
768  |  Nature  |  Vol 632  |  22 August 2024

Article

Loss of plasticity in deep continual learning

Shibhansh Dohare1 ✉, J. Fernando Hernandez-Garcia1, Qingfeng Lan1, Parash Rahman1,
A. Rupam Mahmood1,2 & Richard S. Sutton1,2

Artificial neural networks, deep-learning methods and the backpropagation
algorithm1 form the foundation of modern machine learning and artificial
intelligence. These methods are almost always used in two phases, one in which the
weights of the network are updated and one in which the weights are held constant
while the network is used or evaluated. This contrasts with natural learning and many
applications, which require continual learning. It has been unclear whether or not
deep learning methods work in continual learning settings. Here we show that they
do not—that standard deep-learning methods gradually lose plasticity in continual-
learning settings until they learn no better than a shallow network. We show such loss
of plasticity using the classic ImageNet dataset and reinforcement-learning problems
across a wide range of variations in the network and the learning algorithm. Plasticity
is maintained indefinitely only by algorithms that continually inject diversity
into the network, such as our continual backpropagation algorithm, a variation of
backpropagation in which a small fraction of less-used units are continually and
randomly reinitialized. Our results indicate that methods based on gradient descent
are not enough—that sustained deep learning requires a random, non-gradient
component to maintain variability and plasticity.

Machine learning and artificial intelligence have made remarkable pro-
gress in the past decade, with landmark successes in natural-language
processing2,3, biology4, game playing5–8 and robotics9,10. All these sys-
tems use artificial neural networks, whose computations are inspired by
the operation of human and animal brains. Learning in these networks
refers to computational algorithms for changing the strengths of their
connection weights (computational synapses). The most important
modern learning methods are based on stochastic gradient descent
(SGD) and the backpropagation algorithm, ideas that originated at
least four decades ago but are much more powerful today because of
the availability of vastly greater computer power. The successes are
also because of refinements of the learning and training techniques
that together make the early ideas effective in much larger and more
deeply layered networks. These methodologies are collectively referred
to as deep learning.

Despite its successes, deep learning has difficulty adapting to chang-
ing data. Because of this, in almost all applications, deep learning is
restricted to a special training phase and then turned off when the
network is actually used. For example, large language models such as
ChatGPT are trained on a large generic training set and then fine-tuned
on smaller datasets specific to an application or to meet policy and
safety goals, but finally their weights are frozen before the network
is released for use. With current methods, it is usually not effective to
simply continue training on new data when they become available. The
effect of the new data is either too large or too small and not properly
balanced with the old data. The reasons for this are not well understood
and there is not yet a clear solution. In practice, the most common
strategy for incorporating substantial new data has been simply to
discard the old network and train a new one from scratch on the old and

new data together11,12. When the network is a large language model and
the data are a substantial portion of the internet, then each retraining
may cost millions of dollars in computation. Moreover, a wide range
of real-world applications require adapting to change. Change is ubiq-
uitous in learning to anticipate markets and human preferences and in
gaming, logistics and control systems. Deep-learning systems would
be much more powerful if they, like natural-learning systems, were
capable of continual learning.

Here we show systematically that standard deep-learning meth-
ods lose their ability to learn with extended training on new data,
a phenomenon that we call loss of plasticity. We use classic datasets,
such as ImageNet and CIFAR-100, modified for continual learning,
and standard feed-forward and residual networks with a wide variety
of standard learning algorithms. Loss of plasticity in artificial neural
networks was first shown at the turn of the century in the psychology
literature13–15, before the development of deep-learning methods. Plas-
ticity loss with modern methods was visible in some recent works11,16–18
and most recently has begun to be explored explicitly12,19–27. Loss of plas-
ticity is different from catastrophic forgetting, which concerns poor
performance on old examples even if they are not presented again28–30.

Although standard deep-learning methods lose plasticity with
extended learning, we show that a simple change enables them to
maintain plasticity indefinitely in both supervised and reinforce-
ment learning. Our new algorithm, continual backpropagation, is
exactly like classical backpropagation except that a tiny proportion
of less-used units are reinitialized on each step much as they were
all initialized at the start of training. Continual backpropagation is
inspired by a long history of methods for automatically generating
and testing features, starting with Selfridge’s Pandemonium in 1959

https://doi.org/10.1038/s41586-024-07711-7

Received: 11 August 2023

Accepted: 12 June 2024

Published online: 21 August 2024

Open access

 Check for updates

1Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada. 2Canada CIFAR AI Chair, Alberta Machine Intelligence Institute (Amii), Edmonton, Alberta, Canada.
✉e-mail: dohare@ualberta.ca

Content courtesy of Springer Nature, terms of use apply. Rights reserved

Nature  |  Vol 632  |  22 August 2024  |  769

(refs. 19,20,31–35). The effectiveness of continual backpropagation
shows that the problem of plasticity loss is not inherent in artificial
neural networks.

Plasticity loss in supervised learning
The primary purpose of this article is to demonstrate loss of plasticity in
standard deep-learning systems. For the demonstration to be convinc-
ing, it must be systematic and extensive. It must consider a wide range of
standard deep-learning networks, learning algorithms and parameter
settings. For each of these, the experiments must be run long enough
to expose long-term plasticity loss and be repeated enough times to
obtain statistically significant results. Altogether, more computation
is needed by three or four orders of magnitude compared with what
would be needed to train a single network. For example, a systematic
study with large language models would not be possible today because
just a single training run with one of these networks would require
computation costing millions of dollars. Fortunately, advances in
computer hardware have continued apace since the development of
deep learning and systematic studies have become possible with the
deep-learning networks used earlier and with some of the longer-lived
test problems. Here we use ImageNet, a classic object-recognition test
bed36, which played a pivotal role in the rise of deep learning37 and is
still influential today.

The ImageNet database comprises millions of images labelled by
nouns (classes) such as types of animal and everyday object. The typical
ImageNet task is to guess the label given an image. The standard way to
use this dataset is to partition it into training and test sets. A learning
system is first trained on a set of images and their labels, then train-
ing is stopped and performance is measured on a separate set of test
images from the same classes. To adapt ImageNet to continual learn-
ing while minimizing all other changes, we constructed a sequence of
binary classification tasks by taking the classes in pairs. For example,
the first task might be to distinguish cats from houses and the second
might be to distinguish stop signs from school buses. With the 1,000
classes in our dataset, we were able to form half a million binary clas-
sification tasks in this way. For each task, a deep-learning network was

first trained on a subset of the images for the two classes and then its
performance was measured on a separate test set for the classes. After
training and testing on one task, the next task began with a different
pair of classes. We call this problem ‘Continual ImageNet’. In Continual
ImageNet, the difficulty of tasks remains the same over time. A drop
in performance would mean the network is losing its learning ability,
a direct demonstration of loss of plasticity.

We applied a wide variety of standard deep-learning networks to Con-
tinual ImageNet and tested many learning algorithms and parameter
settings. To assess the performance of the network on a task, we meas-
ured the percentage of test images that were correctly classified. The
results shown in Fig. 1b are representative; they are for a feed-forward
convolutional network and for a training procedure, using unmodified
backpropagation, that performed well on this problem in the first few
tasks.

Although these networks learned up to 88% correct on the test set
of the early tasks (Fig. 1b, left panel), by the 2,000th task, they had lost
substantial plasticity for all values of the step-size parameter (right
panel). Some step sizes performed well on the first two tasks but then
much worse on subsequent tasks, eventually reaching a performance
level below that of a linear network. For other step sizes, performance
rose initially and then fell and was only slightly better than the linear
network after 2,000 tasks. We found this to be a common pattern in
our experiments: for a well-tuned network, performance first improves
and then falls substantially, ending near or below the linear baseline.
We have observed this pattern for many network architectures,
parameter choices and optimizers. The specific choice of network
architecture, algorithm parameters and optimizers affected when the
performance started to drop, but a severe performance drop occurred
for a wide range of choices. The failure of standard deep-learning
methods to learn better than a linear network in later tasks is direct
evidence that these methods do not work well in continual-learning
problems.

Algorithms that explicitly keep the weights of the network small were
an exception to the pattern of failure and were often able to maintain
plasticity and even improve their performance over many tasks, as
shown in Fig. 1c. L2 regularization adds a penalty for large weights;

Task number (bins of 50)

Linear baseline

Step size = 0.01

Step size = 0.001

Step size = 0.0001

A
cc

ur
ac

y
on

 t
he

 t
es

t
se

t
(%

)

Task number

Linear baseline

Step size = 0.01

Step size = 0.001

70

75

80

85

90

A
cc

ur
ac

y
on

 t
he

 t
es

t
se

t
(%

)

A
cc

ur
ac

y
on

 t
he

 t
es

t
se

t
(%

)

70

75

80

85

90

1 5 10 50 1,000 2,000 50 2,500 5,000
82

84

86

88

90

92

Task number (bins of 50)

Continual backpropagation

L2 regularization

Shrink and Perturb

Backpropagation

Mitigating loss of plasticity in Continual ImageNet

Task 1

Continual ImageNeta

Backpropagation loses plasticity in Continual ImageNetb c

versus

Task 2 Task 3

versus

Task 4

versus

Task 5

versusversus

Pictures of two kinds of
object must be distinguished

Pictures of a new pair of
objects must be distinguished

 The process continues for
 thousands of pairs of objects

Fig. 1 | Plasticity loss in Continual ImageNet. a–c, In a sequence of binary
classification tasks using ImageNet pictures (a), the conventional
backpropagation algorithm loses plasticity at all step sizes (b), whereas the
continual backpropagation, L2 regularization and Shrink and Perturb

algorithms maintain plasticity, apparently indefinitely (c). All results are
averaged over 30 runs; the solid lines represent the mean and the shaded
regions correspond to ±1 standard error.

Content courtesy of Springer Nature, terms of use apply. Rights reserved

770  |  Nature  |  Vol 632  |  22 August 2024

Article

augmenting backpropagation with this enabled the network to con-
tinue improving its learning performance over at least 5,000 tasks.
The Shrink and Perturb algorithm11, which includes L2 regularization,
also performed well. Best of all was our continual backpropagation
algorithm, which we discuss later. For all algorithms, we tested a wide
range of parameter settings and performed many independent runs for
statistical significance. The presented curves are the best representa-
tive of each algorithm.

For a second demonstration, we chose to use residual networks,
class-incremental continual learning and the CIFAR-100 dataset. Resid-
ual networks include layer-skipping connections as well as the usual
layer-to-layer connections of conventional convolutional networks. The
residual networks of today are more widely used and produce better
results than strictly layered networks38. Class-incremental continual
learning39 involves sequentially adding new classes while testing on
all classes seen so far. In our demonstration, we started with training
on five classes and then successively added more, five at a time, until
all 100 were available. After each addition, the networks were trained
and performance was measured on all available classes. We continued
training on the old classes (unlike in most work in class-incremental
learning) to focus on plasticity rather than on forgetting.

In this demonstration, we used an 18-layer residual network with
a variable number of heads, adding heads as new classes were added.

We also used further deep-learning techniques, including batch nor-
malization, data augmentation, L2 regularization and learning-rate
scheduling. These techniques are standardly used with residual net-
works and are necessary for good performance. We call this our base
deep-learning system.

As more classes are added, correctly classifying images becomes
more difficult and classification accuracy would decrease even if the
network maintained its ability to learn. To factor out this effect, we
compare the accuracy of our incrementally trained networks with net-
works that were retrained from scratch on the same subset of classes.
For example, the network that was trained first on five classes, and then
on all ten classes, is compared with a network retrained from scratch
on all ten classes. If the incrementally trained network performs better
than a network retrained from scratch, then there is a benefit owing
to training on previous classes, and if it performs worse, then there is
genuine loss of plasticity.

The red line in Fig. 2b shows that incremental training was initially
better than retraining, but after 40 classes, the incrementally trained
network showed loss of plasticity that became increasingly severe. By
the end, when all 100 classes were available, the accuracy of the incre-
mentally trained base system was 5% lower than the retrained network
(a performance drop equivalent to that of removing a notable algorith-
mic advance, such as batch normalization). Loss of plasticity was less

At the start,
pictures from �ve
classes have to be
distinguished

Five more classes are
added and pictures
from all ten have to be
distinguished

The process continues
until �nally all 100
classes have to be
distinguished

A
cc

ur
ac

y
re

la
tiv

e
to

 a
 n

et
w

or
k

tr
ai

ne
d

fr
om

 s
cr

at
ch

 (%
)

+2

0

–2

–4

5 50 100

Number of classes

Number of classes

Number of classes

b

c

d

5 50 100

50

40

30

20

10

0

P
er

ce
nt

ag
e

of
 d

or
m

an
t

un
its

 (%
)

a Class-incremental CIFAR-100

95

90

85

80

75

5 50 100

S
ta

b
le

 r
an

k
of

 t
he

 r
ep

re
se

nt
at

io
n

sc
al

ed
 b

et
w

ee
n

0
an

d
 1

00
Continual backpropagation

Shrink and Perturb

Base deep-learning system

Continual backpropagation

Shrink and Perturb

Base deep-learning system

Continual backpropagation

Shrink and Perturb

Base deep-learning system

Fig. 2 | Plasticity loss in class-incremental CIFAR-100. a, An incrementally
growing image-classification problem. b, Initially, accuracy is improved by
incremental training compared with a network trained from scratch, but after
40 classes, accuracy degrades substantially in a base deep-learning system, less
so for a Shrink and Perturb learning system and not at all for a learning system
based on continual backpropagation. c, The number of network units that are
active less than 1% of the time increases rapidly for the base deep-learning

system, but less so for Shrink and Perturb and continual backpropagation
systems. d, A low stable rank means that the units of a network do not provide
much diversity; the base deep-learning system loses much more diversity than
the Shrink and Perturb and continual backpropagation systems. All results are
averaged over 30 runs; the solid lines represent the mean and the shaded
regions correspond to ±1 standard error.

