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ABSTRACT

We introduce a novel graph-based Retrieval-Augmented Generation (RAG) frame-
work specifically designed for the medical domain, called MedGraphRAG, aimed
at enhancing Large Language Model (LLM) capabilities and generating evidence-
based results, thereby improving safety and reliability when handling private
medical data. Our comprehensive pipeline begins with a hybrid static-semantic
approach to document chunking, significantly improving context capture over
traditional methods. Extracted entities are used to create a three-tier hierarchi-
cal graph structure, linking entities to foundational medical knowledge sourced
from medical papers and dictionaries. These entities are then interconnected to
form meta-graphs, which are merged based on semantic similarities to develop a
comprehensive global graph. This structure supports precise information retrieval
and response generation. The retrieval process employs a U-retrieve method to
balance global awareness and indexing efficiency of the LLM. Our approach is
validated through a comprehensive ablation study comparing various methods for
document chunking, graph construction, and information retrieval. The results not
only demonstrate that our hierarchical graph construction method consistently out-
performs state-of-the-art models on multiple medical Q&A benchmarks, but also
confirms that the responses generated include source documentation, significantly
enhancing the reliability of medical LLMs in practical applications.

1 INTRODUCTION

The rapid advancement of large language models (LLMs), such as OpenAI’s ChatGPT OpenAI
(2023a) and GPT-4 OpenAI (2023b), has significantly transformed research in natural language
processing and sparked numerous AI applications in everyday scenarios. However, these models
still face limitations when applied to fields requiring specialized knowledge, such as finance, law,
and medicine. There are two primary challenges: First, deploying trained LLMs for specific uses is
complex due to their struggles with extremely long contexts and the high costs or impracticality of
fine-tuning large models on specialized datasets. Second, in domains like medicine where precision
is crucial, LLMs may produce hallucinations—outputs that seem accurate but lead to incorrect
conclusions, which can be dangerous. Additionally, they sometimes provide overly simplistic
answers without offering new insights or discoveries, which falls short in fields that demand high-
level reasoning to derive correct answers.

Retrieval-augmented generation (RAG) Lewis et al. (2021) is a technique that answers user queries
using specific and private datasets without requiring further training of the model. Originally designed
for situations where the necessary answers are found within specific text regions, RAG sometimes
struggles to synthesize new insights from disparate pieces of information linked by shared attributes.
Additionally, it underperforms in tasks requiring a holistic understanding of summarized semantic
concepts across large datasets or extensive documents. To address these limitations, the graph RAG
Hu et al. (2024) method has been introduced. This approach leverages LLMs to create a knowledge
graph from the private dataset, which, in conjunction with graph machine learning, enhances prompt
augmentation during query processing. GraphRAG has demonstrated significant improvements,
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outperforming previous methods applied to private datasets by offering greater intelligence and
mastery in information synthesis.

In this paper, we introduce a novel graph RAG method for applying LLMs to the medical domain,
which we refer to as Medical Graph RAG (MedRAG). This technique improves LLM performance
in the medical domain by response queries with grounded source citations and clear interpretations
of medical terminology, boosting the transparency and interpretability of the results. This approach
involves a three-tier hierarchical graph construction method. Initially, we use documents provided
by users as our top-level source to extract entities. These entities are then linked to a second level
consisting of more basic entities previously abstracted from credible medical books and papers.
Subsequently, these entities are connected to a third level—the fundamental medical dictionary
graph—that provides detailed explanations of each medical term and their semantic relationships. We
then construct a comprehensive graph at the highest level by linking entities based on their content
and hierarchical connections. This method ensures that the knowledge can be traced back to its
sources and the results are factually accurate.

To respond to user queries, we implement a U-retrieve strategy that combines top-down retrieval
with bottom-up response generation. The process begins by structuring the query using predefined
medical tags and indexing them through the graphs in a top-down manner. The system then generates
responses based on these queries, pulling from meta-graphs—nodes retrieved along with their TopK
related nodes and relationships—and summarizing the information into a detailed response. This
technique maintains a balance between global context awareness and the contextual limitations
inherent in LLMs.

