timate layer of the network and the percentage of dead units in the full 
network. For a matrix ∈ n m×RΦ  with singular values σk sorted in 
descending order for k = 1, 2,…, q and q = max(n, m), the stable rank55 

is { }kmin : > 0.99
σ

σ
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Σ
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For reference, we also implemented a network with the same hyper-
parameters as the base system but that was reinitialized at the beginning 
of each increment. Figure 2b shows the performance of each algo-
rithm relative to the performance of the reinitialized network. For 
completeness, Extended Data Fig. 1a shows the test accuracy of each 
algorithm in each different increment. The final accuracy of continual 
backpropagation on all 100 classes was 76.13%, whereas Extended Data 
Fig. 1b shows the performance of continual backpropagation for dif-
ferent replacement rates with a maturity threshold of 1,000. For all 
algorithms that we tested, there was no correlation between when a 
class was presented and the accuracy of that class, implying that the 
temporal order of classes did not affect performance.

Robust loss of plasticity in permuted MNIST
We now use a computationally cheap problem based on the MNIST 
dataset56 to test the generality of loss of plasticity across various condi-
tions. MNIST is one of the most common supervised-learning datasets 
used in deep learning. It consists of 60,000, 28 × 28, greyscale images 
of handwritten digits from 0 to 9, together with their correct labels. For 
example, the left image in Extended Data Fig. 3a shows an image that is 
labelled by the digit 7. The smaller number of classes and the simpler 
images enable much smaller networks to perform well on this dataset 
than are needed on ImageNet or CIFAR-100. The smaller networks in 
turn mean that much less computation is needed to perform the experi-
ments and thus experiments can be performed in greater quantities 
and under a variety of different conditions, enabling us to perform 
deeper and more extensive studies of plasticity.

We created a continual supervised-learning problem using permuted 
MNIST datasets57,58. An individual permuted MNIST dataset is created by 
permuting the pixels in the original MNIST dataset. The right image in 
Extended Data Fig. 3a is an example of such a permuted image. Given a 
way of permuting, all 60,000 images are permuted in the same way to 
produce the new permuted MNIST dataset. Furthermore, we normal-
ized pixel values between 0 and 1 by dividing by 255.

By repeatedly randomly selecting from the approximately 101930 
possible permutations, we created a sequence of 800 permuted MNIST 
datasets and supervised-learning tasks. For each task, we presented 
each of its 60,000 images one by one in random order to the learn-
ing network. Then we moved to the next permuted MNIST task and 
repeated the whole procedure, and so on for up to 800 tasks. No indi-
cation was given to the network at the time of task switching. With 
the pixels being permuted in a completely unrelated way, we might 
expect classification performance to fall substantially at the time of 
each task switch. Nevertheless, across tasks, there could be some sav-
ings, some improvement in speed of learning or, alternatively, there 
could be loss of plasticity—loss of the ability to learn across tasks.  
The network was trained on a single pass through the data and there 
were no mini-batches. We call this problem Online Permuted MNIST.

We applied feed-forward neural networks with three hidden lay-
ers to Online Permuted MNIST. We did not use convolutional layers, 
as they could not be helpful on the permuted problem because the 
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spatial information is lost; in MNIST, convolutional layers are often 
not used even on the standard, non-permuted problem. For each 
example, the network estimated the probabilities of each of the tem 
classes, compared them to the correct label and performed SGD on the 
cross-entropy loss. As a measure of online performance, we recorded 
the percentage of times the network correctly classified each of the 
60,000 images in the task. We plot this per-task performance measure 
versus task number in Extended Data Fig. 3b. The weights were initial-
ized according to a Kaiming distribution.

The left panel of Extended Data Fig. 3b shows the progression of 
online performance across tasks for a network with 2,000 units per 
layer and various values of the step-size parameter. Note that that 
performance first increased across tasks, then began falling steadily 
across all subsequent tasks. This drop in performance means that the 
network is slowly losing the ability to learn from new tasks. This loss 
of plasticity is consistent with the loss of plasticity that we observed 
in ImageNet and CIFAR-100.

Next, we varied the network size. Instead of 2,000 units per layer, we 
tried 100, 1,000 and 10,000 units per layer. We ran this experiment for 
only 150 tasks, primarily because the largest network took much longer 
to run. The performances at good step sizes for each network size are 
shown in the middle panel of Extended Data Fig. 3b. Loss of plasticity 
with continued training is most pronounced at the smaller network 
sizes, but even the largest networks show some loss of plasticity.

Next, we studied the effect of the rate at which the task changed. 
Going back to the original network with 2,000-unit layers, instead 
of changing the permutation after each 60,000 examples, we now 
changed it after each 10,000, 100,000 or 1 million examples and ran 
for 48 million examples in total no matter how often the task changed. 
The examples in these cases were selected randomly with replacement 
for each task. As a performance measure of the network on a task, we 
used the percentage correct over all of the images in the task. The pro-
gression of performance is shown in the right panel in Extended Data 
Fig. 3b. Again, performance fell across tasks, even if the change was 
very infrequent. Altogether, these results show that the phenomenon 
of loss of plasticity robustly arises in this form of backpropagation. Loss 
of plasticity happens for a wide range of step sizes, rates of distribu-
tion change and for both underparameterized and overparameterized 
networks.

Loss of plasticity with different activations in the 
Slowly-Changing Regression problem
There remains the issue of the network’s activation function. In our 
experiments so far, we have used ReLU, the most popular choice at pre-
sent, but there are several other possibilities. For these experiments, we 
switched to an even smaller, more idealized problem. Slowly-Changing 
Regression is a computationally inexpensive problem in which we can 
run a single experiment on a CPU core in 15 min, allowing us to perform 
extensive studies. As its name suggests, this problem is a regression 
problem—meaning that the labels are real numbers, with a squared 
loss, rather than nominal values with a cross-entropy loss—and the 
non-stationarity is slow and continual rather than abrupt, as in a switch 
from one task to another. In Slowly-Changing Regression, we study 
loss of plasticity for networks with six popular activation functions: 
sigmoid, tanh, ELU59, leaky ReLU60, ReLU61 and Swish62.