Content courtesy of Springer Nature, terms of use apply. Rights reserved

Nature  |  Vol 632  |  22 August 2024  |  771

severe when Shrink and Perturb was added to the learning algorithm (in
the incrementally trained network) and was eliminated altogether when
continual backpropagation (see the ‘Maintaining plasticity through
variability and selective preservation’ section) was added. These addi-
tions also prevented units of the network from becoming inactive or
redundant, as shown in Fig. 2c,d.

This demonstration involved larger networks and required more
computation, but still we were able to perform extensive systematic
tests. We found a robust pattern in the results that was similar to what
we found in ImageNet. In both cases, deep-learning networks exhib-
ited substantial loss of plasticity. Altogether, these results, along with
other extensive results in Methods, constitute substantial evidence of
plasticity loss.

Plasticity loss in reinforcement learning
Continual learning is essential to reinforcement learning in ways that
go beyond its importance in supervised learning. Not only can the
environment change but the behaviour of the learning agent can also
change, thereby influencing the data it receives even if the environment
is stationary. For this reason, the need for continual learning is often
more apparent in reinforcement learning, and reinforcement learning
is an important setting in which to demonstrate the tendency of deep
learning towards loss of plasticity.

Nevertheless, it is challenging to demonstrate plasticity loss in
reinforcement learning in a systematic and rigorous way. In part, this
is because of the great variety of algorithms and experimental set-
tings that are commonly used in reinforcement-learning research.
Algorithms may learn value functions, behaviours or both simulta-
neously and may involve replay buffers, world models and learned
latent states. Experiments may be episodic, continuing or offline. All
of these choices involve several embedded choices of parameters.
More fundamentally, reinforcement-learning algorithms affect the
data seen by the agent. The learning ability of an algorithm is thus
confounded with its ability to generate informative data. Finally, and in

part because of the preceding, reinforcement-learning results tend to
be more stochastic and more widely varying than in supervised learn-
ing. Altogether, demonstration of reinforcement-learning abilities,
particularly negative results, tends to require more runs and gener-
ally much more experimental work and thus inevitably cannot be as
definitive as in supervised learning.

Our first demonstration involves a reinforcement-learning algorithm
applied to a simulated ant-like robot tasked with moving forwards as
rapidly and efficiently as possible. The agent–environment interaction
comprises a series of episodes, each beginning in a standard state and
lasting up to 1,000 time steps. On each time step, the agent receives a
reward depending on the forward distance travelled and the magnitude
of its action (see Methods for details). An episode terminates in fewer
than 1,000 steps if the ant jumps too high instead of moving forwards,
as often happens early in learning. In the results to follow, we use the
cumulative reward during an episode as our primary performance
measure. To make the task non-stationary (and thereby emphasize
plasticity), the coefficient of friction between the feet of the ant and
the floor is changed after every 2 million time steps (but only at an
episode boundary; details in Methods). For fastest walking, the agent
must adapt (relearn) its way of walking each time the friction changes.
For this experiment, we used the proximal policy optimization (PPO)
algorithm40. PPO is a standard deep reinforcement-learning algorithm
based on backpropagation. It is widely used, for example, in robotics9,
in playing real-time strategy games41 and in aligning large language
models from human feedback42.

PPO performed well (see the red line in Fig. 3c) for the first 2 million
steps, up until the first change in friction, but then performed worse
and worse. Note how the performance of the other algorithms in
Fig. 3c decreased each time the friction changed and then recovered
as the agent adapted to the new friction, giving the plot a sawtooth
appearance. PPO augmented with a specially tuned Adam optimizer24,43
performed much better (orange line in Fig. 3c) but still performed
much worse over successive changes after the first two, indicating
substantial loss of plasticity. On the other hand, PPO augmented with

Loss of plasticity in ant locomotion with changing frictionAnt locomotiona

Ant locomotion with changing frictionb

c

Agent is rewarded for foward motion and penalized if applied torque or
contact forces are too large

R
ew

ar
d

 p
er

 e
p

is
od

e

2,000

4,000

Time step

0 10 million 20 million

Continual backpropagation with L2 and tuned PPO

L2 regularization with tuned PPO

Tuned PPO

Standard PPO

Agent controls the torque applied to highlighted joints

When friction is high,
walking can be reliable

When friction is low,
the ant may slip or fall

Friction can also take
on intermediate values

0

Fig. 3 | Maintaining plasticity in a non-stationary reinforcement-learning
problem. a, The reinforcement-learning agent controls torques at the
eight joints of the simulated ant (red circles) to maximize forward motion
and minimize penalties. b, Here we use a version of the ant problem in
which the friction on contact with the ground is abruptly changed every
2 million time steps. c, The standard PPO learning algorithm fails

catastrophically on the non-stationary ant problem. If the optimizer of PPO
(Adam) is tuned in a custom way, then the failure is less severe, but adding
continual backpropagation or L2 regularization is necessary to perform well
indefinitely. These results are averaged over 100 runs; the solid lines represent
the mean and the shaded regions represent the 95% bootstrapped confidence
interval.

Content courtesy of Springer Nature, terms of use apply. Rights reserved

772  |  Nature  |  Vol 632  |  22 August 2024

Article

L2 regularization and continual backpropagation largely maintained
their plasticity as the problem changed.

Now consider the same ant-locomotion task except with the coef-
ficient of friction held constant at an intermediate value over 50 million
time steps. The red line in Fig. 4a shows that the average performance
of PPO increased for about 3 million steps but then collapsed. After
20 million steps, the ant is failing every episode and is unable to learn
to move forwards efficiently. The red lines in the other panels of Fig. 4
provide further insight into the loss of plasticity of PPO. They suggest
that the network may be losing plasticity in the same way as in our
supervised learning results (see Fig. 2 and Extended Data Fig. 3c). In
both cases, most of the network’s units became dormant during the
experiment, and the network markedly lost stable rank. The addition
of L2 regularization mitigated the performance degradation by pre-
venting continual growth of weights but also resulted in very small
weights (Fig. 4d), which prevented the agent from committing to good
behaviour. The addition of continual backpropagation performed bet-
ter overall. We present results for continual backpropagation only with
(slight) L2 regularization, because without it, performance was highly
sensitive to parameter settings. These results show that plasticity loss
can be catastrophic in both deep reinforcement learning as well as
deep supervised learning.

Maintaining plasticity
Surprisingly, popular methods such as Adam, Dropout and normaliza-
tion actually increased loss of plasticity (see Extended Data Fig. 4a).
L2 regularization, on the other hand, reduced loss of plasticity in many
cases (purple line in Figs. 1, 3 and 4). L2 regularization stops the weights
from becoming too large by moving them towards zero at each step.
The small weights allow the network to remain plastic. Another existing
method that reduced loss of plasticity is Shrink and Perturb11 (orange
line in Figs. 1 and 2). Shrink and Perturb is L2 regularization plus small
random changes in weights at each step. The injection of variability
into the network can reduce dormancy and increase the diversity of the
representation (Figs. 2 and 4). Our results indicate that non-growing
weights and sustained variability in the network may be important for
maintaining plasticity.

We now describe a variation of the backpropagation algorithm that
is explicitly designed to inject variability into the network and keep
some of its weights small. Conventional backpropagation has two main
parts: initialization with small random weights before training and
then gradient descent at each training step. The initialization provides
variability initially, but, as we have seen, with continued training, vari-
ability tends to be lost, as well as plasticity along with it. To maintain

25

75

100

50

0 25 million 50 million

Time step

S
ta

b
le

 r
an

k
of

 t
he

 r
ep

re
se

nt
at

io
n

b

0

2,000

4,000

0 25 million 50 million

R
ew

ar
d

 p
er

 e
p

is
od

e

a

Time step

0 25 million 50 million
0

0.05

0.15

0.10
A

ve
ra

ge
 w

ei
gh

t
m

ag
ni

tu
d

e

d

Time step

0 25 million 50 million
0

20

40

60

D
or

m
an

t
un

its
 (%

)

c

Time step

Continual backpropagation + L2 Tuned PPOL2 regularization Standard PPO

Fig. 4 | Results on a stationary ant-locomotion problem. a, The four
reinforcement-learning algorithms performed similarly on this and the
non-stationary problem (compare with Fig. 3c). b,c, A closer look inside the
networks reveals a similar pattern as in supervised learning (compare with
Fig. 2c,d). d, The absolute values of the weights of the networks increased

steadily under standard and tuned PPO, whereas they decreased and stayed
small under L2 regularization with or without continual backpropagation.
These results are averaged over 30 runs; the solid lines represent the mean
and the shaded regions represent the 95% bootstrapped confidence interval.

Content courtesy of Springer Nature, terms of use apply. Rights reserved

Nature  |  Vol 632  |  22 August 2024  |  773

the variability, our new algorithm, continual backpropagation, reini-
tializes a small number of units during training, typically fewer than
one per step. To prevent disruption of what the network has already
learned, only the least-used units are considered for reinitialization.
See Methods for details.

The blue line in Fig. 1c shows the performance of continual back-
propagation on Continual ImageNet. It mitigated loss of plasticity in
Continual ImageNet while outperforming existing methods. Similarly,
the blue lines in Fig. 2 show the performance of continual backpropa-
gation on class-incremental CIFAR-100 and its effect on the evolution
of dormant units and stable rank. Continual backpropagation fully
overcame loss of plasticity, with a high stable rank and almost no dead
units throughout learning.

In reinforcement learning, continual backpropagation was
applied together with L2 regularization (a small amount of regulari-
zation was added to prevent excessive sensitivity to parameters in
reinforcement-learning experiments). The blue line in Fig. 3 shows
the performance of PPO with continual backpropagation on the
ant-locomotion problem with changing friction. PPO with contin-
ual backpropagation performed much better than standard PPO,
with little or no loss of plasticity. On the ant-locomotion problem
with constant friction (Fig. 4), PPO with continual backpropagation
continued improving throughout the experiment. The blue lines in
Fig. 4b–d show the evolution of the correlates of loss of plasticity when
we used continual backpropagation. PPO with continual backpropaga-
tion had few dormant units, a high stable rank and an almost constant
average weight magnitude.

Our results are consistent with the idea that small weights reduce
loss of plasticity and that a continual injection of variability further
mitigates loss of plasticity. Although Shrink and Perturb adds vari-
ability to all weights, continual backpropagation does so selectively,
and this seems to enable it to better maintain plasticity. Continual
backpropagation involves a form of variation and selection in the space
of neuron-like units, combined with continuing gradient descent. The
variation and selection is reminiscent of trial-and-error processes in
evolution and behaviour44–47 and has precursors in many earlier ideas,
including Keifer–Wolfowitz methods48 and restart methods49 in engi-
neering and feature-search methods in machine learning31–35,50. Con-
tinual backpropagation brings a form of this old idea to modern deep
learning. However, it is just one variation of this idea; other variations
are possible and some of these have been explored in recent work25,27.
We look forward to future work that explicitly compares and further
refines these variations.

Discussion
Deep learning is an effective and valuable technology in settings in
which learning occurs in a special training phase and not thereafter.
In settings in which learning must continue, however, we have shown
that deep learning does not work. By deep learning, we mean the existing
standard algorithms for learning in multilayer artificial neural networks
and by not work, we mean that, over time, they fail to learn appreciably
better than shallow networks. We have shown such loss of plasticity
using supervised-learning datasets and reinforcement-learning tasks
on which deep learning has previously excelled and for a wide range of
networks and standard learning algorithms. Taking a closer look, we
found that, during training, many of the networks’ neuron-like units
become dormant, overcommitted and similar to each other, hampering
the ability of the networks to learn new things. As they learn, standard
deep-learning networks gradually and irreversibly lose their diversity
and thus their ability to continue learning. Plasticity loss is often severe
when learning continues for many tasks, but may not occur at all for
small numbers of tasks.

The problem of plasticity loss is not intrinsic to deep learning. Deep
artificial neural networks trained by gradient descent are perfectly

capable of maintaining their plasticity, apparently indefinitely, as we
have shown with the Shrink and Perturb algorithm and particularly with
the new continual backpropagation algorithm. Both of these algorithms
extend standard deep learning by adding a source of continuing vari-
ability to the weights of the network, and continual backpropagation
restricts this variability to the units of the network that are at present
least used, minimizing damage to the operation of the network. That is,
continual backpropagation involves a form of variation and selection
in the space of neuron-like units, combined with continuing gradient
descent. This idea has many historical antecedents and will probably
require further development to reach its most effective form.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competing interests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-024-07711-7.

1.	 Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by
back-propagating errors. Nature 323, 533–536 (1986).

2.	 OpenAI et al. GPT-4 technical report. Preprint at https://arxiv.org/abs/2303.08774 (2023).
3.	 Bahdanau, D., Cho, K. & Bengio, Y. Neural machine translation by jointly learning to align

and translate. In Proc. 3rd International Conference on Learning Representations (eds
Bengio, Y. & LeCun, Y.) (ICLR, 2015).

4.	 Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596,
583–589 (2021).

5.	 Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518,
529–533 (2015).

6.	 Silver, D. et al. Mastering the game of Go with deep neural networks and tree search.
Nature 529, 484–489 (2016).

7.	 Moravčík, M. et al. DeepStack: expert-level artificial intelligence in heads-up no-limit
poker. Science 356, 508–513 (2017).

8.	 Wurman, P. R. et al. Outracing champion Gran Turismo drivers with deep reinforcement
learning. Nature 602, 223–228 (2022).