Our medical graph RAG provides Intrinsic source citation can enhance LLM transparency, inter-
pretability, and verifiability. The results provides the provenance, or source grounding information,
as it generates each response, and demonstrates that an answer is grounded in the dataset. Having the
cited source for each assertion readily available also enables a human user to quickly and accurately
audit the LLM’s output directly against the original source material. It is super useful in the field of
medicine that security is very important, and each of the reasoning should be evidence-based. By
using such a method, we construct an evidence-based Medical LLM that the clinician could easiely
check the source of the reasoning and calibrate the model response to ensure the safty usage of llm in
the clinical senarios.

To evaluate our medical graph RAG, we implemented the method on several popular open and
closed-source LLMs, including ChatGPT OpenAI (2023a) and LLaMA Touvron et al. (2023), testing
them across mainstream medical Q&A benchmarks such as PubMedQA Jin et al. (2019), MedMCQA
Pal et al. (2022), and USMLE Kung et al. (2023). For the RAG process, we supplied a comprehensive
medical dictionary as the foundational knowledge layer, the UMLS medical knowledge graph
Lindberg et al. (1993) as the foundamental layer detailing semantic relationships, and a curated MedC-
K dataset Wu et al. (2023) —comprising the latest medical papers and books—as the intermediate
level of data to simulate user-provided private data. Our experiments demonstrate that our model
significantly enhances the performance of general-purpose LLMs on medical questions. Remarkably,
it even surpasses many fine-tuned or specially trained LLMs on medical corpora, solely using the
RAG approach without additional training.

Our contributions are as follows:

1. We are pioneers in proposing a comprehensive pipeline for applying graph RAG specifically in the
medical field.

2. We have developed unique graph construction and data retrieval methods that enable LLMs to
generate evidence-based responses utilizing holistic private data.

3. We conducted validation experiments across mainstream benchmarks, achieving state-of-the-art
(SOTA) performance with various model variants.

2 METHOD

MedGraphRAG enhances Large Language Models (LLMs) with a medical graph RAG tailored for
handling private medical data. It involves segmenting medical documents into chunks, extracting
entities, and organizing them into a hierarchical graph structure across three levels—from user-
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provided documents to foundational medical information. These entities form meta-graphs, which
are then merged based on content similarity into a comprehensive global graph. For user queries,
the LLM retrieves and synthesizes information efficiently from the graph, enabling precise and
contextually relevant medical responses.

2.1 MEDICAL GRAPH CONSTRUCTION

Semantic Document Segmentation Large medical documents often contain multiple themes or
diverse content. To process these effectively, we first segment the document into data chunks that
conform to the context limitations of Large Language Models (LLMs). Traditional methods such
as chunking based on token size or fixed characters typically fail to detect subtle shifts in topics
accurately. Consequently, these chunks may not fully capture the intended context, leading to a loss
in the richness of meaning.

To enhance accuracy, we adopt a mixed method of character separation coupled with topic-based
segmentation. Specifically, we utilize static characters (line break symbols) to isolate individual
paragraphs within the document. Following this, we apply a derived form of the text for semantic
chunking. Our approach includes the use of proposition transfer, which extracts standalone statements
from a raw text Chen et al. (2023). Through proposition transfer, each paragraph is transformed
into self-sustaining statements. We then conduct a sequential analysis of the document to assess
each proposition, deciding whether it should merge with an existing chunk or initiate a new one.
This decision is made via a zero-shot approach by an LLM. To reduce noise generated by sequential
processing, we implement a sliding window technique, managing five paragraphs at a time. We
continuously adjust the window by removing the first paragraph and adding the next, maintaining
focus on topic consistency. We set a hard threshold that the longest chunk cannot excess the context
length limitation of LLM. After chunking the document, we construct graph on each individual of the
data chunk.

Element Extraction We then identify and extract instances of graph nodes from each chunk of
source text. This is accomplished using a LLM prompt designed to recognize all relevant entities
within the text. For each entity, the LLM is prompted to output the name, type, and a description.
The name may either be the exact text from the document or a derivative term commonly used in
medical contexts, carefully chosen to reflect professional medical terminology suitable for subsequent
processing. The type is selected from a predefined table by the LLM, and the description is an
LLM-generated explanation of the entity, contextualized within the document. To ensure the model’s
effectiveness, we provide a few examples to guide the LLM in generating outputs as desired.

For each entity data structure, we include a unique ID to trace its source document and paragraph.
This identifier is crucial for retrieving information from the source, enabling the generation of
evidence-based responses later.

