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Abstract

This paper introduces MedTrinity-25M, a comprehensive, large-scale multimodal
dataset for medicine, covering over 25 million images across 10 modalities, with
multigranular annotations for more than 65 diseases. These enriched annotations
encompass both global textual information, such as disease/lesion type, modality,
region-specific descriptions, and inter-regional relationships, as well as detailed
local annotations for regions of interest (ROIs), including bounding boxes, seg-
mentation masks. Unlike existing approach which is limited by the availability of
image-text pairs, we have developed the first automated pipeline that scales up mul-
timodal data by generating multigranular visual and texual annotations (in the form
of image-ROI-description triplets) without the need for any paired text descriptions.
Specifically, data from over 90 different sources have been collected, preprocessed,
and grounded using domain-specific expert models to identify ROIs related to
abnormal regions. We then build a comprehensive knowledge base and prompt
multimodal large language models to perform retrieval-augmented generation with
the identified ROIs as guidance, resulting in multigranular texual descriptions. Com-
pared to existing datasets, MedTrinity-25M provides the most enriched annotations,
supporting a comprehensive range of multimodal tasks such as captioning and re-
port generation, as well as vision-centric tasks like classification and segmentation.
Pretraining on MedTrinity-25M, our model achieves state-of-the-art performance
on VQA-RAD and PathVQA, surpassing both multimodal large language models
and other representative SoTA approaches. This dataset can also be utilized to sup-
port large-scale pre-training of multimodal medical AI models, contributing to the
development of future foundation models in the medical domain. The dataset is pub-
licly available at https://yunfeixie233.github.io/MedTrinity-25M/.

1 Introduction

Large-scale multimodal foundation models [1, 2, 3, 4, 5] have demonstrated remarkable success
across various domains due to their ability to understand complex visual patterns in conjunction with
natural language. This success has sparked significant interest in applying such models to medical
vision-language tasks. Much progress has been made to improve the medical capacity of general
domain multimodal foundation models by constructing medical datasets with image-text pairs and
fine-tuning general domain models on these datasets [6, 7, 8, 9, 10].

However, current medical datasets have several limitations. Firstly, these datasets lack multigranular
annotations that reveal the correlation between local and global information within medical images.
Medical images often contain detailed cues, such as regional abnormal textures or structures, which
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may indicate specific types of lesions. Therefore, multimodal models need the ability to infer global
information, such as disease or lesion type, from local details. The absence of such data limits
the models’ capacity to comprehensively understand medical images. Moreover, current dataset
construction methods heavily rely on medical images paired with reports or captions, which restricts
their scalability.

In this paper, we address the above challenges by proposing an automated data construction pipeline
using multimodal large language models (MLLMss) without relying on paired text descriptions. To
address the lack of comprehensive medical knowledge in general-purpose MLLMs, we leverage
domain-specific expert grounding models and retrieval-augmented generation (RAG) to extract
relevant medical knowledge. We then prompt MLLMs to generate multigranular visual and textual
annotations enriched with this knowledge based on identified regions of interest (ROIs). We utilize
this pipeline to transform the collected data, including large-scale unpaired images, into image-
ROI-description triplets. These triplets provide multigranular annotations that encompass both
global textual information, such as disease/lesion type, modality, and inter-regional relationships,
as well as detailed local annotations for ROIs, including bounding boxes, segmentation masks, and
region-specific textual descriptions. Using the proposed pipeline, we create a large-scale multimodal
multigranular medical dataset containing over 25 million triplets, named MedTrinity-25M. To our
best knowledge, this is the largest multimodal dataset in medicine to date.

Initially, we assemble a large amount of medical data from over 90 online resources such as TCIA,
Kaggle, Zenodo, Synapse, etc. In addition to images with a small amount of high-quality paired
manual reports, this assembled data also includes two types of coarse medical data: 1) Image
data with segmentation masks, lesion bounding boxes, or only disease types but lacking detailed
textual descriptions, and 2) Images paired with coarse captions that describe only global modality
or disease information, but lack detailed descriptions of local regions. To generate multigranular
annotations from the massive coarse medical data, we first identify ROIs that contain disease or lesion
patterns by applying expert grounding models. We then build a comprehensive knowledge base from
online corpora (e.g., PubMed) and retrieve image-related medical knowledge. Finally, we prompt
MLLMs to integrate medical knowledge with guidance of identified ROIs to generate multigranular
textual descriptions.