In Slowly-Changing Regression, the learner receives a sequence of 
examples. The input for each example is a binary vector of size m + 1. 
The input has f slow-changing bits, m − f random bits and then one 
constant bit. The first f bits in the input vector change slowly. After 
every T examples, one of the first f bits is chosen uniformly at random 
and its value is flipped. These first f bits remain fixed for the next T 
examples. The parameter T allows us to control the rate at which the 
input distribution changes. The next m − f bits are randomly sampled 
for each example. Last, the (m + 1)th bit is a bias term with a constant 
value of one.

The target output is generated by running the input vector through 
a neural network, which is set at the start of the experiment and kept 
fixed. As this network generates the target output and represents the 
desired solution, we call it the target network. The weights of the target 
networks are randomly chosen to be +1 or −1. The target network has one 
hidden layer with the linear threshold unit (LTU) activation. The value 
of the ith LTU is one if the input is above a threshold θi and 0 otherwise. 
The threshold θi is set to be equal to (m + 1) × β − Si, in which β ∈ [0, 1] 
and Si is the number of input weights with negative value63. The details 
of the input and target function in the Slowly-Changing Regression 
problem are also described in Extended Data Fig. 2a.

The details of the specific instance of the Slowly-Changing Regression 
problem we use in this paper and the learning network used to predict 
its output are listed in Extended Data Table 4. Note that the target net-
work is more complex than the learning network, as the target network 
is wider, with 100 hidden units, whereas the learner has just five hidden 
units. Thus, because the input distribution changes every T example 
and the target function is more complex than what the learner can 
represent, there is a need to track the best approximation.

We applied learning networks with different activation functions to 
the Slowly-Changing Regression. The learner used the backpropagation 
algorithm to learn the weights of the network. We used a uniform Kaim-
ing distribution54 to initialize the weights of the learning network. The 

distribution is U(−b, b) with bound, b = gain × 3
num_inputs

, in which gain 

is chosen such that the magnitude of inputs does not change across 
layers. For tanh, sigmoid, ReLU and leaky ReLU, the gain is 5/3, 1, 2  

and α2/(1 + )2 , respectively. For ELU and Swish, we used gain = 2, as 
was done in the original papers59,62.

We ran the experiment on the Slowly-Changing Regression problem 
for 3 million examples. For each activation and value of step size, we 
performed 100 independent runs. First, we generated 100 sequences 
of examples (input–output pairs) for the 100 runs. Then these 100 
sequences of examples were used for experiments with all activations 
and values of the step-size parameter. We used the same sequence of 
examples to control the randomness in the data stream across activa-
tions and step sizes.

The results of the experiments are shown in Extended Data Fig. 2b. 
We measured the squared error, that is, the square of the difference 
between the true target and the prediction made by the learning net-
work. In Extended Data Fig. 2b, the squared error is presented in bins 
of 40,000 examples. This means that the first data point is the average 
squared error on the first 40,000 examples, the next is the average 
squared error on the next 40,000 examples and so on. The shaded 
region in the figure shows the standard error of the binned error.

Extended Data Fig. 2b shows that, in Slowly-Changing Regression, 
after performing well initially, the error increases for all step sizes 
and activations. For some activations such as ReLU and tanh, loss of 
plasticity is severe, and the error increases to the level of the linear 
baseline. Although for other activations such as ELU loss of plasticity is 
less severe, there is still a notable loss of plasticity. These results mean 
that loss of plasticity is not resolved by using commonly used activa-
tions. The results in this section complement the results in the rest of 
the article and add to the generality of loss of plasticity in deep learning.

Understanding loss of plasticity
We now turn our attention to understanding why backpropagation 
loses plasticity in continual-learning problems. The only difference 
in the learner over time is the network weights. In the beginning, the 
weights were small random numbers, as they were sampled from the 
initial distribution; however, after learning some tasks, the weights 
became optimized for the most recent task. Thus, the starting weights 
for the next task are qualitatively different from those for the first task. 
As this difference in the weights is the only difference in the learning 
algorithm over time, the initial weight distribution must have some 
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unique properties that make backpropagation plastic in the begin-
ning. The initial random distribution might have many properties that 
enable plasticity, such as the diversity of units, non-saturated units, 
small weight magnitude etc.

As we now demonstrate, many advantages of the initial distribution 
are lost concurrently with loss of plasticity. The loss of each of these 
advantages partially explains the degradation in performance that we 
have observed. We then provide arguments for how the loss of these 
advantages could contribute to loss of plasticity and measures that 
quantify the prevalence of each phenomenon. We provide an in-depth 
study of the Online Permuted MNIST problem that will serve as motiva-
tion for several solution methods that could mitigate loss of plasticity.

The first noticeable phenomenon that occurs concurrently with the 
loss of plasticity is the continual increase in the fraction of constant 
units. When a unit becomes constant, the gradients flowing back from 
the unit become zero or very close to zero. Zero gradients mean that 
the weights coming into the unit do not change, which means that this 
unit loses all of its plasticity. In the case of ReLU activations, this occurs 
when the output of the activations is zero for all examples of the task; 
such units are often said to be dead64,65. In the case of the sigmoidal 
activation functions, this phenomenon occurs when the output of a 
unit is too close to either of the extreme values of the activation func-
tion; such units are often said to be saturated66,67.

To measure the number of dead units in a network with ReLU activa-
tion, we count the number of units with a value of zero for all examples 
in a random sample of 2,000 images at the beginning of each new task. 
An analogous measure in the case of sigmoidal activations is the num-
ber of units that are ϵ away from either of the extreme values of the 
function for some small positive ϵ (ref. 68). We only focus on ReLU 
networks in this section.