To enhance the quality of extraction and reduce noise and variance, we repeat the extraction process
multiple times. This iterative approach encourages the LLM to detect any entities it may have initially
overlooked. The decision to continue or halt the repetitive process is also determined by the LLM
itself.

Hierarchy Linking Medicine is a specialized field characterized by its consistent use of a precise
terminology system and its foundation on numerous established truths, such as specific symptoms of
diseases or side effects of drugs. In this domain, it is crucial that LLMs do not distort, modify, or add
creative or random elements to the data, unlike their applications in other, less constrained contexts.

Recognizing this, we have developed a unique structure within the medical domain to link each
entity to grounded medical knowledge and terms. This approach aims to provide credible source and
profound definitions for each entity concept, thereby enhancing the authenticity of the responses and
reducing the occurrence of hallucinations, a significant challenge when applying LLMs to medicine.

Specifically, we construct a three-tiered RAG data structure to develop a comprehensive medical
graph. The first level consists of user-provided documents, such as highly confidential medical reports
from a specific hospital. After extracting entities from these documents as previously described,
we link them to a more foundational level of commonly accepted information. The second level is
constructed using medical textbooks and scholarly articles. We pre-construct a graph from these
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medical sources using the same methods outlined earlier, prior to receiving real user documents.
Entities from the first level are linked to corresponding entities in the second level, based on relevance
detected by LLMs.

The entities of the second-level graph are then connected to a third level, which includes several
well-defined medical terms and their knowledge relationships. This grounded information is sourced
from reliable resources such as the Unified Medical Language System (UMLS), which integrates
various health and biomedical vocabularies and their semantic relationships. For each entity, we
compare the text embedding of its name with those of medical vocabularies in UMLS, selecting
vocabularies where the cosine similarity falls below a specified threshold. Each linked vocabulary is
further associated with its professional definitions and relationships in UMLS, and these relationships
are translated into plain text, as demonstrated in Wu et al. (2023).

Relationship Linking We then instruct the LLM to identify all relationships between clearly-related
entities. This decision is based on comprehensive information about each entity, including its name,
description, definition, and associated lower-level medical foundation knowledge. The identified
relationships specify the source and target entities, provide a description of their relationship, and
include a score indicating the closeness of this relationship. To maintain order and precision in assess-
ing relationship distance, we prompt the LLM to choose from a predefined list of descriptors—very
related, related, medium, unrelated, very unrelated. After performing this analysis, we generate a
weighted directed graph for each data chunk. These graphs serve as the fundamental building blocks
in our system and are referred to as meta-graphs.

Figure 1: MedGraphRAG framework.

Tags generation and merge the graphs After constructing the meta-graphs, our next step is to scan
the data across each chunk to develop a global graph that links all meta-graphs together. The nodes in
merged meta-graphs would link together based on the linking rule we used in the last paragraph. To
achieve this, we calculate the distance between each pair of meta-graphs and sequentially merge the
closest ones into larger entities. For efficient merging, we use the LLM to summarize the content of
each meta-graph based on predefined medical categories, such as symptoms, patient history, body
functions, and medications. The LLM generates a summary for each category derived from the
meta-graph’s content, resulting in a list of tags that succinctly describe its main themes.
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Using these tags, the LLM calculates the similarity between two meta-graphs. Those with the highest
similarity are considered for merging. The merged graph becomes a new graph, but retains its original
meta-graphs and tags for easier indexing later. Subsequently, new summarized tag information is
generated for the new graph, and its similarity to others is recalculated for potential further merging.
This process can be repeated until a single global graph remains. However, as the summarized tag
information accumulates, it loses detail, presenting a trade-off between merging effectiveness and
efficiency. In practice, we limit the process to 24 iterations to prevent excessive loss of detail.

2.2 RETRIEVE FROM THE GRAPH

After constructing the graph, the LLM efficiently retrieves information to respond to user queries
through a strategy we called U-retrieve. We begin by generating summarized tag descriptions, similar
to the previous step, and use these to identify the most relevant graph through a top-down matching
process. This starts with one of the larger graphs, progressively indexing down to the smaller graphs it
contains. This matching process is repeated until we reach the meta-graph layer and retrieve multiple
relevant entities. Subsequently, we gather all pertinent content related to these activated entities and
their TopK related entities. This includes the content of the entities themselves, their associated
foundational medical knowledge, their relevance and relationships to other entities, and the content
of any linked entities.