2 Related Work

Medical Multimodal Foundation Models. Due to the effectiveness of multimodal foundation
models in understanding visual features, adapting these models to perform medical vision-language
tasks has garnered increasing attention in recent years [11, 12, 9, 5]. Several papers attempt to
adapt general domain multimodal foundation models with varying architecture to medical domain
through end-to-end training on medical datasets. For example, Med-Flamingo [11] enhances the
medical capacity of OpenFlamingo-9B [13] by fine-tuning it with 0.8M interleaved and 1.6M
paired medical image-text data. While Med-PalM [12] adapts PaLM-E [14] to medical domain
using approximately 1M medical data points, demonstrating competitive or surpassing performance
compared to state-of-the-art models. Additionally, LLaVA-Med [9] employs end-to-end visual
instruction tuning [1] with two stages, achieving remarkable results in medical Visual Question
Answering (VQA) tasks. Similarly, Med-Gemini [15] employs a long-form question answering
dataset to enhance the multimodal and long-context capabilities of baseline Gemini [16]. Although
these models have achieved remarkable performance, they are still limited by the scale of training
data. Prior research [17] has shown that scaling up the training data improves the performance of
large multimodal foundation models. In this paper, we aim to build a large-scale medical dataset to
facilitate the development of more powerful medical multimodal foundation models.

Multimodal Datasets for medicine. The significance of construting comprehensive medical
multimodal datasets has garnered considerable attention [9, 18, 19, 7]. Several works attempt to
collect images and paired clinical reports prepared by pathology specialist [19, 7, 8], which provide
comprehensive descriptions of images, including disease types and corresponding reasoning. For
example, MIMIC-CXR[8] comprises 227,835 images for 65,379 patients, containing pathological
findings and impressions in reports paired with each images. However, manually constructing such
reports is both time-consuming and expensive, thereby limiting the scale of these datasets. PMC-
OA [20] aims to expand the dataset scale by extracting a large number of image-caption pairs from
medical papers, increasing the number of data samples to 1.65 million. However, the extracted
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MIMIC-CXR

EXAMINATION:  CHEST (PA AND LAT)
INDICATION:  ... year old man with pleural effusion  // eval
TECHNIQUE:  Chest PA and lateral...
COMPARISON:  Chest radiograph from ...
FINDINGS: There is been reaccumulation of a moderate left pleural 
effusion common new since the most recent previous study. There is 
likely also concomitant left  basilar atelectasis. The right lung is clear. 
There is no pneumothorax. Calcified granuloma is are noted in the right 
lower lobe. The aorta is tortuous but unchanged in configuration.
IMPRESSION: 
Reaccumulation of moderate left pleural effusion.

Med-Trinity-25M
(Ours)

This chest X-Ray image, taken from the PA position,shows the 
thoracic cavity, including the lungs, heart, and surrounding 
structures. The lungs occupy the majority of the image, with the 
heart situated centrally. The region of interest is located horizontally 
to the left lung and vert ically in the lower center, covering 
approximately 15% of the image. Within this region, there is an 
unusual opacity, suggesting a pleural effusion. The content in this 
area indicates fluid accumulation that is likely affecting the adjacent 
lung and potentially influencing the position and function of 
surrounding structures.

ROI 
Analysis

Lesion
Texture

Modality Local-global
Relation

Structure
Detection

ROI 
AnalysisModality

(a) Qualitative Comparison with sample in radiology report of chest x-rays dataset MIMIC-CXR [21].

Med-Trinity-25M
(Ours)

The image is a chest CT scan prominently displaying the lungs with 
the heart not visible. The left-center horizontally and middle 
vertically situated region of interest, covering 1.0% of the area, 
shows a potential abnormality in lung tissue. This area contains a 
texture or density that differs from the surrounding lung tissue, 
possibly indicating lung cancer. The affected area might be 
influencing adjacent tissues, suggesting a local progression of the 
disease without direct implication on distant parts of the lung.

ROI 
Analysis

Lesion
Texture

Modality Local-global
Relation

Structure
Detection

SLAKE

Q: "What modality is used to take this image?", A: "CT" 
Q: "Which part of the body does this image belong to?", A: "Chest"
Q: "What is the main organ in the image?", A: "Lung"
Q: "Does the picture contain lung?", A: "Yes"
Q: "Does the picture contain heart?", A: "No"
Q: "What diseases are included in the picture?", A: "Lung Cancer"
Q: "Where is/are the abnormality located?", A: "Right Lung, Left"

ROI 
AnalysisModality Structure

Detection

(b) Qualitative Comparison with sample in visual QA dataset SLAKE [22].