In our experiments on the Online Permuted MNIST problem, the 
deterioration of online performance is accompanied by a large increase 
in the number of dead units (left panel of Extended Data Fig. 3c). For 
the step size of 0.01, up to 25% of units die after 800 tasks. In the per-
muted MNIST problem, in which all inputs are positive because they 
are normalized between 0 and 1, once a unit in the first layer dies, it 
stays dead forever. Thus, an increase in dead units directly decreases 
the total capacity of the network. In the next section, we will see that 
methods that stop the units from dying can substantially reduce loss of 
plasticity. This further supports the idea that the increase in dead units 
is one of the causes of loss of plasticity in backpropagation.

Another phenomenon that occurs with loss of plasticity is the steady 
growth of the network’s average weight magnitude. We measure the 
average magnitude of the weights by adding up their absolute values 
and dividing by the total number of weights in the network. In the per-
muted MNIST experiment, the degradation of online classification 
accuracy of backpropagation observed in Extended Data Fig. 3b is asso-
ciated with an increase in the average magnitude of the weights (centre 
panel of Extended Data Fig. 3c). The growth of the magnitude of the 
weights of the network can represent a problem because large weight 
magnitudes are often associated with slower learning. The weights of 
a neural network are directly linked to the condition number of the 
Hessian matrix in the second-order Taylor approximation of the loss 
function. The condition number of the Hessian is known to affect the 
speed of convergence of SGD algorithms (see ref. 69 for an illustration 
of this phenomenon in convex optimization). Consequently, the growth 
in the magnitude of the weights could lead to an ill-conditioned Hessian 
matrix, resulting in a slower convergence.

The last phenomenon that occurs with the loss of plasticity is the 
drop in the effective rank of the representation. Similar to the rank of 
a matrix, which represents the number of linearly independent dimen-
sions, the effective rank takes into consideration how each dimension 
influences the transformation induced by a matrix70. A high effective 
rank indicates that most of the dimensions of the matrix contribute 
similarly to the transformation induced by the matrix. On the other 

hand, a low effective rank corresponds to most dimensions having no 
notable effect on the transformation, implying that the information 
in most of the dimensions is close to being redundant.

Formally, consider a matrix Φ ∈ n m×R  with singular values σk for 
k = 1, 2,…, q, and q = max(n, m). Let pk = σk/∥σ∥1, in which σ is the vector 
containing all the singular values and ∥⋅∥1 is the ℓ1 norm. The effective 
rank of matrix Φ, or erank(Φ), is defined as

Φ

∑

H p p p

H p p p p p

erank( ) =̇ exp{ ( , , . . . , )},

in which ( , , . . . , ) = − log( ).
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Note that the effective rank is a continuous measure that ranges 
between one and the rank of matrix Φ.

In the case of neural networks, the effective rank of a hidden layer 
measures the number of units that can produce the output of the layer. 
If a hidden layer has a low effective rank, then a small number of units 
can produce the output of the layer, meaning that many of the units in 
the hidden layer are not providing any useful information. We approxi-
mate the effective rank on a random sample of 2,000 examples before 
training on each task.

In our experiments, loss of plasticity is accompanied by a decrease 
in the average effective rank of the network (right panel of Extended 
Data Fig. 3c). This phenomenon in itself is not necessarily a problem. 
After all, it has been shown that gradient-based optimization seems 
to favour low-rank solutions through implicit regularization of the 
loss function or implicit minimization of the rank itself71,72. However, 
a low-rank solution might be a bad starting point for learning from 
new observations because most of the hidden units provide little to 
no information.

The decrease in effective rank could explain the loss of plasticity 
in our experiments in the following way. After each task, the learning 
algorithm finds a low-rank solution for the current task, which then 
serves as the initialization for the next task. As the process continues, 
the effective rank of the representation layer keeps decreasing after 
each task, limiting the number of solutions that the network can rep-
resent immediately at the start of each new task.

In this section, we looked deeper at the networks that lost plasticity 
in the Online Permuted MNIST problem. We noted that the only differ-
ence in the learning algorithm over time is the weights of the network, 
which means that the initial weight distribution has some properties 
that allowed the learning algorithm to be plastic in the beginning. And 
as learning progressed, the weights of the network moved away from 
the initial distribution and the algorithm started to lose plasticity. We 
found that loss of plasticity is correlated with an increase in weight 
magnitude, a decrease in the effective rank of the representation and an 
increase in the fraction of dead units. Each of these correlates partially 
explains loss of plasticity faced by backpropagation.

Existing deep-learning methods for mitigating loss of plasticity
We now investigate several existing methods and test how they affect 
loss of plasticity. We study five existing methods: L2 regularization73, 
Dropout74, online normalization75, Shrink and Perturb11 and Adam43. We 
chose L2 regularization, Dropout, normalization and Adam because 
these methods are commonly used in deep-learning practice. Although 
Shrink and Perturb is not a commonly used method, we chose it because 
it reduces the failure of pretraining, a problem that is an instance of loss 
of plasticity. To assess if these methods can mitigate loss of plasticity, 
we tested them on the Online Permuted MNIST problem using the same 
network architecture we used in the previous section, ‘Understanding 
loss of plasticity’. Similar to the previous section, we measure the online 
classification accuracy on all 60,000 examples of the task. All the algo-
rithms used a step size of 0.003, which was the best-performing step 
size for backpropagation in the left panel of Extended Data Fig. 3b. We 
also use the three correlates of loss of plasticity found in the previous 
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section to get a deeper understanding of the performance of these 
methods.

An intuitive way to address loss of plasticity is to use weight regu-
larization, as loss of plasticity is associated with a growth of weight 
magnitudes, shown in the previous section. We used L2 regulariza-
tion, which adds a penalty to the loss function proportional to the ℓ2 
norm of the weights of the network. The L2 regularization penalty 
incentivizes SGD to find solutions that have a low weight magnitude. 
This introduces a hyperparameter λ that modulates the contribution 
of the penalty term.