Once the relevant content is identified, the LLM is prompted to generate an intermediate response
using these information, presented in text form. This intermediate response is preserved and combined
with the higher-level graph’s summarized tag information to formulate a more detailed or refined
response. The LLM repeats this response generation process in a bottom-up manner until it reaches
the highest level, generating a final response after scanning all the indexed graphs along the trajectory.
This method allows the LLM to have a comprehensive overview, as it interacts with all the data in the
graph, while also remaining efficient by accessing less relevant data in a summarized form.

3 EXPERIMENT

3.1 DATASET

3.1.1 RAG DATA

In our RAG data structure, we design three distinct levels of data, each serving different roles in
practice. The top-level data comprises private user information, such as medical reports in a hospital,
which are confidential and not to be shared or exposed. This data is user-specific and subject to the
highest frequency of updates or changes when using the LLM in a practical setting. The middle
level consists of up-to-date, peer-reviewed, and credible medical books and papers. This layer
provides users with the latest medical advancements and knowledge, ensuring they do not miss any
cutting-edge discoveries. While these resources can be set as default data for different users, they can
also be updated regularly by users or administrators to maintain currency. This data is updated at a
medium frequency, typically annually. The bottom level includes data that define medical terms and
their semantic relationships, primarily sourced from established vocabularies. This data is the most
authoritative and serious and should be set as the default for every user intending to use the medical
LLM. It is updated with the lowest frequency, approximately every five years or more.

Top-level We employ MIMIC-IV, a publicly available electronic health record dataset, as our
primary dataset. This dataset originates from Beth Israel Deaconess Medical Center and encompasses
patient admissions spanning from 2008 to 2019. MIMIC-IV is designed to facilitate research and
educational pursuits, encompassing a wide range of data including patient measurements, diagnoses,
procedures, treatments, and anonymized clinical notes. This dataset is the product of a collaborative
effort between the hospital and MIT, and is meticulously gathered, processed, and deidentified to
comply with privacy standards. It is structured into three distinct modules—hospital, intensive care
unit, and clinical notes—each specifically designed to meet various research requirements.

Medium-level We utilized MedC-K, a substantial medical-specific corpus, as our medium-level
data source. This corpus comprises 4.8 million biomedical academic papers and 30,000 textbooks.
It includes the S2ORC dataset by Lo et al. (2020), which contains 81.1 million English-language
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academic papers. From this extensive collection, we have extracted 4.8 million papers related to
biomedical studies from PubMed Central, amounting to over 75 billion tokens that encapsulate
advanced medical knowledge. Additionally, we curated a collection of 30,000 medical textbooks
from various libraries and publishers. After thorough cleaning and de-duplication processes, this
collection provides approximately 4 billion tokens of essential medical knowledge.

Bottom-level We utilize the UMLS dataset as our foundational bottom-level data. The Unified
Medical Language System (UMLS), developed by the U.S. National Library of Medicine, is an
extensive dataset that unifies various medical vocabularies to enhance the interoperability of health
information systems. It consists of three main components: the Metathesaurus, which amalgamates
over 200 medical vocabularies including SNOMED CT and ICD-10; the Semantic Network, which
organizes medical concepts and delineates their interrelationships; and the SPECIALIST Lexicon,
which aids in natural language processing by providing detailed linguistic insights. UMLS is crucial
for facilitating tasks such as electronic health record integration and clinical decision support, thereby
improving the management and comprehension of medical data.

3.1.2 TEST DATA

PubMedQA Developed by Jin et al. in 2019, PubMedQA is a biomedical question-answering
dataset derived from PubMed abstracts. This dataset primarily focuses on addressing research
questions through a multiple-choice format with options like yes, no, or maybe. It comprises three
distinct parts: the PQA-L, which includes 1,000 manually labeled pairs used for testing; PQA-U,
consisting of 61.2k unlabeled pairs which are not used; and PQA-A, featuring 211.3k artificially
generated pairs.

MedMCQA Introduced by Pal, Umapathi et al. in 2022, MedMCQA is a dataset of multiple-choice
questions formulated from practice and previous examinations for Indian medical school entrance
tests, specifically the AIIMS and NEET-PG. The dataset splits into a training set with 182,822
questions and a testing set containing 4,183 questions, each question offering four possible answers.
This dataset serves as a significant resource for testing knowledge of medical school candidates.