ROCO

A 49-year-old man presenting 
a pancreatic neoplasia with 
peritoneal carcinomatosis. 
Axial T2W TSE fat-suppressed 
M R I  s h o w s  t w o  h e p a t i c 
p e r i c a p s u l a r  i m p l a n t s  o f 
per i toneal  carc inomatosis 
(arrowheads), biconvex, in 
high signal iontensity.

Med-Trinity-25M
(Ours)

The image is an axial T2W TSE fat-suppressed MRI focusing on the liver and surrounding areas, 
highlighting two hepatic pericapsular implants indicative of peritoneal carcinomatosis, marked by 
their high signal intensity and biconvex shape. These abnormalities, located on the right side of the 
liver, are positioned horizontally to the left and vertically at the bottom of the image, occupying 
about 1.5% of the area. The region of interest reveals these unusual features, contrasting with the 
normal liver texture and appearance. These hepatic implants are significant as they suggest a 
spread from the primary pancreatic neoplasia, indicating a direct relationship where the primary 
disease has metastasized to adjacent organs, further complicating the patient's condition.

ROI 
Analysis

Lesion
Texture

Modality Local-global
Relation

Structure
DetectionModality Structure

Detection
Lesion
Texture

(c) Qualitative Comparison with sample in radiology objects caption dataset ROCO [18].

Figure 1: Qualitative comparison with different types of dataset.

captions are less detailed compared to manual clinical reports, resulting in a lack of multigranular
annotations. RadGenome-Chest CT [19] includes more detailed annotations, such as segmentation
masks and medical reports generated by MLLMs. Nonetheless, its construction method still relies
on paired image-text data, which limits its scalability. Unlike these existing methods, we devise the
first automated data construction pipeline to generate multigranular annotations for unpaired images,
achieving a comprehensive multigranular dataset with 25 million data samples.

3 MedTrinity-25M Dataset

3.1 Data Triplet

Our dataset comprises triplets of {image, ROI, description}. Each ROI is associated with an
abnormality and is represented by a bounding box or a segmentation mask, specifying the relevant
region within the image. For each image, we provide a multigranular textual description, which
includes the disease/lesion type, modality, region-specific description, and inter-regional relationships
as illustrated in Figure 2.

Images. We use the original medical image in the source dataset, we extensively collected medical
datasets from the following sources: (1) online resources such as TCIA, Kaggle, Zenodo, Synapse,
Hugging Face,Grand Challenge , GitHub, etc. (2) relevant medical dataset research, such as CheX-
pert [7] and DeepLesion [23]. These datasets were first categorized into two types: (1) datasets
containing local annotations, such as MIMIC-CXR [8] with corresponding radiology reports, and
PMC-OA [24] with corresponding captions, where the reports or captions provide analysis of specific
local conditions in the images; another example is the 3D image segmentation dataset BraTS2024 [25],
which marks the tumor regions in CT scans with masks. (2) datasets containing global annotations:
such as image classification datasets ISIC2019 [26] and ISIC2020 [27], whose classification labels
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Coarse
Caption

ROI

…
Knowledge

Base

Medical
Knowledge

(1) Data Processing

Report or QA

Classification

Mask or B-box

 
Knowledge
Retrieval

 
ROI

Locating

 
Metadata

Integration

Give me detailed description 
of the image, based on
coarse caption, lesion 
region, medical knowledge... 

Prompt

MLLM

(2) Multigranular Textual
Description Generation

Modality
Organ & tissue 

Detection
ROI Analysis 

Lesion Texture
Local-global 
relationship

Multigranular 
Textual Description

Data Triplet

A chest X-ray.
Showing lungs centrally 
located within the 
thoracic cavity.
ROI is positioned 
horizontally at the left-
center and vertically at …,
Region exhibits increased 
opacity and irregular 
texture, indicating …
Showing a pattern of 
right lung involvement 
typically seen in COVID-
19 cases.

ROI

Image

Multigranular Description

Figure 2: Data construction pipeline. 1) Data processing: extracting essential information from
collected data, including metadata integration to generate coarse caption, ROI locating, and medi-
cal knowledge collection. 2) Multigranular textual description generation: using this information to
prompt MLLMs to generate fine-grained captions.

reflect the overall pathological condition of tissue sections; another example is the CheXpert [7]
dataset, which provides detailed classification of disease types for each chest X-ray. We collect
25,001,668 samples spanning 10 modalities and over 65 diseases. For 3D volumetric images stored
in DICOM or NIfTI formats, we converted each 2D slice to PNG format. Additional caption and
annotations like masks and bounding boxes from these datasets were utilized to construct ROIs and
corresponding textual descriptions as below.