The purple line in the left panel of Extended Data Fig. 4a shows the 
performance of L2 regularization on the Online Permuted MNIST 
problem. The purple lines in the other panels of Extended Data Fig. 4a 
show the evolution of the three correlates of loss of plasticity with 
L2 regularization. For L2 regularization, the weight magnitude does 
not continually increase. Moreover, as expected, the non-increasing 
weight magnitude is associated with lower loss of plasticity. However, 
L2 regularization does not fully mitigate loss of plasticity. The other two 
correlates for loss of plasticity explain this, as the percentage of dead 
units kept increasing and the effective rank kept decreasing. Finally, 
Extended Data Fig. 4b shows the performance of L2 regularization for 
different values of λ. The regularization parameter λ controlled the 
peak of the performance and how quickly it decreased.

A method related to weight regularization is Shrink and Perturb11. 
As the name suggests, Shrink and Perturb performs two operations; it 
shrinks all the weights and then adds random Gaussian noise to these 
weights. The introduction of noise introduces another hyperparam-
eter, the standard deviation of the noise. Owing to the shrinking part 
of Shrink and Perturb, the algorithm favours solutions with smaller 
average weight magnitude than backpropagation. Moreover, the 
added noise prevents units from dying because it adds a non-zero 
probability that a dead unit will become active again. If Shrink and 
Perturb mitigates these correlates to loss of plasticity, it could reduce 
loss of plasticity.

The performance of Shrink and Perturb is shown in orange in 
Extended Data Fig. 4. Similar to L2 regularization, Shrink and Perturb 
stops the weight magnitude from continually increasing. Moreover, 
it also reduces the percentage of dead units. However, it has a lower 
effective rank than backpropagation, but still higher than that of L2 
regularization. Not only does Shrink and Perturb have a lower loss of 
plasticity than backpropagation but it almost completely mitigates loss 
of plasticity in Online Permuted MNIST. However, Shrink and Perturb 
was sensitive to the standard deviation of the noise. If the noise was 
too high, loss of plasticity was much more severe, and if it was too low, 
it did not have any effect.

An important technique in modern deep learning is called Dropout74. 
Dropout randomly sets each hidden unit to zero with a small probabil-
ity, which is a hyperparameter of the algorithm. The performance of 
Dropout is shown in pink in Extended Data Fig. 4.

Dropout showed similar measures of percentage of dead units, 
weight magnitude and effective rank as backpropagation, but, sur-
prisingly, showed higher loss of plasticity. The poor performance of 
Dropout is not explained by our three correlates of loss of plasticity, 
which means that there are other possible causes of loss of plasticity. 
A thorough investigation of Dropout is beyond the scope of this paper, 
though it would be an interesting direction for future work. We found 
that a higher Dropout probability corresponded to a faster and sharper 
drop in performance. Dropout with probability of 0.03 performed the 
best and its performance was almost identical to that of backpropa-
gation. However, Extended Data Fig. 4a shows the performance for 
a Dropout probability of 0.1 because it is more representative of the 
values used in practice.

Another commonly used technique in deep learning is batch normali-
zation76. In batch normalization, the output of each hidden layer is nor-
malized and rescaled using statistics computed from each mini-batch 

of data. We decided to include batch normalization in this investigation 
because it is a popular technique often used in practice. Because batch 
normalization is not amenable to the online setting used in the Online 
Permuted MNIST problem, we used online normalization77 instead, an 
online variant of batch normalization. Online normalization introduces 
two hyperparameters used for the incremental estimation of the sta-
tistics in the normalization steps.

The performance of online normalization is shown in green in 
Extended Data Fig. 4. Online normalization had fewer dead units and 
a higher effective rank than backpropagation in the earlier tasks, but 
both measures deteriorated over time. In the later tasks, the network 
trained using online normalization has a higher percentage of dead 
units and a lower effective rank than the network trained using back-
propagation. The online classification accuracy is consistent with 
these results. Initially, it has better classification accuracy, but later, 
its classification accuracy becomes lower than that of backpropaga-
tion. For online normalization, the hyperparameters changed when 
the performance of the method peaked, and it also slightly changed 
how fast it got to its peak performance.

No assessment of alternative methods can be complete without 
Adam43, as it is considered one of the most useful tools in modern deep 
learning. The Adam optimizer is a variant of SGD that uses an estimate 
of the first moment of the gradient scaled inversely by an estimate of 
the second moment of the gradient to update the weights instead of 
directly using the gradient. Because of its widespread use and success 
in both supervised and reinforcement learning, we decided to include 
Adam in this investigation to see how it would affect the plasticity of 
deep neural networks. Adam has two hyperparameters that are used 
for computing the moving averages of the first and second moments 
of the gradient. We used the default values of these hyperparameters 
proposed in the original paper and tuned the step-size parameter.

The performance of Adam is shown in cyan in Extended Data Fig. 4. 
Adam’s loss of plasticity can be categorized as catastrophic, as it reduces 
substantially. Consistent with our previous results, Adam scores poorly 
in the three measures corresponding to the correlates of loss of plas-
ticity. Adam had an early increase in the percentage of dead units that 
plateaus at around 60%, similar weight magnitude as backpropagation 
and a large drop in the effective rank early during training. We also 
tested Adam with different activation functions on the Slowly-Changing 
Regression and found that loss of plasticity with Adam is usually worse 
than with SGD.

Many of the standard methods substantially worsened loss of plastic-
ity. The effect of Adam on the plasticity of the networks was particularly 
notable. Networks trained with Adam quickly lost almost all of their 
diversity, as measured by the effective rank, and gained a large percent-
age of dead units. This marked loss of plasticity of Adam is an important 
result for deep reinforcement learning, for which Adam is the default 
optimizer78, and reinforcement learning is inherently continual owing 
to the ever-changing policy. Similar to Adam, other commonly used 
methods such as Dropout and normalization worsened loss of plastic-
ity. Normalization had better performance in the beginning, but later 
it had a sharper drop in performance than backpropagation. In the 
experiment, Dropout simply made the performance worse. We saw 
that the higher the Dropout probability, the larger the loss of plastic-
ity. These results mean that some of the most successful tools in deep 
learning do not work well in continual learning, and we need to focus 
on directly developing tools for continual learning.