USMLE Created by Jin, Pan et al. in 2021, the USMLE dataset consists of multiple-choice
questions from the United States Medical Licensing Exams, tailored to assess medical professionals’
readiness for board certification. This dataset is unique in its multilingual coverage, providing
questions in English, Simplified Chinese, and Traditional Chinese. For the purpose of this description,
only the English portion is considered, which includes 10,178 + 1,273 + 1,273 pieces of data.

3.2 LLM MODELS

LLAMA2 Building upon the original LLAMA dataset, LLAMA2 extends the evaluation framework
by including more diverse and complex language tasks, potentially addressing the limitations and
gaps identified in the initial version. Although specific details on LLAMA2 might be hypothetical
or speculative in nature, one can expect that it would continue the focus on robust, comprehensive
linguistic analysis, refining the tools and methods to better measure nuances in language understanding
and generation.

LLAMA3 LLAMA3 is the latest iteration in the LLAMA series of large language models, de-
veloped to advance the capabilities of natural language understanding and generation. Building
on the successes of its predecessors, LLAMA and LLAMA2, LLAMA3 incorporates even more
sophisticated algorithms and a broader dataset to enhance its performance across a wide array of
linguistic tasks.

GPT-4 Developed by OpenAI, ChatGPT-4 is an iteration of the generative pre-trained transformer
models that has been trained on a diverse range of internet text. As a more advanced version,
ChatGPT-4 features improvements over its predecessors in terms of its ability to understand and
generate human-like text, making it capable of engaging in more coherent and contextually relevant
conversations. This model is designed to perform a wide range of tasks including but not limited
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to translation, question-answering, and content generation, showcasing significant advancements in
handling complex dialogue scenarios and nuanced language subtleties.

Gemini Google’s Gemini is a cutting-edge language model designed to enhance the capabilities
of conversational AI systems. Developed as part of Google’s ongoing efforts in natural language
processing, Gemini aims to provide more nuanced and context-aware interactions than previous
models. This model leverages deep learning techniques to understand and generate human-like
responses, making it suitable for a wide range of applications including virtual assistants, customer
support, and interactive applications.

3.3 RESULTS

3.3.1 MEDICAL GRAPH RAG EFFECT

First, we conducted experiments to assess the impact of our Medical Graph RAG on various large
language models, with the results presented in Table 1. The data reveals that our MedGraphRAG
significantly enhances the performance of LLMs on medical benchmarks. This improvement is
attributed to the implementation of zero-shot RAG, which is more cost-effective, faster, and more
convenient than fine-tuning or using adapters. Notably, MedGraphRAG yields more substantial im-
provements in smaller LLMs, such as LLaMA2-13B and LLaMA3-8B, which typically underperform
on these benchmarks, thus broadening its applicability across a wider user base. MedGraphRAG
also significantly boosts the performance of more powerful, closed-source LLMs like GPT and
LLaMA3-70B, helping them achieve state-of-the-art (SOTA) results on multiple benchmarks. These
outcomes surpass the accuracy of human experts, demonstrating the strong potential of AI to enhance
clinical workflows.

Figure 2: Compare to SOTA Medical LLM Models on MedQA benchmark.

3.3.2 EVIDENCE-BASED RESPONSE

Thanks to the graph linking mechanism in our MedGraphRAG, we can prompt LLMs to generate
evidence-based responses to complex medical questions, enhancing both safety and explainability.
As illustrated in Figure 3, we compare the responses generated by GPT-4 alone and those enhanced
by MedGraphRAG for a challenging medical diagnosis question. In this case, the patient exhibits
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Table 1: The improvement of MedGraphRAG on various LLMs.
Model Size Open-sourced MedQA MedMCQA PubMedQA