ROIs. For each image, ROIs are highlighted using segmentation masks or bounding boxes. These
ROIs mostly contain pathological findings such as lesions, inflammation, neoplasms, infections, or
other potential abnormalities. In the few cases without abnormalities, the ROIs generally indicate the
primary object or organ in the image, as shown in examples in the supplementary material.

Textual Descriptions. The textual descriptions for each image are provided with detailed infor-
mation across various aspects. Unlike the unstructured free-text descriptions found in previous
medical report datasets[7, 8, 6] or simple short sentences in visual QA dataset[28, 22] and caption
dataset[18, 24], our textual descriptions are multigranular and structured. General attributes related to
the image are described first, including the image modality, the specific organ depicted, and the type
of disease presented. Subsequently, ROI-related information is provided, including their locations
and the abnormal characteristics within them that indicate underlying pathology, such as distinctive
color and texture. Additionally, comparisons between the ROIs and surrounding regions are presented
to highlight differences in features and the extent of disease progression.

We also demonstrate the multigranular textual descriptions in our dataset with those in other common
forms. As illustrated in Figure 1, our textual description is multigranular with more attributes
than radiology report of chest x-rays dataset MIMIC-CXR [21], visual QA dataset SLAKE[22] and
radiology objects caption dataset ROCO[18].

3.2 Data Construction Pipeline

Given a medical image, we aim to generate corresponding multigranular visual and texual annotations
by leveraging MLLMs. Specifically, as shown in Figure 2, our pipeline can be decomposed into two
stages - Data Processing and Generation of Multigranular Text Description. In the Data Pro-
cessing stage (Section 3.2.1), we address the lack of domain-specific knowledge in general-purpose
MLLMs by leveraging expert grounding models and retrieval-augmented generation (RAG). This
stage includes three key steps: 1) Metadata Integration to produce coarse captions encapsulating
fundamental image information such as modality and disease types; 2) ROI Locating to identify

4



Coarse
Caption

Without coarse caption:
The image is a chest X-ray showing detailed 
views of the lungs and heart. The lungs occupy 
the majority of the thoracic cavity, which is the 
region encased by the rib cage, extending from 
the collarbone to the diaphragm. The heart is 
located centrally just beneath the ribs, slightly 
tilted to the left. No medical devices are visible in 
the image.

With coarse caption:
The image is a chest X-ray showing both lungs, 
centrally positioned in the thoracic cavity, flanked 
by the ribs and the diaphragm visible at the bottom. 
The heart is visible in the center between the 
lungs. There are no......The lungs show patchy 
opacit ies suggesting an infectious process, 
consistent with pulmonary involvement in 
COVID-19.

“A chest X-Ray 
image with COVID-

19 in the lungs”

Specify
Disease

Figure 3: A qualitative comparison example of generated textual description with and without
coarse caption. Without a coarse caption, MLLMs fails to detect diseases. On the contrary, providing
a caption mentioning “COVID-19” allows MLLMs to identify and categorize the disease, facilitating
further analysis.

Without ROIs:
The image is a chest X-ray showing 
both lungs, centrally positioned in 
the thoracic cavity, flanked by the 
ribs and the diaphragm visible at the 
bottom. The heart is visible in the 
center between the lungs. There are 
no. . . . . .  The lungs show patchy 
opacities suggesting an infectious 
process, consistent with pulmonary 
involvement in COVID-19.

With ROIs:
The image is a chest X-ray showing both lungs and the heart 
centrally positioned between them. In two specific regions of 
interest located at the left-center and right-center of the middle 
of the lungs, there are unusual findings suggestive of COVID-19. 
These areas, occupying 8.3% and 5.0% of the image respectively, 
display changes in lung texture that may indicate infection, such 
as increased opacity. The right-center region is slightly larger and 
potentially indicates a more extensive involvement of the lung tissue 
compared to the left-center region. These areas of alteration in the 
lung tissue are critical in understanding the spread and impact of 
COVID-19, affecting surrounding lung areas.

ROIs

ROI 
analysis

Region
Relationship

Figure 4: A qualitative comparison example of generated textual description with and without
locating ROIs. Without ROIs, the caption offers only a brief global analysis; with ROIs, MLLMs con-
ducts detailed local analysis and assesses the impact of lesion ROIs on adjacent normal regions.

regions of abnormalities; and 3) Medical Knowledge Retrieval to extract relevant fine-grained
medical details. Based on the processed data, we then prompt MLLMs to generate multigranular text
descriptions, resulting in the creation of fine-grained captions, as detailed in Section 3.2.2.