We did find some success in maintaining plasticity in deep neural 
networks. L2 regularization and Shrink and Perturb reduce loss of plas-
ticity. Shrink and Perturb is particularly effective, as it almost entirely 
mitigates loss of plasticity. However, both Shrink and Perturb and L2 
regularization are slightly sensitive to hyperparameter values. Both 
methods only reduce loss of plasticity for a small range of hyperpa-
rameters, whereas for other hyperparameter values, they make loss 
of plasticity worse. This sensitivity to hyperparameters can limit the 
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application of these methods to continual learning. Furthermore, 
Shrink and Perturb does not fully resolve the three correlates of loss 
of plasticity, it has a lower effective rank than backpropagation and it 
still has a high fraction of dead units.

We also applied continual backpropagation on Online Permuted 
MNIST. The replacement rate is the main hyperparameter in continual 
backpropagation, as it controls how rapidly units are reinitialized in 
the network. For example, a replacement rate of 10−6 for our network 
with 2,000 hidden units in each layer would mean replacing one unit 
in each layer after every 500 examples.

Blue lines in Extended Data Fig. 4 show the performance of continual 
backpropagation. It has a non-degrading performance and is stable for 
a wide range of replacement rates. Continual backpropagation also 
mitigates all three correlates of loss of plasticity. It has almost no dead 
units, stops the network weights from growing and maintains a high 
effective rank across tasks. All algorithms that maintain a low weight 
magnitude also reduced loss of plasticity. This supports our claim 
that low weight magnitudes are important for maintaining plasticity. 
The algorithms that maintain low weight magnitudes were continual 
backpropagation, L2 regularization and Shrink and Perturb. Shrink and 
Perturb and continual backpropagation have an extra advantage over 
L2 regularization: they inject randomness into the network. This injec-
tion of randomness leads to a higher effective rank and lower number of 
dead units, which leads to both of these algorithms performing better 
than L2 regularization. However, continual backpropagation injects 
randomness selectively, effectively removing all dead units from the 
network and leading to a higher effective rank. This smaller number of 
dead units and a higher effective rank explains the better performance 
of continual backpropagation.

Details and further analysis in reinforcement learning
The experiments presented in the main text were conducted using the 
Ant-v3 environment from OpenAI Gym79. We changed the coefficient 
of friction by sampling it log-uniformly from the range [0.02, 2.00], 
using a logarithm with base 10. The coefficient of friction changed at 
the first episode boundary after 2 million time steps had passed since 
the last change. We also tested Shrink and Perturb on this problem 
and found that it did not provide a marked performance improvement 
over L2 regularization. Two separate networks were used for the policy 
and the value function, and both had two hidden layers with 256 units. 
These networks were trained using Adam alongside PPO to update 
the weights in the network. See Extended Data Table 5 for the values 
of the other hyperparameters. In all of the plots showing results of 
reinforcement-learning experiments, the shaded region represents 
the 95% bootstrapped confidence80.

The reward signal in the ant problem consists of four components. 
The main component rewards the agent for forward movement. It is 
proportional to the distance moved by the ant in the positive x direc-
tion since the last time step. The second component has a value of 1 at 
each time step. The third component penalizes the ant for taking large 
actions. This component is proportional to the square of the magnitude 
of the action. Finally, the last component penalizes the agent for large 
external contact forces. It is proportional to the sum of external forces 
(clipped in a range). The reward signal at each time step is the sum of 
these four components.

We also evaluated PPO and its variants in two more environments: 
Hopper-v3 and Walker-v3. The results for these experiments are pre-
sented in Extended Data Fig. 5a. The results mirrored those from Ant-v3; 
standard PPO suffered from a notable degradation in performance, in 
which its performance decreased substantially. However, this time, L2 
regularization did not fix the issue in all cases; there was some perfor-
mance degradation with L2 in Walker-v3. PPO, with continual back-
propagation and L2 regularization, completely fixed the issue in all 
environments. Note that the only difference between our experiments 
and what is typically done in the literature is that we run the experiments 

for longer. Typically, these experiments are only done for 3 million 
steps, but we ran these experiments for up to 100 million steps.

PPO with L2 regularization only avoided degradation for a relatively 
large value of weight decay, 10−3. This extreme regularization stops 
the agent from finding better policies and stays stuck at a suboptimal 
policy. There was large performance degradation for smaller values 
of weight decay, and for larger values, the performance was always 
low. When we used continual backpropagation and L2 regularization 
together, we could use smaller values of weight decay. All the results 
for PPO with continual backpropagation and L2 regularization have a 
weight decay of 10−4, a replacement rate of 10−4 and a maturity threshold 
of 104. We found that the performance of PPO with continual backpropa-
gation and L2 regularization was sensitive to the replacement rate but 
not to the maturity threshold and weight decay.

PPO uses the Adam optimizer, which keeps running estimates of the 
gradient and the squared of the gradient. These estimates require two 
further parameters, called β1 and β2. The standard values of β1 and β2 
are 0.9 and 0.999, respectively, which we refer to as standard Adam. 
Lyle et al.24 showed that the standard values of β1 and β2 cause a large 
loss of plasticity. This happens because of the mismatch in β1 and β2. 
A sudden large gradient can cause a very large update, as a large value 
of β2 means that the running estimate for the square of the gradient, 
which is used in the denominator, is updated much more slowly than 
the running estimate for the gradient, which is the numerator. This 
loss of plasticity in Adam can be reduced by setting β1 equal to β2. In our 
experiments, we set β1 and β2 to 0.99 and refer to it as tuned Adam/PPO. 
In Extended Data Fig. 5c, we measure the largest total weight change 
in the network during a single update cycle for bins of 1 million steps. 
The first point in the plots shows the largest weight change in the first 
1 million steps. The second point shows the largest weight change in 
the second 1 second steps and so on. The figure shows that standard 
Adam consistently causes very large updates to the weights, which 
can destabilize learning, whereas tuned Adam with β1 = β2 = 0.99 has 
substantially smaller updates, which leads to more stable learning. 
In all of our experiments, all algorithms other than the standard PPO 
used the tuned parameters for Adam (β1 = β2 = 0.99). The failure of 
standard Adam with PPO is similar to the failure of standard Adam in 
permuted MNIST.