LLaMA2 13B yes 42.7 37.4 68.0
LLaMA2-MedGraphRAG 13B yes 65.5 51.4 73.2

LLaMA2 70B yes 43.7 35.0 74.3
LLaMA2-MedGraphRAG 70B yes 69.2 58.7 76.0

LLaMA3 8B yes 59.8 57.3 75.2
LLaMA3-MedGraphRAG 8B yes 74.2 61.6 77.8

LLaMA3 70B yes 72.1 65.5 77.5
LLaMA3-MedGraphRAG 70B yes 88.4 79.1 83.8

Gemini-pro - no 59.0 54.8 69.8
Gemini-MedGraphRAG - no 72.6 62.0 76.2

GPT-4 - no 81.7 72.4 75.2
GPT-4 MedGraphRAG - no 91.3 81.5 83.3

Human (expert) - - 87.0 90.0 78.0

symptoms commonly associated with Alzheimer’s—increasing forgetfulness and occasional episodes
of sudden confusion and speech difficulty. However, a careful analysis by an experienced human
expert would identify the condition as Vascular Dementia. The MedGraphRAG-enhanced response
not only accurately identifies Vascular Dementia over Alzheimer’s but also provides detailed ex-
planations supported by authentic citations. This ensures that each claim is verifiable, making the
information trustworthy for clinicians. Additionally, the response includes simplified explanations of
medical terms, making it accessible to users without a medical background. This evidence-based,
user-friendly approach is crucial in clinical practice where safety is paramount.

3.3.3 COMPARE TO SOTA MEDICAL LLM MODELS

We also evaluated MedGraphRAG against a range of previous state-of-the-art (SOTA) models on
these benchmarks, including both intensively fine-tuned models Gu et al. (2022)Yasunaga et al.
(2022a)Yasunaga et al. (2022b)Bolton et al. (2022)Singhal et al. (2022)Singhal et al. (2023)Wu et al.
(2023) and non-fine-tuned models Nori et al. (2023)OpenAI (2023a)OpenAI (2023b) on the MedQA
benchmark. The results, depicted in Figure 2, show that when applied to a powerful GPT-4 LLM,
our MedGraphRAG surpasses the previous SOTA prompted model, Medprompt Nori et al. (2023),
by a significant 1.1%. Even when compared with intensive fine-tuning methods on these medical
datasets, MedGraphRAG outperforms all and achieves the SOTA. This superior performance stems
from leveraging the inherent capabilities of the robust GPT-4 model. This further underscores the
advantages of our non-fine-tuned MedGraphRAG approach: it inherits the strong capabilities of a
closed-source model and outperforms many models that require costly and exhaustive fine-tuning.

3.3.4 ABLATION STUDY

We conducted a comprehensive ablation study to validate the effectiveness of our proposed modules,
the results of which are presented in Table 2. This study compares various methods for docu-
ment chunking, hierarchy graph construction, and information retrieval. Specifically, for document
chunking, we evaluated our hybrid static-semantic method against a purely static approach. For
hierarchy graph construction, we contrasted our method with the basic construction approach used
in LangChain. For information retrieval, we compared the summarized-based retrieval Edge et al.
(2024) with our U-retrieve method. These methods were assessed across the three Q&A benchmarks
previously mentioned.

The results, as shown in the table, indicate that our hybrid semantic method significantly enhances
performance over the vanilla model, underscoring the importance of sophisticated data chunking
in all RAG pipelines. When comparing the base graph construction method with our proposed
hierarchical approach, it’s clear that constructing the graph enhances RAG performance. Furthermore,
our hierarchical graph construction technique yields the most significant improvements, surpassing
the performance of most state-of-the-art (SOTA) methods. Additionally, replacing the summarized
retrieval with our U-retrieve method further boosts performance, demonstrating the effectiveness of
U-retrieve in enhancing retrieval accuracy and relevance.
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Table 2: An ablation study on MedGraphRAG.
Doc. Chunking Graph Construction Retrieve MedQA MedMCQA PubMedQA

Static Hyb-Semantic Base Hierarchy SumR UR (%) (%) (%)
✓ ✓ 83.6 74.2 75.8

✓ ✓ 87.4 77.2 77.9
✓ ✓ ✓ 88.8 78.7 80.6
✓ ✓ ✓ 90.7 80.8 82.5
✓ ✓ ✓ ✓ 91.3 81.5 83.3

4 CONCLUSION

In conclusion, this paper introduces MedGraphRAG, a novel graph-based Retrieval-Augmented
Generation (RAG) framework for the medical domain, enhancing the capabilities of Large Language
Models (LLMs). Our method combines advanced document chunking with a hierarchical graph
structure, significantly improving data organization and retrieval accuracy. Our ablation studies
confirm superior performance over state-of-the-art models on medical Q&A benchmarks and provide
credible, source-linked responses essential for medical applications. Moving forward, we aim to
expand this framework to include more diverse datasets and explore its potential in real-time clinical
settings.
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Figure 3: Example case shows MedGraphRAG generating evidence-based responses with grounded
citations and terminology explanations.
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