9.	 Andrychowicz, O. M. et al. Learning dexterous in-hand manipulation. Int. J. Robot. Res.
39, 3–20 (2020).

10.	 Kaufmann, E. et al. Champion-level drone racing using deep reinforcement learning.
Nature 620, 982–987 (2023).

11.	 Ash, J. & Adams, R. P. On warm-starting neural network training. Adv. Neural Inf. Process.
Syst. 33, 3884–3894 (2020).

12.	 Berariu, T. et al. A study on the plasticity of neural networks. Preprint at https://arxiv.org/
abs/2106.00042 (2021).

13.	 Ellis, A. W. & Lambon Ralph, M. A. Age of acquisition effects in adult lexical processing
reflect loss of plasticity in maturing systems: insights from connectionist networks. J. Exp.
Psychol. Learn. Mem. Cogn. 26, 1103 (2000).

14.	 Zevin, J. D. & Seidenberg, M. S. Age of acquisition effects in word reading and other tasks.
J. Mem. Lang. 47, 1–29 (2002).

15.	 Bonin, P., Barry, C., Méot, A. & Chalard, M. The influence of age of acquisition in word
reading and other tasks: a never ending story? J. Mem. Lang. 50, 456–476 (2004).

16.	 Chaudhry, A., Dokania, P. K., Ajanthan, T. & Torr, P. H. Riemannian walk for incremental
learning: understanding forgetting and intransigence. In Proc. 15th European Conference
on Computer Vision (ECCV) 532–547 (Springer, 2018).

17.	 Achille, A., Rovere, M. & Soatto, S. Critical learning periods in deep networks. In Proc.
6th International Conference on Learning Representations (eds Murray, I., Ranzato, M. &
Vinyals, O.) (ICLR, 2018).

18.	 Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P.-L. & Courville, A. The primacy bias in deep
reinforcement learning. In Proc. 39th International Conference on Machine Learning
16828–16847 (PMLR, 2022).

19.	 Dohare, S. The Interplay of Search and Gradient Descent in Semi-stationary Learning
Problems. Master’s thesis, Univ. Alberta (2020).

20.	 Rahman, P. Toward Generate-and-test Algorithms for Continual Feature Discovery.
Master’s thesis, Univ. Alberta (2021).

21.	 Dohare, S., Sutton, R. S. & Mahmood, A. R. Continual backprop: stochastic gradient
descent with persistent randomness. Preprint at https://arxiv.org/abs/2108.06325 (2021).

22.	 Lyle, C., Rowland, M. & Dabney, W. Understanding and preventing capacity loss in
reinforcement learning. In Proc. 10th International Conference on Learning
Representations (ICLR, 2022).

23.	 Abbas, Z., Zhao, R., Modayil, J., White, A. & Machado, M. C. Loss of plasticity in continual
deep reinforcement learning. In Proc. 2nd Conference on Lifelong Learning Agents
(PMLR, 2023).

24.	 Lyle, C. et al. Understanding plasticity in neural networks. In Proc. 40th International
Conference on Machine Learning 23190–23211 (PMLR, 2023).

25.	 Sokar, G., Agarwal, R., Castro, P. S. & Evci, U. The dormant neuron phenomenon in deep
reinforcement learning. In Proc. 40th International Conference on Machine Learning
32145–32168 (PMLR, 2023).

26.	 Dohare, S., Hernandez-Garcia, J. F., Rahman, P., Mahmood, A. R. & Sutton, R. S.
Maintaining plasticity in deep continual learning. Preprint at https://arxiv.org/
abs/2306.13812 (2023).

Content courtesy of Springer Nature, terms of use apply. Rights reserved

774  |  Nature  |  Vol 632  |  22 August 2024

Article
27.	 Kumar, S., Marklund, H. & Van Roy, B. Maintaining plasticity in continual learning via

regenerative regularization. In Proc. 3rd Conference on Lifelong Learning Agents
(PMLR, 2024).

28.	 McCloskey, M. & Cohen, N. J. Catastrophic interference in connectionist networks: the
sequential learning problem. Psychol. Learn. Motiv. 24, 109–165 (1989).

29.	 French, R. M. Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3,
128–135 (1999).

30.	 Kirkpatrick, J. et al. Overcoming catastrophic forgetting in neural networks. Proc. Natl
Acad. Sci. 114, 3521–3526 (2017).

31.	 Selfridge, O. G. Pandemonium: a paradigm for learning. In Mechanization of Thought
Processes: Proceedings of a Symposium Held at the National Physical Laboratory 511–531
(Her Majesty’s Stationary Office, 1958).

32.	 Klopf, A. H. & Gose, E. An evolutionary pattern recognition network. IEEE Trans. Syst. Sci.
Cybern. 5, 247–250 (1969).

33.	 Holland, J. H. & Reitman, J. S. Cognitive systems based on adaptive algorithms. ACM
SIGART Bull. 63, 49–49 (1977).

34.	 Kaelbling, L. P. Learning in Embedded Systems (MIT Press, 1993).
35.	 Mahmood, A. R. & Sutton, R. S. Representation search through generate and test. In Proc.

AAAI Workshop: Learning Rich Representations from Low-Level Sensors 16–21 (2013).
36.	 Deng, J. et al. ImageNet: a large-scale hierarchical image database. In Proc. 2009 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) 248–255 (IEEE, 2009).
37.	 Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep

convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012).
38.	 He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc.

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 770–778 (2016).
39.	 Rebuffi, S.-A., Kolesnikov, A., Sperl, G. & Lampert, C. H. iCaRL: incremental classifier and

representation learning. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) 2001–2010 (2017).

40.	 Schulman, J., Wolski, F., Dhariwal, P., Radford, A. & Klimov, O. Proximal policy optimization
algorithms. Preprint at https://arxiv.org/abs/1707.06347 (2017).

41.	 OpenAI et al. Dota 2 with large scale deep reinforcement learning. Preprint at https://
arxiv.org/abs/1912.06680 (2019).

42.	 Ouyang, L. et al. Training language models to follow instructions with human feedback.
Adv. Neural Inf. Process. Syst. 36, 27730–27744 (2022).

43.	 Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. In Proc. 3rd International
Conference on Learning Representations (eds Bengio, Y. & LeCun, Y.) (ICLR, 2015).

44.	 Campbell, D. T. Blind variation and selective survival as a general strategy in
knowledge-processes. Psychol. Rev. 67, 380–400 (1960).

45.	 Thorndike, E. L. Animal Intelligence (Macmillan, 1911).
46.	 Dennett, D. C. Why the law of effect will not go away. J. Theory Soc. Behav. 5, 169–187

(1975).
47.	 Holland, J. H. Adaptation in Natural and Artificial Systems (MIT Press, 1992).
48.	 Kashyap, R., Blaydon, C. & Fu, K. in Adaptive, Learning and Pattern Recognition Systems:

Theory and Applications (eds Mendel, J. & Fu, K.) 329–355 (Elsevier, 1970).
49.	 Powell, M. J. D. Restart procedures for the conjugate gradient method. Math. Program. 12,

241–254 (1977).
50.	 Stanley, K. O. & Miikkulainen, R. Evolving neural networks through augmenting

topologies. Evol. Comput. 10, 99–127 (2002).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution
4.0 International License, which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

Content courtesy of Springer Nature, terms of use apply. Rights reserved

Methods

Specifics of continual backpropagation
Continual backpropagation selectively reinitializes low-utility units
in the network. Our utility measure, called the contribution utility, is
defined for each connection or weight and each unit. The basic intuition
behind the contribution utility is that the magnitude of the product of
units’ activation and outgoing weight gives information about how valu-
able this connection is to its consumers. If the contribution of a hidden
unit to its consumer is small, its contribution can be overwhelmed by
contributions from other hidden units. In such a case, the hidden unit
is not useful to its consumer. We define the contribution utility of a hid-
den unit as the sum of the utilities of all its outgoing connections. The
contribution utility is measured as a running average of instantaneous
contributions with a decay rate, η, which is set to 0.99 in all experiments.
In a feed-forward neural network, the contribution utility, ul[i], of the
ith hidden unit in layer l at time t is updated as

∑i η i η[] = × [] + (1 −) × × , (1)l l l i t
k

n

l i k t, ,
=1

, , ,

l+1

u u h w∣ ∣ ∣ ∣

in which hl,i,t is the output of the ith hidden unit in layer l at time t, wl,i,k,t
is the weight connecting the ith unit in layer l to the kth unit in layer l + 1
at time t and nl+1 is the number of units in layer l + 1.

When a hidden unit is reinitialized, its outgoing weights are initial-
ized to zero. Initializing the outgoing weights as zero ensures that the
newly added hidden units do not affect the already learned function.
However, initializing the outgoing weight to zero makes the new unit
vulnerable to immediate reinitialization, as it has zero utility. To protect
new units from immediate reinitialization, they are protected from a
reinitialization for maturity threshold m number of updates. We call
a unit mature if its age is more than m. Every step, a fraction of mature
units ρ, called the replacement rate, is reinitialized in every layer.

The replacement rate ρ is typically set to a very small value, meaning
that only one unit is replaced after hundreds of updates. For example,
in class-incremental CIFAR-100 (Fig. 2) we used continual backpropa-
gation with a replacement rate of 10−5. The last layer of the network in
that problem had 512 units. At each step, roughly 512 × 10−5 = 0.00512
units are replaced. This corresponds to roughly one replacement after
every 1/0.00512 ≈ 200 updates or one replacement after every eight
epochs on the first five classes.

The final algorithm combines conventional backpropagation with
selective reinitialization to continually inject random units from the
initial distribution. Continual backpropagation performs a gradient
descent and selective reinitialization step at each update. Algorithm 1
specifies continual backpropagation for a feed-forward neural network.
In cases in which the learning system uses mini-batches, the instantane-
ous contribution utility can be used by averaging the utility over the
mini-batch instead of keeping a running average to save computation
(see Extended Data Fig. 5d for an example). Continual backpropagation
overcomes the limitation of previous work34,35 on selective reinitializa-
tion and makes it compatible with modern deep learning.

Algorithm 1. Continual backpropagation for a feed-forward
network with L layers

Set replacement rate ρ, decay rate η and maturity threshold m
Initialize the weights w0,…, wL−1, in which wl is sampled from distri-

bution dl

Initialize utilities u1,…, uL−1, number of units to replace c1,…, cL−1, and
ages a1,…, aL−1 to 0

For each input xt do
Forward pass: pass xt through the network to get the prediction yt



Evaluate: receive loss l(,)t tx y
Backward pass: update the weights using SGD or one of its variants
For layer l in 1: L − 1 do

Update age: al = al + 1
Update unit utility: see equation (1)
Find eligible units: neligible = number of units with age greater than m
Update number of units to replace: cl = cl + neligible × ρ
If cl > 1
Find the unit with smallest utility and record its index as r
Reinitialize input weights: resample wl−1[:,r] from distribution dl

Reinitialize output weights: set wl[r,:] to 0
Reinitialize utility and age: set ul[r] = 0 and al[r] = 0
Update number of units to replace: cl = cl − 1
End For
End For

Details of Continual ImageNet
The ImageNet database we used consists of 1,000 classes, each of 700
images. The 700 images for each class were divided into 600 images for
a training set and 100 images for a test set. On each binary classification
task, the deep-learning network was first trained on the training set of
1,200 images and then its classification accuracy was measured on the
test set of 200 images. The training consisted of several passes through
the training set, called epochs. For each task, all learning algorithms
performed 250 passes through the training set using mini-batches
of size 100. All tasks used the downsampled 32 × 32 version of the
ImageNet dataset, as is often done to save computation51.

All algorithms on Continual ImageNet used a convolutional network.
The network had three convolutional-plus-max-pooling layers, fol-
lowed by three fully connected layers, as detailed in Extended Data
Table 3. The final layer consisted of just two units, the heads, corre-
sponding to the two classes. At task changes, the input weights of the
heads were reset to zero. Resetting the heads in this way can be viewed
as introducing new heads for the new tasks. This resetting of the out-
put weights is not ideal for studying plasticity, as the learning system
gets access to privileged information on the timing of task changes
(and we do not use it in other experiments in this paper). We use it here
because it is the standard practice in deep continual learning for this
type of problem in which the learning system has to learn a sequence
of independent tasks52.

In this problem, we reset the head of the network at the beginning
of each task. It means that, for a linear network, the whole network is
reset. That is why the performance of a linear network will not degrade
in Continual ImageNet. As the linear network is a baseline, having a
low-variance estimate of its performance is desirable. The value of
this baseline is obtained by averaging over thousands of tasks. This
averaging gives us a much better estimate of its performance than
other networks.

The network was trained using SGD with momentum on the
cross-entropy loss and initialized once before the first task. The momen-
tum hyperparameter was 0.9. We tested various step-size parameters
for backpropagation but only presented the performance for step sizes
0.01, 0.001 and 0.0001 for clarity of Fig. 1b. We performed 30 runs for
each hyperparameter value, varying the sequence of tasks and other
randomness. Across different hyperparameters and algorithms, the
same sequences of pairs of classes were used.

We now describe the hyperparameter selection for L2 regularization,
Shrink and Perturb and continual backpropagation. The main text
presents the results for these algorithms on Continual ImageNet in
Fig. 1c. We performed a grid search for all algorithms to find the set of
hyperparameters that had the highest average classification accuracy
over 5,000 tasks. The values of hyperparameters used for the grid
search are described in Extended Data Table 2. L2 regularization has
two hyperparameters, step size and weight decay. Shrink and Perturb
has three hyperparameters, step size, weight decay and noise variance.
We swept over two hyperparameters of continual backpropagation:
step size and replacement rate. The maturity threshold in continual
backpropagation was set to 100. For both backpropagation and L2

Content courtesy of Springer Nature, terms of use apply. Rights reserved

Article
regularization, the performance was poor for step sizes of 0.1 or 0.003.
We chose to only use step sizes of 0.03 and 0.01 for continual back-
propagation and Shrink and Perturb. We performed ten independ-
ent runs for all sets of hyperparameters. Then we performed another
20 runs to complete 30 runs for the best-performing set of hyperpa-
rameters to produce the results in Fig. 1c.