In our next experiment, we perform a preliminary comparison 
with ReDo25. ReDo is another selective reinitialization method that 
builds on continual backpropagation but uses a different measure of 
utility and strategy for reinitializing. We tested ReDo on Ant-v3, the 
hardest of the three environments. ReDo requires two parameters: a 
threshold and a reinitialization period. We tested ReDo for all combi-
nations of thresholds in {0.01, 0.03, 0.1} and reinitialization periods in 
{10, 102, 103, 104, 105}; a threshold of 0.1 with a reinitialization period of 
102 performed the best. The performance of PPO with ReDo is plotted 
in Extended Data Fig. 5b. ReDo and continual backpropagation were 
used with weight decay of 10−4 and β1 and β2 of 0.99. The figure shows 
that PPO with ReDo and L2 regularization performs much better than 
standard PPO. However, it still suffers from performance degradation 
and its performance is worse than PPO with L2 regularization. Note that 
this is only a preliminary comparison; we leave a full comparison and 
analysis of both methods for future work.

The performance drop of PPO in stationary environments is a 
nuanced phenomenon. Loss of plasticity and forgetting are both 
responsible for the observed degradation in performance. The deg-
radation in performance implies that the agent forgot the good policy 
it had once learned, whereas the inability of the agent to relearn a good 
policy means it lost plasticity.

Loss of plasticity expresses itself in various forms in deep rein-
forcement learning. Some work found that deep reinforcement 
learning systems can lose their generalization abilities in the pres-
ence of non-stationarities81. A reduction in the effective rank, similar 
to the rank reduction in CIFAR-100, has been observed in some deep 
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reinforcement-learning algorithms82. Nikishin et al.18 showed that many 
reinforcement-learning systems perform better if their network is 
occasionally reset to its naive initial state, retaining only the replay 
buffer. This is because the learning networks became worse than a reini-
tialized network at learning from new data. Recent work has improved 
performance in many reinforcement-learning problems by applying 
plasticity-preserving methods25,83–87. These works focused on deep 
reinforcement learning systems that use large replay buffers. Our work 
complements this line of research as we studied systems based on 
PPO, which has much smaller replay buffers. Loss of plasticity is most 
relevant for systems that use small or no replay buffers, as large buff-
ers can hide the effect of new data. Overcoming loss of plasticity is an 
important step towards deep reinforcement-learning systems that can 
learn from an online data stream.

Extended discussion
There are two main goals in continual learning: maintaining stability 
and maintaining plasticity88–91. Maintaining stability is concerned with 
memorizing useful information and maintaining plasticity is about find-
ing new useful information when the data distribution changes. Current 
deep-learning methods struggle to maintain stability as they tend to 
forget previously learned information28,29. Many papers have been 
dedicated to maintaining stability in deep continual learning30,92–97. 
We focused on continually finding useful information, not on remem-
bering useful information. Our work on loss of plasticity is different 
but complementary to the work on maintaining stability. Continual 
backpropagation in its current form does not tackle the forgetting 
problem. Its current utility measure only considers the importance of 
units for current data. One idea to tackle forgetting is to use a long-term 
measure of utility that remembers which units were useful in the past. 
Developing methods that maintain both stability and plasticity is an 
important direction for future work.

There are many desirable properties for an efficient continual- 
learning system98,99. It should be able to keep learning new things, con-
trol what it remembers and forgets, have good computational and 
memory efficiency and use previous knowledge to speed up learning 
on new data. The choice of the benchmark affects which property is 
being focused on. Most benchmarks and evaluations in our paper only 
focused on plasticity but not on other aspects, such as forgetting and 
speed of learning. For example, in Continual ImageNet, previous tasks 
are rarely repeated, which makes it effective for studying plasticity 
but not forgetting. In permuted MNIST, consecutive tasks are largely 
independent, which makes it suitable for studying plasticity in isolation. 
However, this independence means that previous knowledge cannot 
substantially speed up learning on new tasks. On the other hand, in 
class-incremental CIFAR-100, previous knowledge can substantially 
speed up learning of new classes. Overcoming loss of plasticity is an 
important, but still the first, step towards the goal of fast learning on 
future data100–102. Once we have networks that maintain plasticity, we 
can develop methods that use previous knowledge to speed up learn-
ing on future data.

Loss of plasticity is a critical factor when learning continues for many 
tasks, but it might be less important if learning happens for a small 
number of tasks. Usually, the learning system can take advantage of pre-
vious learning in the first few tasks. For example, in class-incremental 
CIFAR-100 (Fig. 2), the base deep-learning systems performed bet-
ter than the network trained from scratch for up to 40 classes. This 
result is consistent with deep-learning applications in which the learn-
ing system is first trained on a large dataset and then fine-tuned on a 
smaller, more relevant dataset. Plasticity-preserving methods such 
as continual backpropagation may still improve performance in such 
applications based on fine-turning, but we do not expect that improve-
ment to be large, as learning happens only for a small number of tasks. 
We have observed that deep-learning systems gradually lose plastic-
ity, and this effect accumulates over tasks. Loss of plasticity becomes 

an important factor when learning continues for a large number of 
tasks; in class-incremental CIFAR-100, the performance of the base 
deep-learning system was much worse after 100 classes.