3.2.1 Data Processing

Coarse Caption Generation via Metadata Integration. We aim to generate coarse captions that
provide fundamental information for a given image, including modality, organ labels, disease types,
and optionally, camera views and equipment information. Instead of extracting features directly from
the images, we generate these captions by integrating dataset metadata. We first extract metadata from
the datasets and then apply a fixed rule to integrate this information into coarse captions. For example,
for an image from the QaTa-COV19 dataset1, we derive metadata from the dataset’s accompanying
paper or documentation, indicating that it consists of COVID-19 chest X-ray images. Next, we
construct coarse captions like “A chest X-ray image with COVID-19 in the lungs” highlighting the
modality, organ types, and disease labels. If the image contains additional textual information like
radiological findings, this is also integrated to enhance the richness of the caption. The effectiveness
of adding coarse captions when generating fine-grained captions is illustrated in Figure 3. In contrast
to the scenario without a coarse caption where MLLMs fails to recognize the disease, providing

1https://www.kaggle.com/aysendegerli/qatacov19-dataset.

5

https://www.kaggle.com/aysendegerli/qatacov19-dataset.


Without medical knowledge：
The image is a chest X-ray showing both lungs and 
the heart centrally positioned between them. In two 
specific regions of interest located at ...... of the 
image respectively, display changes in lung texture 
that may indicate infection, such as increased 
opacity. The left-center region is slightly larger and 
potentially indicates a more extensive involvement of 
the lung tissue compared to the right-center region. 
These areas of alteration in the lung tissue are critical 
in understanding the spread and impact of COVID-19, 
affecting surrounding lung areas.

external medical 
knowledge

“glass opacities”, 
“consolidation” With medical knowledge：

The image is a chest X-ray showing the thoracic 
cavity, primarily focusing on the lungs. Visible organs 
include the lungs and the heart, centrally positioned 
beneath the sternum and between the lungs. The 
regions of interest, located...... These regions 
exhibit ground-glass opacities and consolidation, 
typical indicators of COVID-19 pneumonia, which 
suggest the presence of inflammatory processes. 
These affected areas are significant as they indicate 
the primary sites of infection and inflammation in 
COVID-19, often leading to bilateral and multifocal 
lung involvement as the disease progresses.

Standardize  
Terminology

Revise 
Diagnosis

Figure 5: A qualitative comparison example of generated textual description with and without
external medical knowledge. MLLMs can standardize medical terminology in its expressions and
refine its diagnosis based on disease progressions detailed in medical literature.

   
  

  
 

Textual description of ROI 

horizontally: left-center
vertically: lower-middle
area ratio:1.2%

ROI

(a) Example of locating ROI via
SAT[29].

Textual description of ROI
horizontally: center 
vertically: middle
area ratio:21.2%

ROI

(b) Example of locating ROI via
BA-Transformer [30].

   
 

 
 

Textual description of ROI 

horizontally: left
vertically: lower-middle
area ratio:8.5%

ROI

(c) Example of locating ROI via
Chexmask [31].

Figure 6: Example of ROIs and their corresponding textual descriptions.

MLLMs with a coarse caption that includes the disease type “COVID-19” enables it to identify and
categorize the disease, thereby laying the foundation for further analysis.

ROI Locating. We employ various strategies to locate Regions of Interest (ROIs) in images. For
datasets that already include localization annotations, such as segmentation masks or bounding boxes,
we derive the ROIs from these existing annotations. Specifically, bounding boxes are directly used
as the ROIs, while segmentation masks are converted to ROIs by creating the smallest bounding
box that covers the mask. When such localization annotations are not available, we apply different
pretrained expert models listed in the Appendix to generate ROIs. For text-prompt driven grounding
model[29], we use disease and organ information in coarse captions as text prompts to guide the
model in segmenting specific parts. Examples of generated ROIs from various modalities with
different models are demonstrated in Figure 6. It is important to note that for modalities such as
X-ray and MRI scans viewed from the z-axis, our ROI localization employs a coordinate system
relative to the human body, resulting in a left-right reversal in the image representation.

Without ROIs, the original description is limited to a brief global analysis of the image. However,
with ROIs, MLLMs can perform a more detailed local analysis of the ROIs and assess the impact of
lesion ROIs on the surrounding normal regions, as demonstrated in Figure 4.

Medical Knowledge Retrieval. General-purpose MLLMs often produce content that lacks spe-
cialized medical terminology and professional expression. To address this issue, we build a medical
knowledge database following the approach in MedRAG [32]. We collect three main corpora:
PubMed2 for biomedical knowledge, StatPearls3 for clinical decision support, and medical text-
books [33] for domain-specific knowledge. We segment these corpora into short snippets and encode
them into high-dimensional vectors using the text encoder from Med-CPT [34]. These vectors
are then indexed into a specialized vector knowledge base using Faiss[35], optimized for efficient
retrieval.