Class-incremental CIFAR-100
In the class-incremental CIFAR-100, the learning system gets access to
more and more classes over time. Classes are provided to the learning
system in increments of five. First, it has access to just five classes, then
ten and so on, until it gets access to all 100 classes. The learning system
is evaluated on the basis of how well it can discriminate between all the
available classes at present. The dataset consists of 100 classes with
600 images each. The 600 images for each class were divided into
450 images to create a training set, 50 for a validation set and 100 for
a test set. Note that the network is trained on all data from all classes
available at present. First, it is trained on data from just five classes,
then from all ten classes and so on, until finally, it is trained from data
from all 100 classes simultaneously.

After each increment, the network was trained for 200 epochs, for
a total of 4,000 epochs for all 20 increments. We used a learning-rate
schedule that resets at the start of each increment. For the first 60
epochs of each increment, the learning rate was set to 0.1, then to
0.02 for the next 60 epochs, then 0.004 for the next 40 epochs and
to 0.0008 for the last 40 epochs; we used the initial learning rate and
learning-rate schedule reported in ref. 53. During the 200 epochs of
training for each increment, we kept track of the network with the best
accuracy on the validation set. To prevent overfitting, at the start of
each new increment, we reset the weights of the network to the weights
of the best-performing (on the validation set) network found during
the previous increment; this is equivalent to early stopping for each
different increment.

We used an 18-layer deep residual network38 for all experiments on
class-incremental CIFAR-100. The network architecture is described in
detail in Extended Data Table 1. The weights of convolutional and linear
layers were initialized using Kaiming initialization54, the weights for
the batch-norm layers were initialized to one and all of the bias terms
in the network were initialized to zero. Each time five new classes were
made available to the network, five more output units were added to
the final layer of the network. The weights and biases of these output
units were initialized using the same initialization scheme. The weights
of the network were optimized using SGD with a momentum of 0.9, a
weight decay of 0.0005 and a mini-batch size of 90.

We used several steps of data preprocessing before the images were
presented to the network. First, the value of all the pixels in each image
was rescaled between 0 and 1 through division by 255. Then, each pixel
in each channel was centred and rescaled by the average and stand-
ard deviation of the pixel values of each channel, respectively. Finally,
we applied three random data transformations to each image before
feeding it to the network: randomly horizontally flip the image with
a probability of 0.5, randomly crop the image by padding the image
with 4 pixels on each side and randomly cropping to the original size,
and randomly rotate the image between 0 and 15°. The first two steps
of preprocessing were applied to the training, validation and test sets,
but the random transformations were only applied to the images in
the training set.

We tested several hyperparameters to ensure the best performance
for each different algorithm with our specific architecture. For the
base system, we tested values for the weight decay parameter in
{0.005, 0.0005, 0.00005}. A weight-decay value of 0.0005 resulted
in the best performance in terms of area under the curve for accuracy
on the test set over the 20 increments. For Shrink and Perturb, we used
the weight-decay value of the base system and tested values for the
standard deviation of the Gaussian noise in {10−4, 10−5, 10−6}; 10−5 resulted

in the best performance. For continual backpropagation, we tested
values for the maturity threshold in {1,000, 10,000} and for the replace-
ment rate in {10−4, 10−5, 10−6} using the contribution utility described in
equation (1). A maturity threshold of 1,000 and a replacement rate of
10−5 resulted in the best performance. Finally, for the head-resetting
baseline, in Extended Data Fig. 1a, we used the same hyperparameters
as for the base system, but the output layer was reinitialized at the start
of each increment.

In Fig. 2d, we plot the stable rank of the representation in the penul-
timate layer of the network and the percentage of dead units in the full
network. For a matrix ∈ n m×RΦ with singular values σk sorted in
descending order for k = 1, 2,…, q and q = max(n, m), the stable rank55

is { }kmin : > 0.99
σ

σ

Σ

Σ
i

j

i
k

j
q .

For reference, we also implemented a network with the same hyper-
parameters as the base system but that was reinitialized at the beginning
of each increment. Figure 2b shows the performance of each algo-
rithm relative to the performance of the reinitialized network. For
completeness, Extended Data Fig. 1a shows the test accuracy of each
algorithm in each different increment. The final accuracy of continual
backpropagation on all 100 classes was 76.13%, whereas Extended Data
Fig. 1b shows the performance of continual backpropagation for dif-
ferent replacement rates with a maturity threshold of 1,000. For all
algorithms that we tested, there was no correlation between when a
class was presented and the accuracy of that class, implying that the
temporal order of classes did not affect performance.

Robust loss of plasticity in permuted MNIST
We now use a computationally cheap problem based on the MNIST
dataset56 to test the generality of loss of plasticity across various condi-
tions. MNIST is one of the most common supervised-learning datasets
used in deep learning. It consists of 60,000, 28 × 28, greyscale images
of handwritten digits from 0 to 9, together with their correct labels. For
example, the left image in Extended Data Fig. 3a shows an image that is
labelled by the digit 7. The smaller number of classes and the simpler
images enable much smaller networks to perform well on this dataset
than are needed on ImageNet or CIFAR-100. The smaller networks in
turn mean that much less computation is needed to perform the experi-
ments and thus experiments can be performed in greater quantities
and under a variety of different conditions, enabling us to perform
deeper and more extensive studies of plasticity.

We created a continual supervised-learning problem using permuted
MNIST datasets57,58. An individual permuted MNIST dataset is created by
permuting the pixels in the original MNIST dataset. The right image in
Extended Data Fig. 3a is an example of such a permuted image. Given a
way of permuting, all 60,000 images are permuted in the same way to
produce the new permuted MNIST dataset. Furthermore, we normal-
ized pixel values between 0 and 1 by dividing by 255.

By repeatedly randomly selecting from the approximately 101930
possible permutations, we created a sequence of 800 permuted MNIST
datasets and supervised-learning tasks. For each task, we presented
each of its 60,000 images one by one in random order to the learn-
ing network. Then we moved to the next permuted MNIST task and
repeated the whole procedure, and so on for up to 800 tasks. No indi-
cation was given to the network at the time of task switching. With
the pixels being permuted in a completely unrelated way, we might
expect classification performance to fall substantially at the time of
each task switch. Nevertheless, across tasks, there could be some sav-
ings, some improvement in speed of learning or, alternatively, there
could be loss of plasticity—loss of the ability to learn across tasks.
The network was trained on a single pass through the data and there
were no mini-batches. We call this problem Online Permuted MNIST.

We applied feed-forward neural networks with three hidden lay-
ers to Online Permuted MNIST. We did not use convolutional layers,
as they could not be helpful on the permuted problem because the

Content courtesy of Springer Nature, terms of use apply. Rights reserved

spatial information is lost; in MNIST, convolutional layers are often
not used even on the standard, non-permuted problem. For each
example, the network estimated the probabilities of each of the tem
classes, compared them to the correct label and performed SGD on the
cross-entropy loss. As a measure of online performance, we recorded
the percentage of times the network correctly classified each of the
60,000 images in the task. We plot this per-task performance measure
versus task number in Extended Data Fig. 3b. The weights were initial-
ized according to a Kaiming distribution.

The left panel of Extended Data Fig. 3b shows the progression of
online performance across tasks for a network with 2,000 units per
layer and various values of the step-size parameter. Note that that
performance first increased across tasks, then began falling steadily
across all subsequent tasks. This drop in performance means that the
network is slowly losing the ability to learn from new tasks. This loss
of plasticity is consistent with the loss of plasticity that we observed
in ImageNet and CIFAR-100.

Next, we varied the network size. Instead of 2,000 units per layer, we
tried 100, 1,000 and 10,000 units per layer. We ran this experiment for
only 150 tasks, primarily because the largest network took much longer
to run. The performances at good step sizes for each network size are
shown in the middle panel of Extended Data Fig. 3b. Loss of plasticity
with continued training is most pronounced at the smaller network
sizes, but even the largest networks show some loss of plasticity.

Next, we studied the effect of the rate at which the task changed.
Going back to the original network with 2,000-unit layers, instead
of changing the permutation after each 60,000 examples, we now
changed it after each 10,000, 100,000 or 1 million examples and ran
for 48 million examples in total no matter how often the task changed.
The examples in these cases were selected randomly with replacement
for each task. As a performance measure of the network on a task, we
used the percentage correct over all of the images in the task. The pro-
gression of performance is shown in the right panel in Extended Data
Fig. 3b. Again, performance fell across tasks, even if the change was
very infrequent. Altogether, these results show that the phenomenon
of loss of plasticity robustly arises in this form of backpropagation. Loss
of plasticity happens for a wide range of step sizes, rates of distribu-
tion change and for both underparameterized and overparameterized
networks.

Loss of plasticity with different activations in the
Slowly-Changing Regression problem
There remains the issue of the network’s activation function. In our
experiments so far, we have used ReLU, the most popular choice at pre-
sent, but there are several other possibilities. For these experiments, we
switched to an even smaller, more idealized problem. Slowly-Changing
Regression is a computationally inexpensive problem in which we can
run a single experiment on a CPU core in 15 min, allowing us to perform
extensive studies. As its name suggests, this problem is a regression
problem—meaning that the labels are real numbers, with a squared
loss, rather than nominal values with a cross-entropy loss—and the
non-stationarity is slow and continual rather than abrupt, as in a switch
from one task to another. In Slowly-Changing Regression, we study
loss of plasticity for networks with six popular activation functions:
sigmoid, tanh, ELU59, leaky ReLU60, ReLU61 and Swish62.

In Slowly-Changing Regression, the learner receives a sequence of
examples. The input for each example is a binary vector of size m + 1.
The input has f slow-changing bits, m − f random bits and then one
constant bit. The first f bits in the input vector change slowly. After
every T examples, one of the first f bits is chosen uniformly at random
and its value is flipped. These first f bits remain fixed for the next T
examples. The parameter T allows us to control the rate at which the
input distribution changes. The next m − f bits are randomly sampled
for each example. Last, the (m + 1)th bit is a bias term with a constant
value of one.

The target output is generated by running the input vector through
a neural network, which is set at the start of the experiment and kept
fixed. As this network generates the target output and represents the
desired solution, we call it the target network. The weights of the target
networks are randomly chosen to be +1 or −1. The target network has one
hidden layer with the linear threshold unit (LTU) activation. The value
of the ith LTU is one if the input is above a threshold θi and 0 otherwise.
The threshold θi is set to be equal to (m + 1) × β − Si, in which β ∈ [0, 1]
and Si is the number of input weights with negative value63. The details
of the input and target function in the Slowly-Changing Regression
problem are also described in Extended Data Fig. 2a.

The details of the specific instance of the Slowly-Changing Regression
problem we use in this paper and the learning network used to predict
its output are listed in Extended Data Table 4. Note that the target net-
work is more complex than the learning network, as the target network
is wider, with 100 hidden units, whereas the learner has just five hidden
units. Thus, because the input distribution changes every T example
and the target function is more complex than what the learner can
represent, there is a need to track the best approximation.

We applied learning networks with different activation functions to
the Slowly-Changing Regression. The learner used the backpropagation
algorithm to learn the weights of the network. We used a uniform Kaim-
ing distribution54 to initialize the weights of the learning network. The

distribution is U(−b, b) with bound, b = gain × 3
num_inputs

, in which gain

is chosen such that the magnitude of inputs does not change across
layers. For tanh, sigmoid, ReLU and leaky ReLU, the gain is 5/3, 1, 2

and α2/(1 +)2 , respectively. For ELU and Swish, we used gain = 2, as
was done in the original papers59,62.

We ran the experiment on the Slowly-Changing Regression problem
for 3 million examples. For each activation and value of step size, we
performed 100 independent runs. First, we generated 100 sequences
of examples (input–output pairs) for the 100 runs. Then these 100
sequences of examples were used for experiments with all activations
and values of the step-size parameter. We used the same sequence of
examples to control the randomness in the data stream across activa-
tions and step sizes.

The results of the experiments are shown in Extended Data Fig. 2b.
We measured the squared error, that is, the square of the difference
between the true target and the prediction made by the learning net-
work. In Extended Data Fig. 2b, the squared error is presented in bins
of 40,000 examples. This means that the first data point is the average
squared error on the first 40,000 examples, the next is the average
squared error on the next 40,000 examples and so on. The shaded
region in the figure shows the standard error of the binned error.

Extended Data Fig. 2b shows that, in Slowly-Changing Regression,
after performing well initially, the error increases for all step sizes
and activations. For some activations such as ReLU and tanh, loss of
plasticity is severe, and the error increases to the level of the linear
baseline. Although for other activations such as ELU loss of plasticity is
less severe, there is still a notable loss of plasticity. These results mean
that loss of plasticity is not resolved by using commonly used activa-
tions. The results in this section complement the results in the rest of
the article and add to the generality of loss of plasticity in deep learning.

Understanding loss of plasticity
We now turn our attention to understanding why backpropagation
loses plasticity in continual-learning problems. The only difference
in the learner over time is the network weights. In the beginning, the
weights were small random numbers, as they were sampled from the
initial distribution; however, after learning some tasks, the weights
became optimized for the most recent task. Thus, the starting weights
for the next task are qualitatively different from those for the first task.
As this difference in the weights is the only difference in the learning
algorithm over time, the initial weight distribution must have some

Content courtesy of Springer Nature, terms of use apply. Rights reserved

Article
unique properties that make backpropagation plastic in the begin-
ning. The initial random distribution might have many properties that
enable plasticity, such as the diversity of units, non-saturated units,
small weight magnitude etc.