We have made notable progress in understanding loss of plasticity. 
However, it remains unclear which specific properties of initialization 
with small random numbers are important for maintaining plasticity. 
Recent work103,104 has made exciting progress in this direction and it 
remains an important avenue for future work. The type of loss of plas-
ticity studied in this article is largely because of the loss of the ability 
to optimize new objectives. This is different from the type of loss of 
plasticity in which the system can keep optimizing new objectives but 
lose the ability to generalize11,12. However, it is unclear if the two types 
of plasticity loss are fundamentally different or if the same mechanism 
can explain both phenomena. Future work that improves our under-
standing of plasticity and finds the underlying causes of both types of 
plasticity loss will be valuable to the community.

Continual backpropagation uses a utility measure to find and replace 
low-utility units. One limitation of continual backpropagation is that 
the utility measure is based on heuristics. Although it performs well, 
future work on more principled utility measures will improve the foun-
dations of continual backpropagation. Our current utility measure is 
not a global measure of utility as it does not consider how a given unit 
affects the overall represented function. One possibility is to develop 
utility measures in which utility is propagated backwards from the loss 
function. The idea of utility in continual backpropagation is closely 
related to connection utility in the neural-network-pruning literature. 
Various papers105–108 have proposed different measures of connec-
tion utility for the network-pruning problem. Adapting these utility 
measures to mitigate loss of plasticity is a promising direction for new 
algorithms and some recent work is already making progress in this 
direction109.

The idea of selective reinitialization is similar to the emerging 
idea of dynamic sparse training110–112. In dynamic sparse training, a 
sparse network is trained from scratch and connections between 
different units are generated and removed during training. Remov-
ing connections requires a measure of utility, and the initialization 
of new connections requires a generator similar to selective reini-
tialization. The main difference between dynamic sparse training and 
continual backpropagation is that dynamic sparse training operates 
on connections between units, whereas continual backpropagation 
operates on units. Consequently, the generator in dynamic sparse 
training must also decide which new connections to grow. Dynamic 
sparse training has achieved promising results in supervised and 
reinforcement-learning problems113–115, in which dynamic sparse net-
works achieve performance close to dense networks even at high 
sparsity levels. Dynamic sparse training is a promising idea that can 
be useful to maintain plasticity.

The idea of adding new units to neural networks is present in the 
continual-learning literature92,116,117. This idea is usually manifested 
in algorithms that dynamically increase the size of the network. For 
example, one method117 expands the network by allocating a new sub-
network whenever there is a new task. These methods do not have an 
upper limit on memory requirements. Although these methods are 
related to the ideas in continual backpropagation, none are suitable 
for comparison, as continual backpropagation is designed for learning 
systems with finite memory, which are well suited for lifelong learning. 
And these methods would therefore require non-trivial modification 
to apply to our setting of finite memory.

Previous works on the importance of initialization have focused 
on finding the correct weight magnitude to initialize the weights. It 
has been shown that it is essential to initialize the weights so that the 
gradients do not become exponentially small in the initial layers of a 
network and the gradient is preserved across layers54,66. Furthermore, 
initialization with small weights is critical for sigmoid activations as 
they may saturate if the weights are too large118. Despite all this work 
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on the importance of initialization, the fact that its benefits are only 
present initially but not continually has been overlooked, as these 
papers focused on cases in which learning has to be done just once, 
not continually.

Continual backpropagation selectively reinitializes low-utility units. 
One common strategy to deal with non-stationary data streams is reini-
tializing the network entirely. In the Online Permuted MNIST experi-
ment, full reinitialization corresponds to a performance that stays at 
the level of the first point (Extended Data Fig. 4a). In this case, continual 
backpropagation outperforms full reinitialization as it takes advantage 
of what it has previously learned to speed up learning on new data. 
In ImageNet experiments, the final performance of continual back-
propagation is only slightly better than a fully reinitialized network (the 
first point for backpropagation in left panel of Fig. 1b). However, Fig. 1 
does not show how fast an algorithm reaches the final performance in 
each task. We observed that continual backpropagation achieves the 
best accuracy ten times faster than a fully reinitialized network on 
the 5,000th task of Continual ImageNet, ten epochs versus about 125 
epochs. Furthermore, continual backpropagation could be combined 
with other methods that mitigate forgetting, which can further speed 
up learning on new data. In reinforcement learning, full reinitialization 
is only practical for systems with a large buffer. For systems that keep 
a small or no buffer, such as those we studied, full reinitialization will 
lead the agent to forget everything it has learned, and its performance 
will be down to the starting point.

Loss of plasticity might also be connected to the lottery ticket hypoth-
esis119. The hypothesis states that randomly initialized networks contain 
subnetworks that can achieve performance close to that of the original 
network with a similar number of updates. These subnetworks are called 
winning tickets. We found that, in continual-learning problems, the 
effective rank of the representation at the beginning of tasks reduces 
over time. In a sense, the network obtained after training on several 
tasks has less randomness and diversity than the original random 
network. The reduced randomness might mean that the network has 
fewer winning tickets. And this reduced number of winning tickets 
might explain loss of plasticity. Our understanding of loss of plasticity 
could be deepened by fully exploring its connection with the lottery 
ticket hypothesis.

Some recent works have focused on quickly adapting to the changes 
in the data stream120–122. However, the problem settings in these papers 
were offline as they had two separate phases, one for learning and the 
other for evaluation. To use these methods online, they have to be 
pretrained on tasks that represent tasks that the learner will encoun-
ter during the online evaluation phase. This requirement of having 
access to representative tasks in the pretraining phase is not realistic 
for lifelong learning systems as the real world is non-stationary, and 
even the distribution of tasks can change over time. These methods 
are not comparable with those we studied in our work, as we studied 
fully online methods that do not require pretraining.