2https://pubmed.ncbi.nlm.nih.gov/
3https://www.statpearls.com/
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Knowledge 1: 
Title: Mobile chest X-ray manifestations of 54 deceased patients with coronavirus disease 2019: Retrospective study.
Content: ...... We found that 50 (93%) patients with lesions occurred in the bilateral lung, 4 (7%) patients occurred in the right lung, 54 (100%) 
patients were multifocal involvement. The number of lung fields involved was 42 (78%) patients in 6 fields, 3 (6%) patients in 5 lung fields, 4 
(7%) patients in 4 lung fields, and 5 (9%) patients in 3 lung fields. Fifty-three (98%) patients had patchy opacities, 3 (6%) patients had round or 
oval solid nodules, 9 (17%) patients had fibrous stripes, 13 (24%) patients had pleural effusion, 8 (15%) patients had pleural thickening, 6 
(11%) patients had pneumothorax, 3 (6%) patients had subcutaneous emphysema. Among the 24 patients who had serial mobile chest X-rays, 
16 (67%) patients had the progression of the lesions, 8 (33%) patients had no significant change of the lesions, and there was no case of 
reduction of the lesions.The mobile chest X-ray manifestations of deceased patients with COVID-19 were mostly bilateral lung, multifocal 
involvement, and extensive lung field, and pleural effusion, pleural thickening, and pneumothorax probably could be observed. The 
serial mobile chest X-ray showed that the chest lesions were progressive with a high probability.
.......

Figure 7: An example of the Top-8 retrieval results. By leveraging COVID-19-related medical
knowledge, MLLMs can standardize medical terminology and enhance diagnoses according to the
disease progressions described in medical literature.

For a given image, we retrieve relevant medical knowledge by using its coarse caption, which is
generated through metadata integration. Specifically, we encode the coarse captions, including disease
and organ classifications, into vectors using the Med-CPT text encoder. We then perform a vector
similarity search in the medical vector database, retrieving the top eight medical knowledge snippets
that semantically match the query. These snippets provide the external medical knowledge paired
with the image. A qualitative example demonstrating the effectiveness of incorporating external
medical knowledge is shown in Figure 7. With access to COVID-19-related medical knowledge,
MLLMs can standardize medical terminology and refine diagnoses based on the disease progressions
outlined in medical literature.

3.2.2 Generation of Multigranular Text Description

After data processing, a comprehensive prompt is utilized to guide the MLLMs in generating multi-
granular descriptions. The prompt template consists of a three-level hierarchical framework with
questions to instruct MLLMs: (1) a global description that captures all details of the image (2) a
local-focused analysis of specific ROIs that potentially are unusual; and (3) a local-global examination
of the interaction between local and global attributes to understand the impact of local abnormalities
on the entire organ. Detailed prompt template is presented in supplementary materials.

To ensure that the MLLMs are guided by relevant medical information not inherently present
in their training data, we incorporate the processed data (coarse captions, ROIs, and retrieved
medical knowledge) into the prompts. Specifically, for global information, coarse captions are
directly integrated into the prompt. For local information, ROIs on images are converted into textual
descriptions based on their coordinates and area ratio within the images. Examples of these textual
descriptions are shown in Figure 6, using terms such as “left-center” and “area ratio: 1.2%”.

To refine terminology and diagnosis within ROIs, relevant medical knowledge about specific diseases
is incorporated into the prompt. Instead of merely inserting this knowledge, we instruct MLLMs to
identify and align the relevant knowledge to ROIs that require analysis.
Choice of MLLMs We first prompt GPT-4V with the provided medical coarse captions, ROIs,
and medical knowledge to generate a subset of 200,000 samples, maintaining a similar modality
and organ distribution to our full 25 million dataset. The goal of curating this subset is to calibrate
a medical knowledge-guided MLLM to adhere to the formatting instructions specified for our text.
Subsequently, we employ our model, LLaVA-Med Captioner, which is based on LLAVA-Med [9], the
state-of-the-art medical MLLM. To further improve this model, we leverage the latest LLaMA3[36]
to enhance its linguistic capabilities, and incorporate multi-scale feature extraction [37] to improve
its vision capabilities. LLaVA-Med Captioner undergoes continuous training on medical multimodal
data and is fine-tuned using our multigranular annotations, resulting in a specialized medical model.