As we now demonstrate, many advantages of the initial distribution
are lost concurrently with loss of plasticity. The loss of each of these
advantages partially explains the degradation in performance that we
have observed. We then provide arguments for how the loss of these
advantages could contribute to loss of plasticity and measures that
quantify the prevalence of each phenomenon. We provide an in-depth
study of the Online Permuted MNIST problem that will serve as motiva-
tion for several solution methods that could mitigate loss of plasticity.

The first noticeable phenomenon that occurs concurrently with the
loss of plasticity is the continual increase in the fraction of constant
units. When a unit becomes constant, the gradients flowing back from
the unit become zero or very close to zero. Zero gradients mean that
the weights coming into the unit do not change, which means that this
unit loses all of its plasticity. In the case of ReLU activations, this occurs
when the output of the activations is zero for all examples of the task;
such units are often said to be dead64,65. In the case of the sigmoidal
activation functions, this phenomenon occurs when the output of a
unit is too close to either of the extreme values of the activation func-
tion; such units are often said to be saturated66,67.

To measure the number of dead units in a network with ReLU activa-
tion, we count the number of units with a value of zero for all examples
in a random sample of 2,000 images at the beginning of each new task.
An analogous measure in the case of sigmoidal activations is the num-
ber of units that are ϵ away from either of the extreme values of the
function for some small positive ϵ (ref. 68). We only focus on ReLU
networks in this section.

In our experiments on the Online Permuted MNIST problem, the
deterioration of online performance is accompanied by a large increase
in the number of dead units (left panel of Extended Data Fig. 3c). For
the step size of 0.01, up to 25% of units die after 800 tasks. In the per-
muted MNIST problem, in which all inputs are positive because they
are normalized between 0 and 1, once a unit in the first layer dies, it
stays dead forever. Thus, an increase in dead units directly decreases
the total capacity of the network. In the next section, we will see that
methods that stop the units from dying can substantially reduce loss of
plasticity. This further supports the idea that the increase in dead units
is one of the causes of loss of plasticity in backpropagation.

Another phenomenon that occurs with loss of plasticity is the steady
growth of the network’s average weight magnitude. We measure the
average magnitude of the weights by adding up their absolute values
and dividing by the total number of weights in the network. In the per-
muted MNIST experiment, the degradation of online classification
accuracy of backpropagation observed in Extended Data Fig. 3b is asso-
ciated with an increase in the average magnitude of the weights (centre
panel of Extended Data Fig. 3c). The growth of the magnitude of the
weights of the network can represent a problem because large weight
magnitudes are often associated with slower learning. The weights of
a neural network are directly linked to the condition number of the
Hessian matrix in the second-order Taylor approximation of the loss
function. The condition number of the Hessian is known to affect the
speed of convergence of SGD algorithms (see ref. 69 for an illustration
of this phenomenon in convex optimization). Consequently, the growth
in the magnitude of the weights could lead to an ill-conditioned Hessian
matrix, resulting in a slower convergence.

The last phenomenon that occurs with the loss of plasticity is the
drop in the effective rank of the representation. Similar to the rank of
a matrix, which represents the number of linearly independent dimen-
sions, the effective rank takes into consideration how each dimension
influences the transformation induced by a matrix70. A high effective
rank indicates that most of the dimensions of the matrix contribute
similarly to the transformation induced by the matrix. On the other

hand, a low effective rank corresponds to most dimensions having no
notable effect on the transformation, implying that the information
in most of the dimensions is close to being redundant.

Formally, consider a matrix Φ ∈ n m×R with singular values σk for
k = 1, 2,…, q, and q = max(n, m). Let pk = σk/∥σ∥1, in which σ is the vector
containing all the singular values and ∥⋅∥1 is the ℓ1 norm. The effective
rank of matrix Φ, or erank(Φ), is defined as

Φ

∑

H p p p

H p p p p p

erank() =̇ exp{ (, , . . . ,)},

in which (, , . . . ,) = − log().
(2)

q

q
k

q

k k

1 2

1 2
=1

Note that the effective rank is a continuous measure that ranges
between one and the rank of matrix Φ.

In the case of neural networks, the effective rank of a hidden layer
measures the number of units that can produce the output of the layer.
If a hidden layer has a low effective rank, then a small number of units
can produce the output of the layer, meaning that many of the units in
the hidden layer are not providing any useful information. We approxi-
mate the effective rank on a random sample of 2,000 examples before
training on each task.

In our experiments, loss of plasticity is accompanied by a decrease
in the average effective rank of the network (right panel of Extended
Data Fig. 3c). This phenomenon in itself is not necessarily a problem.
After all, it has been shown that gradient-based optimization seems
to favour low-rank solutions through implicit regularization of the
loss function or implicit minimization of the rank itself71,72. However,
a low-rank solution might be a bad starting point for learning from
new observations because most of the hidden units provide little to
no information.

The decrease in effective rank could explain the loss of plasticity
in our experiments in the following way. After each task, the learning
algorithm finds a low-rank solution for the current task, which then
serves as the initialization for the next task. As the process continues,
the effective rank of the representation layer keeps decreasing after
each task, limiting the number of solutions that the network can rep-
resent immediately at the start of each new task.

In this section, we looked deeper at the networks that lost plasticity
in the Online Permuted MNIST problem. We noted that the only differ-
ence in the learning algorithm over time is the weights of the network,
which means that the initial weight distribution has some properties
that allowed the learning algorithm to be plastic in the beginning. And
as learning progressed, the weights of the network moved away from
the initial distribution and the algorithm started to lose plasticity. We
found that loss of plasticity is correlated with an increase in weight
magnitude, a decrease in the effective rank of the representation and an
increase in the fraction of dead units. Each of these correlates partially
explains loss of plasticity faced by backpropagation.

Existing deep-learning methods for mitigating loss of plasticity
We now investigate several existing methods and test how they affect
loss of plasticity. We study five existing methods: L2 regularization73,
Dropout74, online normalization75, Shrink and Perturb11 and Adam43. We
chose L2 regularization, Dropout, normalization and Adam because
these methods are commonly used in deep-learning practice. Although
Shrink and Perturb is not a commonly used method, we chose it because
it reduces the failure of pretraining, a problem that is an instance of loss
of plasticity. To assess if these methods can mitigate loss of plasticity,
we tested them on the Online Permuted MNIST problem using the same
network architecture we used in the previous section, ‘Understanding
loss of plasticity’. Similar to the previous section, we measure the online
classification accuracy on all 60,000 examples of the task. All the algo-
rithms used a step size of 0.003, which was the best-performing step
size for backpropagation in the left panel of Extended Data Fig. 3b. We
also use the three correlates of loss of plasticity found in the previous

Content courtesy of Springer Nature, terms of use apply. Rights reserved

section to get a deeper understanding of the performance of these
methods.

An intuitive way to address loss of plasticity is to use weight regu-
larization, as loss of plasticity is associated with a growth of weight
magnitudes, shown in the previous section. We used L2 regulariza-
tion, which adds a penalty to the loss function proportional to the ℓ2
norm of the weights of the network. The L2 regularization penalty
incentivizes SGD to find solutions that have a low weight magnitude.
This introduces a hyperparameter λ that modulates the contribution
of the penalty term.

The purple line in the left panel of Extended Data Fig. 4a shows the
performance of L2 regularization on the Online Permuted MNIST
problem. The purple lines in the other panels of Extended Data Fig. 4a
show the evolution of the three correlates of loss of plasticity with
L2 regularization. For L2 regularization, the weight magnitude does
not continually increase. Moreover, as expected, the non-increasing
weight magnitude is associated with lower loss of plasticity. However,
L2 regularization does not fully mitigate loss of plasticity. The other two
correlates for loss of plasticity explain this, as the percentage of dead
units kept increasing and the effective rank kept decreasing. Finally,
Extended Data Fig. 4b shows the performance of L2 regularization for
different values of λ. The regularization parameter λ controlled the
peak of the performance and how quickly it decreased.

A method related to weight regularization is Shrink and Perturb11.
As the name suggests, Shrink and Perturb performs two operations; it
shrinks all the weights and then adds random Gaussian noise to these
weights. The introduction of noise introduces another hyperparam-
eter, the standard deviation of the noise. Owing to the shrinking part
of Shrink and Perturb, the algorithm favours solutions with smaller
average weight magnitude than backpropagation. Moreover, the
added noise prevents units from dying because it adds a non-zero
probability that a dead unit will become active again. If Shrink and
Perturb mitigates these correlates to loss of plasticity, it could reduce
loss of plasticity.

The performance of Shrink and Perturb is shown in orange in
Extended Data Fig. 4. Similar to L2 regularization, Shrink and Perturb
stops the weight magnitude from continually increasing. Moreover,
it also reduces the percentage of dead units. However, it has a lower
effective rank than backpropagation, but still higher than that of L2
regularization. Not only does Shrink and Perturb have a lower loss of
plasticity than backpropagation but it almost completely mitigates loss
of plasticity in Online Permuted MNIST. However, Shrink and Perturb
was sensitive to the standard deviation of the noise. If the noise was
too high, loss of plasticity was much more severe, and if it was too low,
it did not have any effect.

An important technique in modern deep learning is called Dropout74.
Dropout randomly sets each hidden unit to zero with a small probabil-
ity, which is a hyperparameter of the algorithm. The performance of
Dropout is shown in pink in Extended Data Fig. 4.

Dropout showed similar measures of percentage of dead units,
weight magnitude and effective rank as backpropagation, but, sur-
prisingly, showed higher loss of plasticity. The poor performance of
Dropout is not explained by our three correlates of loss of plasticity,
which means that there are other possible causes of loss of plasticity.
A thorough investigation of Dropout is beyond the scope of this paper,
though it would be an interesting direction for future work. We found
that a higher Dropout probability corresponded to a faster and sharper
drop in performance. Dropout with probability of 0.03 performed the
best and its performance was almost identical to that of backpropa-
gation. However, Extended Data Fig. 4a shows the performance for
a Dropout probability of 0.1 because it is more representative of the
values used in practice.

Another commonly used technique in deep learning is batch normali-
zation76. In batch normalization, the output of each hidden layer is nor-
malized and rescaled using statistics computed from each mini-batch

of data. We decided to include batch normalization in this investigation
because it is a popular technique often used in practice. Because batch
normalization is not amenable to the online setting used in the Online
Permuted MNIST problem, we used online normalization77 instead, an
online variant of batch normalization. Online normalization introduces
two hyperparameters used for the incremental estimation of the sta-
tistics in the normalization steps.

The performance of online normalization is shown in green in
Extended Data Fig. 4. Online normalization had fewer dead units and
a higher effective rank than backpropagation in the earlier tasks, but
both measures deteriorated over time. In the later tasks, the network
trained using online normalization has a higher percentage of dead
units and a lower effective rank than the network trained using back-
propagation. The online classification accuracy is consistent with
these results. Initially, it has better classification accuracy, but later,
its classification accuracy becomes lower than that of backpropaga-
tion. For online normalization, the hyperparameters changed when
the performance of the method peaked, and it also slightly changed
how fast it got to its peak performance.

No assessment of alternative methods can be complete without
Adam43, as it is considered one of the most useful tools in modern deep
learning. The Adam optimizer is a variant of SGD that uses an estimate
of the first moment of the gradient scaled inversely by an estimate of
the second moment of the gradient to update the weights instead of
directly using the gradient. Because of its widespread use and success
in both supervised and reinforcement learning, we decided to include
Adam in this investigation to see how it would affect the plasticity of
deep neural networks. Adam has two hyperparameters that are used
for computing the moving averages of the first and second moments
of the gradient. We used the default values of these hyperparameters
proposed in the original paper and tuned the step-size parameter.

The performance of Adam is shown in cyan in Extended Data Fig. 4.
Adam’s loss of plasticity can be categorized as catastrophic, as it reduces
substantially. Consistent with our previous results, Adam scores poorly
in the three measures corresponding to the correlates of loss of plas-
ticity. Adam had an early increase in the percentage of dead units that
plateaus at around 60%, similar weight magnitude as backpropagation
and a large drop in the effective rank early during training. We also
tested Adam with different activation functions on the Slowly-Changing
Regression and found that loss of plasticity with Adam is usually worse
than with SGD.

Many of the standard methods substantially worsened loss of plastic-
ity. The effect of Adam on the plasticity of the networks was particularly
notable. Networks trained with Adam quickly lost almost all of their
diversity, as measured by the effective rank, and gained a large percent-
age of dead units. This marked loss of plasticity of Adam is an important
result for deep reinforcement learning, for which Adam is the default
optimizer78, and reinforcement learning is inherently continual owing
to the ever-changing policy. Similar to Adam, other commonly used
methods such as Dropout and normalization worsened loss of plastic-
ity. Normalization had better performance in the beginning, but later
it had a sharper drop in performance than backpropagation. In the
experiment, Dropout simply made the performance worse. We saw
that the higher the Dropout probability, the larger the loss of plastic-
ity. These results mean that some of the most successful tools in deep
learning do not work well in continual learning, and we need to focus
on directly developing tools for continual learning.

We did find some success in maintaining plasticity in deep neural
networks. L2 regularization and Shrink and Perturb reduce loss of plas-
ticity. Shrink and Perturb is particularly effective, as it almost entirely
mitigates loss of plasticity. However, both Shrink and Perturb and L2
regularization are slightly sensitive to hyperparameter values. Both
methods only reduce loss of plasticity for a small range of hyperpa-
rameters, whereas for other hyperparameter values, they make loss
of plasticity worse. This sensitivity to hyperparameters can limit the

Content courtesy of Springer Nature, terms of use apply. Rights reserved

Article
application of these methods to continual learning. Furthermore,
Shrink and Perturb does not fully resolve the three correlates of loss
of plasticity, it has a lower effective rank than backpropagation and it
still has a high fraction of dead units.