In this work, we found that methods that continually injected ran-
domness while maintaining small weight magnitudes greatly reduced 
loss of plasticity. Many works have found that adding noise while train-
ing neural networks can improve training and testing performance. 
The main benefits of adding noise have been reported to be avoid-
ing overfitting and improving training performance123–125. However, it 
can be tricky to inject noise without degrading performance in some 
cases126. In our case, when the data distribution is non-stationary, we 
found that continually injecting noise along with L2 regularization 
helps with maintaining plasticity in neural networks.

Data availability
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Extended Data Fig. 1 | Further results on class-incremental CIFAR-100.  
a, Test accuracy in class-incremental CIFAR-100. As more classes are added,  
the classification becomes harder and algorithms naturally show decreasing 
accuracy with more classes. Each line corresponds to the average of 15 runs.  
b, Test accuracy of continual backpropagation for different values of the 

replacement rate parameter with contribution utility and 1,000 maturity 
threshold. The line corresponding to 10−4 is an average of five runs, whereas the 
other two lines are an average of 15 runs. The solid lines represent the mean and 
the shaded regions correspond to ±1 standard error.
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Extended Data Fig. 2 | Loss of plasticity in the Slowly-Changing Regression 
problem. a, The target function and the input in the Slowly-Changing 
Regression problem. The input has m + 1 bits. One of the flipping bits is chosen 
after every T time steps and its value is flipped. The next m − f bits are i.i.d. at 
every time step and the last bit is always one. The target function is represented 

by a neural network with a single hidden layer of LTUs. Each weight in the target 
network is −1 or 1. b, Loss of plasticity is robust across different activations. 
These results are averaged over 100 runs; the solid lines represent the mean 
and the shaded regions correspond to ±1 standard error.
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Extended Data Fig. 3 | Loss of plasticity in Online Permuted MNIST. a, Left, 
an MNIST image with the label ‘7’; right, a corresponding permuted image.  
b, Loss of plasticity in Online Permuted MNIST is robust over step sizes, 
network sizes and rates of change. c, Evolution of various qualities of a deep 
network trained by means of backpropagation with different step sizes. Left, 
over time, the percentage of dead units in the network increases. Centre, the 

average magnitude of the weights increases over time. Right, the effective rank 
of the representation of the networks trained with backpropagation decreases 
over time. The results in these six plots are the average over 30 runs. The solid 
lines represent the mean and the shaded regions correspond to ±1 standard 
error. For some lines, the shaded region is thinner than the line width, as 
standard error is small.
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Extended Data Fig. 4 | Existing deep-learning methods on Online Permuted 
MNIST. a, Left, online classification accuracy of various algorithms on Online 
Permuted MNIST. Shrink and Perturb has almost no drop in online classification 
accuracy over time. Continual backpropagation did not show any loss of plasticity 
and had the best level of performance. Centre left, over time, the percentage of 
dead units increases in all methods except for continual backpropagation; it has 
almost zero dead units throughout learning. Centre right, the average magnitude 
of the weights increases over time for all methods except for L2 regularization, 
Shrink and Perturb and continual backpropagation. These are also the three 
best-performing methods, which suggests that small weights are important for 
fast learning. Right, the effective rank of the representation of all methods drops 
over time. However, continual backpropagation maintains a higher effective rank 

than both backpropagation and Shrink and Perturb. Among all the algorithms, 
only continual backpropagation maintains a high effective rank, low weight 
magnitude and low percentage of dead units. The results correspond to the 
average over 30 independent runs. The shaded regions correspond to ±1 standard 
error. b, Performance of various algorithms on Online Permuted MNIST for 
various hyperparameter combinations. For each method, we show three different 
hyperparameter settings. The parameter settings that were used in the left panel 
in a are marked with a solid square next to their label. The results correspond to 
the average of over 30 runs for settings marked with a solid square and 10 runs for 
the rest. The solid lines represent the mean and the shaded regions correspond to 
±1 standard error.
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Extended Data Fig. 5 | Further results in stationary reinforcement-learning 
problems. a, Similar to Fig. 4, the performance of standard PPO drops over 
time. However, unlike in Fig. 4, the performance of PPO with L2 regularization 
gets worse over time in Hopper-v3. On the other hand, PPO with continual 
backpropagation and L2 regularization can keep improving with time.  
b, Comparison of continual backpropagation and ReDo on Ant-v3. The 
performance of PPO with ReDo and L2 regularization worsens over time, 
whereas PPO with continual backpropagation and L2 regularization keeps 

improving over time. c, PPO with standard Adam leads to large updates in the 
policy network compared with proper Adam (β1 = β1 = 0.99), which explains why 
PPO with proper Adam performs much better than standard PPO. d, Comparison 
of two forms of utility in continual backpropagation, when using a running 
estimate of instantaneous utility and when using just the instantaneous utility. 
Both variations have similar performance. All these results are averaged over 
30 runs; the solid lines represent the mean and the shaded regions correspond 
to 95% bootstrapped confidence interval.
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Extended Data Table 1 | Details of the ResNet-18 architecture used for the class-incremental CIFAR-100 problem

All conv layers used a kernel size of (3, 3), reshape layers used a kernel size of (1, 1) and the pool layer used a kernel size of (4, 4).
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Extended Data Table 2 | Hyperparameter selection in Continual ImageNet

Values used for the grid searches to find the best set of hyperparameters for all algorithms tested on Continual ImageNet. The best-performing set of values for each algorithm is in bold.  
The values in the third column for L2 regularization and Shrink and Perturb correspond to the weight decay, whereas for continual backpropagation, they correspond to the replacement rate.
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Extended Data Table 3 | Details of the artificial neural network used for the Continual ImageNet problem

The network has three convolutional layers followed by three fully connected layers.
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Extended Data Table 4 | Implementation details for the Slowly-Changing Regression problem and the learning network

The target and the learning networks both have a single hidden layer.
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Extended Data Table 5 | Hyperparameters for PPO

All reinforcement-learning algorithms share these hyperparameters. Additional hyperparameters are described in the ‘Details and further analysis in reinforcement learning’ section in the 
Methods.
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