After fine-tuning, we then use this specialized model to generate the multigranular text descriptions
on our entire dataset, resulting in 25 million image-ROI-description triplets. The fine-tuning process
leverages the advanced language organization capabilities of GPT-4V, providing an effective template
for fine-grained captions, which our model uses to learn the formatting of fine-grained captions. As a
result, our model generates more detailed descriptions compared to GPT-4V, as illustrated in Figure 8.
We also show a detailed quantitative comparison in appendix B in the supplementary material.

3.3 Dataset Analysis
Diversity Our dataset encompasses a wide range of 10 imaging modalties, with more than 65
diseases across various anatomical structures in human. The distribution of Anatomical and biological
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The MRI image presents a transverse slice of the brain, where 
the cerebral hemispheres are visible, with the region of 
interest located centrally and towards the upper-middle 
portion of the image, occupying a small area ratio. This region 
exhibits an abnormality characterized by altered signal 
intensity, which contrasts with the surrounding brain tissue, 
suggesting the presence of a brain tumor. The abnormal 
area's position, relative to the rest of the brain, could imply an 
effect on or from adjacent structures, potentially influencing 
nearby tissue due to mass effect or being part of a larger 
pathological process within the brain.

The image is a transverse slice of a magnetic resonance imaging (MRI) scan of the 
brain, showing the cerebral hemispheres with the cerebrum visible. A region of interest 
is located at center part of the image horizontally and upper-middle part of image 
vertically, occupying approximately 3.9% of the total area. The region of interest is 
located in the white matter of the right cerebral hemisphere and appears to have an 
abnormal texture and size, which is indicative of a brain tumor. This abnormal area is 
likely to be affecting the surrounding brain tissue due to its mass effect or infiltration, 
which can cause a shift in the position of adjacent structures or potentially disrupt the 
normal brain function in its vicinity. The MRI scan provides a detailed view of the brain's 
anatomy, allowing for the visualization of soft tissue differences that may not be possible 
with other imaging modalities. 

GPT-4V LLaVA-Med++(Ours)

More detailed
ROI analysis

More detailed
area ratio

Contain image
analysis

More detailed
lesion impact

analysis

Figure 8: Qualitative Comparison with sample generated by GPT-4V. Compared to GPT-4V, our
model generate more detailed caption.
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Figure 9: Statistical overview of MedTrinity-25M.

structures in MedTrinity-25M is shown in Figure 9b. Meanwhile, the number of samples in the
dataset for each modality are shown in Figure 9a, spanning from common ones with over 1 million
samples each (CT, MRI, X-ray) to rare modalities(ultrasound, dermoscopy), demonstrating a much
more balanced distribution compared to other large-scale dataset like SA-Med2D-20M[38], which
only contain thousands of ultrasound and dermoscopy samples.

Scale Figure 9c shows the amount of our dataset, which is significantly larger than previous datasets.
To the best of our knowledge, this is the largest open-source, multi-modal multigranular medical
dataset to date.

Diseases The datasets involved in constructing MedTrinity-25M primarily focus on disease diagno-
sis and medical discovery. In MedTrinity-25M, diseases are given in the free-form text. The same
disease may be referred to using different terms, allowing for elaborate identification and analysis.
Figure 9d illustrates the frequently used words related to diseases in our dataset.
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Dataset ModalityLesion
Type

Lesion
BBox/Mask

Color Texture
Description

Region
Relationship

MedMNIST [39] ✗ ✓ ✗ ✗ ✗
DeepLesion [40] ✓ ✗ ✓ ✗ ✗
BraTS 2024 [41] ✓ ✗ ✓ ✗ ✗

MIMIC-CXR [21] ✓ ✓ ✓ ✓ ✗
Quilt-1M [10] ✓ ✓ ✗ ✓ ✓

VQA-RAD [42] ✓ ✓ ✗ ✓ ✗
CRC100K [43] ✓ ✓ ✗ ✗ ✗

SA-Med2D-20M [44] ✓ ✓ ✓ ✗ ✗
MedTrinity-25M(Ours) ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of dataset types based
on provided attributes of annotations.

Figure 10: Comparison of the av-
erage word count of text descrip-
tions.

Table 2: Comparison of alignment scores between our generated fine-grained captionsand human
annotations.