We also applied continual backpropagation on Online Permuted
MNIST. The replacement rate is the main hyperparameter in continual
backpropagation, as it controls how rapidly units are reinitialized in
the network. For example, a replacement rate of 10−6 for our network
with 2,000 hidden units in each layer would mean replacing one unit
in each layer after every 500 examples.

Blue lines in Extended Data Fig. 4 show the performance of continual
backpropagation. It has a non-degrading performance and is stable for
a wide range of replacement rates. Continual backpropagation also
mitigates all three correlates of loss of plasticity. It has almost no dead
units, stops the network weights from growing and maintains a high
effective rank across tasks. All algorithms that maintain a low weight
magnitude also reduced loss of plasticity. This supports our claim
that low weight magnitudes are important for maintaining plasticity.
The algorithms that maintain low weight magnitudes were continual
backpropagation, L2 regularization and Shrink and Perturb. Shrink and
Perturb and continual backpropagation have an extra advantage over
L2 regularization: they inject randomness into the network. This injec-
tion of randomness leads to a higher effective rank and lower number of
dead units, which leads to both of these algorithms performing better
than L2 regularization. However, continual backpropagation injects
randomness selectively, effectively removing all dead units from the
network and leading to a higher effective rank. This smaller number of
dead units and a higher effective rank explains the better performance
of continual backpropagation.

Details and further analysis in reinforcement learning
The experiments presented in the main text were conducted using the
Ant-v3 environment from OpenAI Gym79. We changed the coefficient
of friction by sampling it log-uniformly from the range [0.02, 2.00],
using a logarithm with base 10. The coefficient of friction changed at
the first episode boundary after 2 million time steps had passed since
the last change. We also tested Shrink and Perturb on this problem
and found that it did not provide a marked performance improvement
over L2 regularization. Two separate networks were used for the policy
and the value function, and both had two hidden layers with 256 units.
These networks were trained using Adam alongside PPO to update
the weights in the network. See Extended Data Table 5 for the values
of the other hyperparameters. In all of the plots showing results of
reinforcement-learning experiments, the shaded region represents
the 95% bootstrapped confidence80.

The reward signal in the ant problem consists of four components.
The main component rewards the agent for forward movement. It is
proportional to the distance moved by the ant in the positive x direc-
tion since the last time step. The second component has a value of 1 at
each time step. The third component penalizes the ant for taking large
actions. This component is proportional to the square of the magnitude
of the action. Finally, the last component penalizes the agent for large
external contact forces. It is proportional to the sum of external forces
(clipped in a range). The reward signal at each time step is the sum of
these four components.

We also evaluated PPO and its variants in two more environments:
Hopper-v3 and Walker-v3. The results for these experiments are pre-
sented in Extended Data Fig. 5a. The results mirrored those from Ant-v3;
standard PPO suffered from a notable degradation in performance, in
which its performance decreased substantially. However, this time, L2
regularization did not fix the issue in all cases; there was some perfor-
mance degradation with L2 in Walker-v3. PPO, with continual back-
propagation and L2 regularization, completely fixed the issue in all
environments. Note that the only difference between our experiments
and what is typically done in the literature is that we run the experiments

for longer. Typically, these experiments are only done for 3 million
steps, but we ran these experiments for up to 100 million steps.

PPO with L2 regularization only avoided degradation for a relatively
large value of weight decay, 10−3. This extreme regularization stops
the agent from finding better policies and stays stuck at a suboptimal
policy. There was large performance degradation for smaller values
of weight decay, and for larger values, the performance was always
low. When we used continual backpropagation and L2 regularization
together, we could use smaller values of weight decay. All the results
for PPO with continual backpropagation and L2 regularization have a
weight decay of 10−4, a replacement rate of 10−4 and a maturity threshold
of 104. We found that the performance of PPO with continual backpropa-
gation and L2 regularization was sensitive to the replacement rate but
not to the maturity threshold and weight decay.

PPO uses the Adam optimizer, which keeps running estimates of the
gradient and the squared of the gradient. These estimates require two
further parameters, called β1 and β2. The standard values of β1 and β2
are 0.9 and 0.999, respectively, which we refer to as standard Adam.
Lyle et al.24 showed that the standard values of β1 and β2 cause a large
loss of plasticity. This happens because of the mismatch in β1 and β2.
A sudden large gradient can cause a very large update, as a large value
of β2 means that the running estimate for the square of the gradient,
which is used in the denominator, is updated much more slowly than
the running estimate for the gradient, which is the numerator. This
loss of plasticity in Adam can be reduced by setting β1 equal to β2. In our
experiments, we set β1 and β2 to 0.99 and refer to it as tuned Adam/PPO.
In Extended Data Fig. 5c, we measure the largest total weight change
in the network during a single update cycle for bins of 1 million steps.
The first point in the plots shows the largest weight change in the first
1 million steps. The second point shows the largest weight change in
the second 1 second steps and so on. The figure shows that standard
Adam consistently causes very large updates to the weights, which
can destabilize learning, whereas tuned Adam with β1 = β2 = 0.99 has
substantially smaller updates, which leads to more stable learning.
In all of our experiments, all algorithms other than the standard PPO
used the tuned parameters for Adam (β1 = β2 = 0.99). The failure of
standard Adam with PPO is similar to the failure of standard Adam in
permuted MNIST.

In our next experiment, we perform a preliminary comparison
with ReDo25. ReDo is another selective reinitialization method that
builds on continual backpropagation but uses a different measure of
utility and strategy for reinitializing. We tested ReDo on Ant-v3, the
hardest of the three environments. ReDo requires two parameters: a
threshold and a reinitialization period. We tested ReDo for all combi-
nations of thresholds in {0.01, 0.03, 0.1} and reinitialization periods in
{10, 102, 103, 104, 105}; a threshold of 0.1 with a reinitialization period of
102 performed the best. The performance of PPO with ReDo is plotted
in Extended Data Fig. 5b. ReDo and continual backpropagation were
used with weight decay of 10−4 and β1 and β2 of 0.99. The figure shows
that PPO with ReDo and L2 regularization performs much better than
standard PPO. However, it still suffers from performance degradation
and its performance is worse than PPO with L2 regularization. Note that
this is only a preliminary comparison; we leave a full comparison and
analysis of both methods for future work.

The performance drop of PPO in stationary environments is a
nuanced phenomenon. Loss of plasticity and forgetting are both
responsible for the observed degradation in performance. The deg-
radation in performance implies that the agent forgot the good policy
it had once learned, whereas the inability of the agent to relearn a good
policy means it lost plasticity.

Loss of plasticity expresses itself in various forms in deep rein-
forcement learning. Some work found that deep reinforcement
learning systems can lose their generalization abilities in the pres-
ence of non-stationarities81. A reduction in the effective rank, similar
to the rank reduction in CIFAR-100, has been observed in some deep

Content courtesy of Springer Nature, terms of use apply. Rights reserved

reinforcement-learning algorithms82. Nikishin et al.18 showed that many
reinforcement-learning systems perform better if their network is
occasionally reset to its naive initial state, retaining only the replay
buffer. This is because the learning networks became worse than a reini-
tialized network at learning from new data. Recent work has improved
performance in many reinforcement-learning problems by applying
plasticity-preserving methods25,83–87. These works focused on deep
reinforcement learning systems that use large replay buffers. Our work
complements this line of research as we studied systems based on
PPO, which has much smaller replay buffers. Loss of plasticity is most
relevant for systems that use small or no replay buffers, as large buff-
ers can hide the effect of new data. Overcoming loss of plasticity is an
important step towards deep reinforcement-learning systems that can
learn from an online data stream.

Extended discussion
There are two main goals in continual learning: maintaining stability
and maintaining plasticity88–91. Maintaining stability is concerned with
memorizing useful information and maintaining plasticity is about find-
ing new useful information when the data distribution changes. Current
deep-learning methods struggle to maintain stability as they tend to
forget previously learned information28,29. Many papers have been
dedicated to maintaining stability in deep continual learning30,92–97.
We focused on continually finding useful information, not on remem-
bering useful information. Our work on loss of plasticity is different
but complementary to the work on maintaining stability. Continual
backpropagation in its current form does not tackle the forgetting
problem. Its current utility measure only considers the importance of
units for current data. One idea to tackle forgetting is to use a long-term
measure of utility that remembers which units were useful in the past.
Developing methods that maintain both stability and plasticity is an
important direction for future work.

There are many desirable properties for an efficient continual-
learning system98,99. It should be able to keep learning new things, con-
trol what it remembers and forgets, have good computational and
memory efficiency and use previous knowledge to speed up learning
on new data. The choice of the benchmark affects which property is
being focused on. Most benchmarks and evaluations in our paper only
focused on plasticity but not on other aspects, such as forgetting and
speed of learning. For example, in Continual ImageNet, previous tasks
are rarely repeated, which makes it effective for studying plasticity
but not forgetting. In permuted MNIST, consecutive tasks are largely
independent, which makes it suitable for studying plasticity in isolation.
However, this independence means that previous knowledge cannot
substantially speed up learning on new tasks. On the other hand, in
class-incremental CIFAR-100, previous knowledge can substantially
speed up learning of new classes. Overcoming loss of plasticity is an
important, but still the first, step towards the goal of fast learning on
future data100–102. Once we have networks that maintain plasticity, we
can develop methods that use previous knowledge to speed up learn-
ing on future data.

Loss of plasticity is a critical factor when learning continues for many
tasks, but it might be less important if learning happens for a small
number of tasks. Usually, the learning system can take advantage of pre-
vious learning in the first few tasks. For example, in class-incremental
CIFAR-100 (Fig. 2), the base deep-learning systems performed bet-
ter than the network trained from scratch for up to 40 classes. This
result is consistent with deep-learning applications in which the learn-
ing system is first trained on a large dataset and then fine-tuned on a
smaller, more relevant dataset. Plasticity-preserving methods such
as continual backpropagation may still improve performance in such
applications based on fine-turning, but we do not expect that improve-
ment to be large, as learning happens only for a small number of tasks.
We have observed that deep-learning systems gradually lose plastic-
ity, and this effect accumulates over tasks. Loss of plasticity becomes

an important factor when learning continues for a large number of
tasks; in class-incremental CIFAR-100, the performance of the base
deep-learning system was much worse after 100 classes.

We have made notable progress in understanding loss of plasticity.
However, it remains unclear which specific properties of initialization
with small random numbers are important for maintaining plasticity.
Recent work103,104 has made exciting progress in this direction and it
remains an important avenue for future work. The type of loss of plas-
ticity studied in this article is largely because of the loss of the ability
to optimize new objectives. This is different from the type of loss of
plasticity in which the system can keep optimizing new objectives but
lose the ability to generalize11,12. However, it is unclear if the two types
of plasticity loss are fundamentally different or if the same mechanism
can explain both phenomena. Future work that improves our under-
standing of plasticity and finds the underlying causes of both types of
plasticity loss will be valuable to the community.

Continual backpropagation uses a utility measure to find and replace
low-utility units. One limitation of continual backpropagation is that
the utility measure is based on heuristics. Although it performs well,
future work on more principled utility measures will improve the foun-
dations of continual backpropagation. Our current utility measure is
not a global measure of utility as it does not consider how a given unit
affects the overall represented function. One possibility is to develop
utility measures in which utility is propagated backwards from the loss
function. The idea of utility in continual backpropagation is closely
related to connection utility in the neural-network-pruning literature.
Various papers105–108 have proposed different measures of connec-
tion utility for the network-pruning problem. Adapting these utility
measures to mitigate loss of plasticity is a promising direction for new
algorithms and some recent work is already making progress in this
direction109.

The idea of selective reinitialization is similar to the emerging
idea of dynamic sparse training110–112. In dynamic sparse training, a
sparse network is trained from scratch and connections between
different units are generated and removed during training. Remov-
ing connections requires a measure of utility, and the initialization
of new connections requires a generator similar to selective reini-
tialization. The main difference between dynamic sparse training and
continual backpropagation is that dynamic sparse training operates
on connections between units, whereas continual backpropagation
operates on units. Consequently, the generator in dynamic sparse
training must also decide which new connections to grow. Dynamic
sparse training has achieved promising results in supervised and
reinforcement-learning problems113–115, in which dynamic sparse net-
works achieve performance close to dense networks even at high
sparsity levels. Dynamic sparse training is a promising idea that can
be useful to maintain plasticity.

The idea of adding new units to neural networks is present in the
continual-learning literature92,116,117. This idea is usually manifested
in algorithms that dynamically increase the size of the network. For
example, one method117 expands the network by allocating a new sub-
network whenever there is a new task. These methods do not have an
upper limit on memory requirements. Although these methods are
related to the ideas in continual backpropagation, none are suitable
for comparison, as continual backpropagation is designed for learning
systems with finite memory, which are well suited for lifelong learning.
And these methods would therefore require non-trivial modification
to apply to our setting of finite memory.

Previous works on the importance of initialization have focused
on finding the correct weight magnitude to initialize the weights. It
has been shown that it is essential to initialize the weights so that the
gradients do not become exponentially small in the initial layers of a
network and the gradient is preserved across layers54,66. Furthermore,
initialization with small weights is critical for sigmoid activations as
they may saturate if the weights are too large118. Despite all this work

Content courtesy of Springer Nature, terms of use apply. Rights reserved

Article
on the importance of initialization, the fact that its benefits are only
present initially but not continually has been overlooked, as these
papers focused on cases in which learning has to be done just once,
not continually.

Continual backpropagation selectively reinitializes low-utility units.
One common strategy to deal with non-stationary data streams is reini-
tializing the network entirely. In the Online Permuted MNIST experi-
ment, full reinitialization corresponds to a performance that stays at
the level of the first point (Extended Data Fig. 4a). In this case, continual
backpropagation outperforms full reinitialization as it takes advantage
of what it has previously learned to speed up learning on new data.
In ImageNet experiments, the final performance of continual back-
propagation is only slightly better than a fully reinitialized network (the
first point for backpropagation in left panel of Fig. 1b). However, Fig. 1
does not show how fast an algorithm reaches the final performance in
each task. We observed that continual backpropagation achieves the
best accuracy ten times faster than a fully reinitialized network on
the 5,000th task of Continual ImageNet, ten epochs versus about 125
epochs. Furthermore, continual backpropagation could be combined
with other methods that mitigate forgetting, which can further speed
up learning on new data. In reinforcement learning, full reinitialization
is only practical for systems with a large buffer. For systems that keep
a small or no buffer, such as those we studied, full reinitialization will
lead the agent to forget everything it has learned, and its performance
will be down to the starting point.

Loss of plasticity might also be connected to the lottery ticket hypoth-
esis119. The hypothesis states that randomly initialized networks contain
subnetworks that can achieve performance close to that of the original
network with a similar number of updates. These subnetworks are called
winning tickets. We found that, in continual-learning problems, the
effective rank of the representation at the beginning of tasks reduces
over time. In a sense, the network obtained after training on several
tasks has less randomness and diversity than the original random
network. The reduced randomness might mean that the network has
fewer winning tickets. And this reduced number of winning tickets
might explain loss of plasticity. Our understanding of loss of plasticity
could be deepened by fully exploring its connection with the lottery
ticket hypothesis.

Some recent works have focused on quickly adapting to the changes
in the data stream120–122. However, the problem settings in these papers
were offline as they had two separate phases, one for learning and the
other for evaluation. To use these methods online, they have to be
pretrained on tasks that represent tasks that the learner will encoun-
ter during the online evaluation phase. This requirement of having
access to representative tasks in the pretraining phase is not realistic
for lifelong learning systems as the real world is non-stationary, and
even the distribution of tasks can change over time. These methods
are not comparable with those we studied in our work, as we studied
fully online methods that do not require pretraining.

In this work, we found that methods that continually injected ran-
domness while maintaining small weight magnitudes greatly reduced
loss of plasticity. Many works have found that adding noise while train-
ing neural networks can improve training and testing performance.
The main benefits of adding noise have been reported to be avoid-
ing overfitting and improving training performance123–125. However, it
can be tricky to inject noise without degrading performance in some
cases126. In our case, when the data distribution is non-stationary, we
found that continually injecting noise along with L2 regularization
helps with maintaining plasticity in neural networks.

Data availability
All of the datasets and simulation environments used in this work are
publicly available. Other data needed to evaluate the conclusions in
the article are present in the article or the extended data.

Code availability
The code is available at https://github.com/shibhansh/loss-of-plasticity.

51.	 Chrabaszcz, P., Loshchilov, I. & Hutter, F. A downsampled variant of ImageNet as an
alternative to the CIFAR datasets. Preprint at https://arxiv.org/abs/1707.08819 (2017).

52.	 van de Ven, G. M., Tuytelaars, T. & Tolias, A. S. Three types of incremental learning. Nat.
Mach. Intell. 4, 1185–1197 (2022).

53.	 Weiaicunzai. pytorch-cifar100. GitHub https://github.com/weiaicunzai/pytorch-cifar100
(2022).

54.	 He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers: surpassing human-level
performance on ImageNet classification. In Proc. IEEE International Conference on
Computer Vision (ICCV) 1026–1034 (IEEE, 2015).

55.	 Yang, Y., Zhang, G., Xu, Z. & Katabi, D. Harnessing structures for value-based planning and
reinforcement learning. In Proc. 7th International Conference on Learning Representations
(ICLR, 2019).

56.	 Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document
recognition. Proc. IEEE 86, 2278–2324 (1998).

57.	 Goodfellow, I., Mirza, M., Xiao, D. & Aaron Courville, Y. B. An empirical investigation of
catastrophic forgeting in gradient-based neural networks. In Proc. 2nd International
Conference on Learning Representations (ICLR, 2014).

58.	 Zenke, F., Poole, B. & Ganguli, S. Continual learning through synaptic intelligence. In
Proc. 34th International Conference on Machine Learning 3987–3995 (PMLR, 2017).

59.	 Clevert, D., Unterthiner, T. & Hochreiter, S. Fast and accurate deep network learning by
exponential linear units (ELUs). In Proc. 4th International Conference on Learning
Representations (ICLR, 2016).

60.	 Maas, A. L., Hannun, A. Y. & Ng, A. Y. Rectifier nonlinearities improve neural network
acoustic models. In Proc. 30th International Conference on Machine Learning (eds
Dasgupta, S. & McAllester, D.) (JMLR, 2013).

61.	 Nair, V. & Hinton, G. E. Rectified linear units improve restricted Boltzmann machines. In
Proc. 27th International Conference on Machine Learning 807–814 (Omnipress, 2010).

62.	 Ramachandran, P., Zoph, B. & Le, Q. V. Searching for activation functions. In Proc. 6th
International Conference on Learning Representations (eds Murray, I., Ranzato, M. &
Vinyals, O.) (ICLR, 2018).

63.	 Sutton, R. S. & Whitehead, S. D. Online learning with random representations. In Proc.
10th International Conference on Machine Learning 314–321 (Elsevier, 1993).

64.	 Lu, L., Shin, Y., Su, Y. & Karniadakis, G. E. Dying ReLU and initialization: theory and
numerical examples. Commun. Computat. Phys. 28, 1671–1706 (2020).

65.	 Shin, Y. & Karniadakis, G. E. Trainability of ReLU networks and data-dependent
initialization. J. Mach. Learn. Model. Comput. 1, 39–74 (2020).

66.	 Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward neural
networks. In Proc. 13th International Conference on Artificial Intelligence and Statistics
249–256 (PMLR, 2010).

67.	 Montavon, G., Orr, G. & Müller, K.-R. Neural Networks: Tricks of the Trade (Springer, 2012).
68.	 Rakitianskaia, A. & Engelbrecht, A. Measuring saturation in neural networks. In Proc. 2015

IEEE Symposium Series on Computational Intelligence 1423–1430 (2015).
69.	 Boyd, S. P. & Vandenberghe, L. Convex Optimization (Cambridge Univ. Press, 2004).
70.	 Roy, O. & Vetterli, M. The effective rank: a measure of effective dimensionality. In Proc.

2007 15th European Signal Processing Conference 606–610 (IEEE, 2007).
71.	 Smith, S. L., Dherin, B., Barrett, D. & De, S. On the origin of implicit regularization in

stochastic gradient descent. In Proc. 9th International Conference on Learning
Representations (ICLR, 2021).

72.	 Razin, N. & Cohen, N. Implicit regularization in deep learning may not be explainable by
norms. Adv. Neural Inf. Process. Syst. 33, 21174–21187 (2020).

73.	 Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).
74.	 Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout:

a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15,
1929–1958 (2014).

75.	 Bjorck, N., Gomes, C. P., Selman, B. & Weinberger, K. Q. Understanding batch
normalization. Adv. Neural Inf. Process. Syst. 31, 7694–7705 (2018).

76.	 Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by
reducing internal covariate shift. In Proc. 32nd International Conference on Machine
Learning 448–456 (PMLR, 2015).

77.	 Chiley, V. et al. Online normalization for training neural networks. Adv. Neural Inf. Process.
Syst. 32, 1–11 (2019).

78.	 Ceron, J. S. O. & Castro, P. S. Revisiting rainbow: promoting more insightful and inclusive
deep reinforcement learning research. In Proc. 38th International Conference on Machine
Learning 1373–1383 (PMLR, 2021).

79.	 Brockman, G. et al. OpenAI Gym. Preprint at https://arxiv.org/abs/1606.01540 (2016).
80.	 Patterson, A., Neumann, S., White, M. & White, A. Empirical design in reinforcement

learning. Preprint at https://arxiv.org/abs/2304.01315 (2023).
81.	 Igl, M., Farquhar, G., Luketina, J., Boehmer, W. & Whiteson, S. Transient non-stationarity

and generalisation in deep reinforcement learning. In Proc. 9th International Conference
on Learning Representations (ICLR, 2021).

82.	 Kumar, A., Agarwal, R., Ghosh, D. & Levine, S. Implicit under-parameterization inhibits
data-efficient deep reinforcement learning. In Proc. 9th International Conference on
Learning Representations (ICLR, 2021).

83.	 Nikishin, E. et al. Deep reinforcement learning with plasticity injection. Adv. Neural Inf.
Process. Syst. 36, 1–18 (2023).

84.	 D’Oro, P. et al. Sample-efficient reinforcement learning by breaking the replay ratio
barrier. In Proc. 11th International Conference on Learning Representations (ICLR, 2023).

85.	 Schwarzer, M. et al. Bigger, better, faster: human-level Atari with human-level efficiency.
In Proc. 40th International Conference on Machine Learning 30365–30380 (PMLR, 2023).

86.	 Lee, H. et al. PLASTIC: improving input and label plasticity for sample efficient
reinforcement learning. Adv. Neural Inf. Process. Syst. 36, 1–26 (2023).

Content courtesy of Springer Nature, terms of use apply. Rights reserved

87.	 Delfosse, Q., Schramowski, P., Mundt, M., Molina, A. & Kersting, K. Adaptive rational
activations to boost deep reinforcement learning. In Proc. 12th International Conference
on Learning Representations (ICLR, 2024).

88.	 Caruana, R. Multitask learning. Mach. Learn. 28, 41–75 (1997).
89.	 Ring, M. B. in Learning to Learn (eds Thrun, S. & Pratt, L.) 261–292 (Springer, 1998).
90.	 Parisi, G. I., Kemker, R., Part, J. L., Kanan, C. & Wermter, S. Continual lifelong learning with

neural networks: a review. Neural Netw. 113, 54–71 (2019).
91.	 Kumar, S. et al. Continual learning as computationally constrained reinforcement

learning. Preprint at https://arxiv.org/abs/2307.04345 (2023).
92.	 Yoon, J., Yang, E., Lee, J. & Hwang, S. J. Lifelong learning with dynamically expandable

networks. In Proc. 6th International Conference on Learning Representations (eds Murray, I.,
Ranzato, M. & Vinyals, O.) (ICLR, 2018).

93.	 Aljundi, R. Online continual learning with maximal interfered retrieval. Adv. Neural Inf.
Process. Syst. 32, 1–12 (2019).

94.	 Golkar, S., Kagan, M. & Cho, K. in Proc. NeurIPS 2019 Workshop on Real Neurons & Hidden
Units: Future Directions at the Intersection of Neuroscience and Artificial Intelligence 146
(NeurIPS, 2019).

95.	 Riemer, M. et al. Learning to learn without forgetting by maximizing transfer and
minimizing interference. In Proc. 7th International Conference on Learning
Representations (ICLR, 2019).

96.	 Rajasegaran, J., Hayat, M., Khan, S. H., Khan, F. & Shao, L. Random path selection for
continual learning. Adv. Neural Inf. Process. Syst. 32, 1–11 (2019).

97.	 Javed, K. & White, M. Meta-learning representations for continual learning. Adv. Neural
Inf. Process. Syst. 32, 1–11 (2019).

98.	 Veniat, T., Denoyer, L. & Ranzato, M. Efficient continual learning with modular networks
and task-driven priors. In Proc. 9th International Conference on Learning Representations
(ICLR, 2021).

99.	 Verwimp, E. et al. Continual learning: applications and the road forward. Trans. Mach.
Learn. Res. https://openreview.net/forum?id=axBIMcGZn9 (2024).

100.	 Lopez-Paz, D. & Ranzato, M. Gradient episodic memory for continual learning. Adv. Neural
Inf. Process. Syst. 30, 1–10 (2017).

101.	 Rusu, A. A. et al. in Proc. 1st Annual Conference on Robot Learning 262–270 (PMLR, 2017).
102.	 Chen, J., Nguyen, T., Gorur, D. & Chaudhry, A. Is forgetting less a good inductive bias for

forward transfer? In Proc. 11th International Conference on Learning Representations
(ICLR, 2023).

103.	 Lewandowski, A., Tanaka, H., Schuurmans, D. & Machado, M. C. Directions of curvature
as an explanation for loss of plasticity. Preprint at https://arxiv.org/abs/2312.00246
(2024).

104.	 Lyle, C. et al. Disentangling the causes of plasticity loss in neural networks. Preprint at
https://arxiv.org/abs/2402.18762 (2024).

105.	 LeCun, Y., Denker, J. & Solla, S. Optimal brain damage. Adv. Neural Inf. Process. Syst. 2,
598–605 (1989).

106.	 Han, S., Mao, H. & Dally, W. J. Deep compression: compressing deep neural networks with
pruning, trained quantization and Huffman coding. In Proc. 4th International Conference
on Learning Representations (ICLR, 2016).

107.	 Gale, T., Elsen, E. & Hooker, S. The state of sparsity in deep neural networks. Preprint at
https://arxiv.org/abs/1902.09574 (2019).

108.	 Liu, J., Xu, Z., Shi, R., Cheung, R. C. C. & So, H. K. H. Dynamic sparse training: find efficient
sparse network from scratch with trainable masked layers. In Proc. 8th International
Conference on Learning Representations (ICLR, 2020).

109.	 Elsayed, M. & Mahmood, A. R. Addressing catastrophic forgetting and loss of plasticity in
neural networks. In Proc. 12th International Conference on Learning Representations
(ICLR, 2024).

110.	 Mocanu, D. C. et al. Scalable training of artificial neural networks with adaptive sparse
connectivity inspired by network science. Nat. Commun. 9, 2383 (2018).

111.	 Bellec, G., Kappel, D., Maass, W. & Legenstein, R. Deep rewiring: training very sparse deep
networks. In Proc. 6th International Conference on Learning Representations (eds Murray, I.,
Ranzato, M. & Vinyals, O.) (ICLR, 2018).

112.	 Evci, U., Gale, T., Menick, J., Castro, P. S. & Elsen, E. Rigging the lottery: making all
tickets winners. In Proc. 37th International Conference on Machine Learning 2943–2952
(PMLR, 2020).

113.	 Chen, T. et al. Chasing sparsity in vision transformers: an end-to-end exploration. Adv.
Neural Inf. Process. Syst. 34, 1–15 (2021).

114.	 Sokar, G., Mocanu, E., Mocanu, D. C., Pechenizkiy, M. & Stone, P. Dynamic sparse training
for deep reinforcement learning. In Proc. 31st International Joint Conference on Artificial
Intelligence (IJCAI-22) (ed. De Raedt, L.) 3437–3443 (IJCAI, 2022).

115.	 Graesser, L., Evci, U., Elsen, E. & Castro, P. S. The state of sparse training in deep
reinforcement learning. In Proc. 39th International Conference on Machine Learning
7766–7792 (PMLR, 2022).

116.	 Zhou, G., Sohn, K. & Lee, H. Online incremental feature learning with denoising
autoencoders. In Proc. 15th International Conference on Artificial Intelligence and
Statistics 1453–1461 (PMLR, 2012).

117.	 Rusu, A. A. et al. Progressive neural networks. Preprint at https://arxiv.org/abs/1606.04671
(2022).

118.	 Sutskever, I., Martens, J., Dahl, G. & Hinton, G. On the importance of initialization and
momentum in deep learning. In Proc. 30th International Conference on Machine Learning
(eds Dasgupta, S. & McAllester, D.) 1139–1147 (JMLR, 2013).

119.	 Frankle, J. & Carbin, M. The lottery ticket hypothesis: finding sparse, trainable neural
networks. In Proc. 7th International Conference on Learning Representations (ICLR, 2019).

120.	 Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep
networks. In Proc. 34th International Conference on Machine Learning 1126–1135 (PMLR,
2017).

121.	 Wang, Y.-X., Ramanan, D. & Hebert, M. Growing a brain: fine-tuning by increasing model
capacity. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
2471–2480 (IEEE, 2017).

122.	 Nagabandi, A. et al. Learning to adapt in dynamic, real-world environments through
meta-reinforcement learning. In Proc. 7th International Conference on Learning
Representations (ICLR, 2019).

123.	 Holmstrom, L. & Koistinen, P. et al. Using additive noise in back-propagation training. IEEE
Trans. Neural Netw. 3, 24–38 (1992).

124.	 Graves, A., Mohamed, A.-R. & Hinton, G. Speech recognition with deep recurrent neural
networks. In Proc. 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing 6645–6649 (IEEE, 2013).

125.	 Neelakantan, A. et al. Adding gradient noise improves learning for very deep networks.
Preprint at https://arxiv.org/abs/1511.06807 (2015).

126.	 Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R. & Schmidhuber, J. LSTM: a search
space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28, 2222–2232 (2017).

Acknowledgements We thank M. White for her feedback on an earlier version of this work;
P. Nagarajan, E. Graves, G. Mihucz, A. Hakhverdyan, K. Roice, T. Ferguson, L. Watson, H. Sinha,
P. Bhangale and M. Przystupa for their feedback on writing; and M. C. Machado for encouraging
us to make this work accessible to a general scientific audience. We gratefully acknowledge
the Digital Research Alliance of Canada for providing the computational resources to carry out
the experiments in this paper. We also acknowledge funding from the Canada CIFAR AI Chairs
program, DeepMind, the Alberta Machine Intelligence Institute (Amii), CIFAR and the Natural
Sciences and Engineering Research Council of Canada (NSERC). This work was made possible
by the stimulating and supportive research environment created by the members of the
Reinforcement Learning and Artificial Intelligence (RLAI) laboratory, particularly within the
agent-state research meetings.

Author contributions S.D., J.F.H.-G., Q.L. and A.R.M. wrote the software. S.D., J.F.H.-G. and P.R.
prepared the datasets. S.D. and J.F.H.-G. designed the experiments. S.D., J.F.H.-G., Q.L., R.S.S.
and A.R.M. analysed and interpreted the results. S.D., A.R.M. and R.S.S. developed the
continual backpropagation algorithm. S.D., J.F.H.-G., Q.L., R.S.S. and A.R.M. prepared the
manuscript.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s41586-024-07711-7.
Correspondence and requests for materials should be addressed to Shibhansh Dohare.
Peer review information Nature thanks Pablo Castro, Razvan Pascanu and Gido van de Ven for
their contribution to the peer review of this work. Peer reviewer reports are available.
Reprints and permissions information is available at http://www.nature.com/reprints.

Content courtesy of Springer Nature, terms of use apply. Rights reserved

Article

Extended Data Fig. 1 | Further results on class-incremental CIFAR-100.
a, Test accuracy in class-incremental CIFAR-100. As more classes are added,
the classification becomes harder and algorithms naturally show decreasing
accuracy with more classes. Each line corresponds to the average of 15 runs.
b, Test accuracy of continual backpropagation for different values of the

replacement rate parameter with contribution utility and 1,000 maturity
threshold. The line corresponding to 10−4 is an average of five runs, whereas the
other two lines are an average of 15 runs. The solid lines represent the mean and
the shaded regions correspond to ±1 standard error.

Content courtesy of Springer Nature, terms of use apply. Rights reserved

Extended Data Fig. 2 | Loss of plasticity in the Slowly-Changing Regression
problem. a, The target function and the input in the Slowly-Changing
Regression problem. The input has m + 1 bits. One of the flipping bits is chosen
after every T time steps and its value is flipped. The next m − f bits are i.i.d. at
every time step and the last bit is always one. The target function is represented

by a neural network with a single hidden layer of LTUs. Each weight in the target
network is −1 or 1. b, Loss of plasticity is robust across different activations.
These results are averaged over 100 runs; the solid lines represent the mean
and the shaded regions correspond to ±1 standard error.

Content courtesy of Springer Nature, terms of use apply. Rights reserved

Article

Extended Data Fig. 3 | Loss of plasticity in Online Permuted MNIST. a, Left,
an MNIST image with the label ‘7’; right, a corresponding permuted image.
b, Loss of plasticity in Online Permuted MNIST is robust over step sizes,
network sizes and rates of change. c, Evolution of various qualities of a deep
network trained by means of backpropagation with different step sizes. Left,
over time, the percentage of dead units in the network increases. Centre, the

average magnitude of the weights increases over time. Right, the effective rank
of the representation of the networks trained with backpropagation decreases
over time. The results in these six plots are the average over 30 runs. The solid
lines represent the mean and the shaded regions correspond to ±1 standard
error. For some lines, the shaded region is thinner than the line width, as
standard error is small.

Content courtesy of Springer Nature, terms of use apply. Rights reserved

Extended Data Fig. 4 | Existing deep-learning methods on Online Permuted
MNIST. a, Left, online classification accuracy of various algorithms on Online
Permuted MNIST. Shrink and Perturb has almost no drop in online classification
accuracy over time. Continual backpropagation did not show any loss of plasticity
and had the best level of performance. Centre left, over time, the percentage of
dead units increases in all methods except for continual backpropagation; it has
almost zero dead units throughout learning. Centre right, the average magnitude
of the weights increases over time for all methods except for L2 regularization,
Shrink and Perturb and continual backpropagation. These are also the three
best-performing methods, which suggests that small weights are important for
fast learning. Right, the effective rank of the representation of all methods drops
over time. However, continual backpropagation maintains a higher effective rank

than both backpropagation and Shrink and Perturb. Among all the algorithms,
only continual backpropagation maintains a high effective rank, low weight
magnitude and low percentage of dead units. The results correspond to the
average over 30 independent runs. The shaded regions correspond to ±1 standard
error. b, Performance of various algorithms on Online Permuted MNIST for
various hyperparameter combinations. For each method, we show three different
hyperparameter settings. The parameter settings that were used in the left panel
in a are marked with a solid square next to their label. The results correspond to
the average of over 30 runs for settings marked with a solid square and 10 runs for
the rest. The solid lines represent the mean and the shaded regions correspond to
±1 standard error.

Content courtesy of Springer Nature, terms of use apply. Rights reserved

Article

Extended Data Fig. 5 | Further results in stationary reinforcement-learning
problems. a, Similar to Fig. 4, the performance of standard PPO drops over
time. However, unlike in Fig. 4, the performance of PPO with L2 regularization
gets worse over time in Hopper-v3. On the other hand, PPO with continual
backpropagation and L2 regularization can keep improving with time.
b, Comparison of continual backpropagation and ReDo on Ant-v3. The
performance of PPO with ReDo and L2 regularization worsens over time,
whereas PPO with continual backpropagation and L2 regularization keeps

improving over time. c, PPO with standard Adam leads to large updates in the
policy network compared with proper Adam (β1 = β1 = 0.99), which explains why
PPO with proper Adam performs much better than standard PPO. d, Comparison
of two forms of utility in continual backpropagation, when using a running
estimate of instantaneous utility and when using just the instantaneous utility.
Both variations have similar performance. All these results are averaged over
30 runs; the solid lines represent the mean and the shaded regions correspond
to 95% bootstrapped confidence interval.

Content courtesy of Springer Nature, terms of use apply. Rights reserved

Extended Data Table 1 | Details of the ResNet-18 architecture used for the class-incremental CIFAR-100 problem

All conv layers used a kernel size of (3, 3), reshape layers used a kernel size of (1, 1) and the pool layer used a kernel size of (4, 4).

Content courtesy of Springer Nature, terms of use apply. Rights reserved

Article
Extended Data Table 2 | Hyperparameter selection in Continual ImageNet

Values used for the grid searches to find the best set of hyperparameters for all algorithms tested on Continual ImageNet. The best-performing set of values for each algorithm is in bold.
The values in the third column for L2 regularization and Shrink and Perturb correspond to the weight decay, whereas for continual backpropagation, they correspond to the replacement rate.

Content courtesy of Springer Nature, terms of use apply. Rights reserved

Extended Data Table 3 | Details of the artificial neural network used for the Continual ImageNet problem

The network has three convolutional layers followed by three fully connected layers.

Content courtesy of Springer Nature, terms of use apply. Rights reserved

Article
Extended Data Table 4 | Implementation details for the Slowly-Changing Regression problem and the learning network

The target and the learning networks both have a single hidden layer.

Content courtesy of Springer Nature, terms of use apply. Rights reserved

Extended Data Table 5 | Hyperparameters for PPO

All reinforcement-learning algorithms share these hyperparameters. Additional hyperparameters are described in the ‘Details and further analysis in reinforcement learning’ section in the
Methods.

Content courtesy of Springer Nature, terms of use apply. Rights reserved

1.

2.

3.

4.

5.

6.

Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center GmbH (“Springer Nature”).
Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers and authorised users (“Users”), for small-
scale personal, non-commercial use provided that all copyright, trade and service marks and other proprietary notices are maintained. By
accessing, sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of use (“Terms”). For these
purposes, Springer Nature considers academic use (by researchers and students) to be non-commercial.
These Terms are supplementary and will apply in addition to any applicable website terms and conditions, a relevant site licence or a personal
subscription. These Terms will prevail over any conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription
(to the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of the Creative Commons license used will
apply.
We collect and use personal data to provide access to the Springer Nature journal content. We may also use these personal data internally within
ResearchGate and Springer Nature and as agreed share it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not
otherwise disclose your personal data outside the ResearchGate or the Springer Nature group of companies unless we have your permission as
detailed in the Privacy Policy.
While Users may use the Springer Nature journal content for small scale, personal non-commercial use, it is important to note that Users may
not:

use such content for the purpose of providing other users with access on a regular or large scale basis or as a means to circumvent access

control;

use such content where to do so would be considered a criminal or statutory offence in any jurisdiction, or gives rise to civil liability, or is

otherwise unlawful;

falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association unless explicitly agreed to by Springer Nature in

writing;

use bots or other automated methods to access the content or redirect messages

override any security feature or exclusionary protocol; or

share the content in order to create substitute for Springer Nature products or services or a systematic database of Springer Nature journal

content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a product or service that creates revenue,
royalties, rent or income from our content or its inclusion as part of a paid for service or for other commercial gain. Springer Nature journal
content cannot be used for inter-library loans and librarians may not upload Springer Nature journal content on a large scale into their, or any
other, institutional repository.
These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not obligated to publish any information or
content on this website and may remove it or features or functionality at our sole discretion, at any time with or without notice. Springer Nature
may revoke this licence to you at any time and remove access to any copies of the Springer Nature journal content which have been saved.
To the fullest extent permitted by law, Springer Nature makes no warranties, representations or guarantees to Users, either express or implied
with respect to the Springer nature journal content and all parties disclaim and waive any implied warranties or warranties imposed by law,
including merchantability or fitness for any particular purpose.
Please note that these rights do not automatically extend to content, data or other material published by Springer Nature that may be licensed
from third parties.
If you would like to use or distribute our Springer Nature journal content to a wider audience or on a regular basis or in any other manner not
expressly permitted by these Terms, please contact Springer Nature at

onlineservice@springernature.com

mailto:onlineservice@springernature.com