(a) Alignment Scores on SLAKE

Score SLAKE

Overall Modality Structure
Detection

ROI
Analysis

Lesion
Texture

Local-Global
Relation

Ours 8.2/10.0 2.0/2.0 1.7/2.0 1.8/2.0 1.6/2.0 1.1/2.0

(b) Alignment Scores on MIMIC-CXR

Score MIMIC-CXR

Overall Modality Structure
Detection

ROI
Analysis

Lesion
Texture

Local-Global
Relation

Ours 8.9/10.0 2.0/2.0 1.9/2.0 1.8/2.0 1.6/2.0 1.6/2.0

Richness We provide both quantitative analysis and qualitative examples to show the richness
of our generated multigranular compare to other medical dataset. Qualitative examples are shown
in Figure 1, our textual description is multigranular with more attributes than radiology report of
chest x-rays dataset MIMIC-CXR [21], visual QA dataset SLAKE[22] and radiology objects caption
dataset ROCO[18]. To demonstrate the multi-granularity of our data, we compared the average word
count of text descriptions in our dataset, MedTrinity-25M, with those in other medical datasets, as
illustrated in Figure 10. The word count in our dataset is significantly higher, indicating greater
richness.

Alignment with human To evaluate the validity and quality of the generated multigranular annota-
tions, we compared them with their original human annotations to assess the degree of alignment (for
samples with human annotations).

Since the generated fine-grained captions contains structured descriptions that may significantly
differ from free-text radiology reports and question-answering pairs, we leveraged GPT-4V’s vision
and language understanding capabilities. Rather than focusing on the exact alignment of sentence
structure or organization, GPT-4V assessed the alignment based on the accuracy of medical facts
and diagnoses. Specifically, the structure of the generated fine-grained captions consists of five
key attributes that characterize a medical image: modality, structure detection, ROI analysis, lesion
texture, and local-global relation. To evaluate the generated data, we had GPT-4V perform a detailed
comparison with human annotations based on these five attributes. Each attribute was scored on a
scale from 0 to 2 points, with a maximum possible total score of 10 points.

We conducted an alignment study on SLAKE [22] and MIMIC-CXR [21], randomly selecting
50 samples to compare with fine-grained captions for evaluating alignment scores against human
annotations. As shown in Table 2, the alignment scores were 8.2 and 8.9 for SLAKE and MIMIC-
CXR, respectively. The criteria of modality, structure detection, and ROI analysis nearly achieved
perfect scores, demonstrating the validity and accuracy of the generated data compared to human
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Figure 11: An example of a perfect score result evaluated by GPT-4V. GPT-4V assesses five
criteria, each fully aligned with human annotations, resulting in perfect scores.

`FINDINGS`:The endotracheal tube is unchanged, 
ending 3.7 cm from the carina.  The enteric tube 
passes below the diaphragm outside of the field of 
view within a decompressed stomach.  The left-
sided PICC line ends in the low SVC. Opacification 
of the left hemithorax is unchanged, likely a 
combination of effusion, consolidation, and 
collapse. Right-sided pulmonary edema is mild. 
The small to moderate right pleural effusion and 
associated compressive atelectasis has 
increased slightly. There is no pneumothorax.

The image is a chest radiograph showing the thoracic cavity with the heart, 
lungs, and diaphragm visible. The endotracheal tube is positioned 3.7 cm 
from the carina, and an enteric tube is seen passing below the diaphragm 
into the stomach. A left-sided PICC line terminates in the low SVC. The left 
hemithorax exhibits opacification, likely due to a combination of effusion, 
consolidation, and collapse, while the right lung shows mild pulmonary 
edema and a slightly increased small to moderate pleural effusion with 
associated compressive atelectasis. The region of interest located 
horizontally right-center and vertically in the middle, occupying 11.2% 
of the area, corresponds to the right lung and shows signs of mild 
pulmonary edema. Another region of interest, horizontally left-center and 
vertically in the middle, taking up 24.4% of the area, corresponds to 
the left lung and indicates opacification consistent with effusion, 
consolidation, and collapse. The abnormalities within these regions 
suggest a possible relationship with the pleural effusions and 
atelectasis, as fluid accumulation and lung collapse can lead to changes in 
lung opacity and may be interrelated, with one potentially exacerbating the 
other."

Structure
Detection

Modality

ROI 
Analysis

Lesion
Texture

Local-global
Relation

GPT-4V
Rating

GPT-4V Rating Response:
Based on the provided information and the image, here is the scoring for the multigranular radiology report annotations A compared to the original correct 
report B:
1. Modality Used for Imaging:   - Report A mentions a "chest radiograph," which is consistent with the image provided and aligns with the 
expected modality for such findings. - Score: 2 points
2. Specify the Organ and Anatomical Structures:   - Report A correctly identifies the heart, lungs, major blood vessels, endotracheal tube, and right 
internal jugular vein catheter. These structures are also mentioned in report B and are visible in the image. - Score: 2 points
3. Locations of ROI (Regions of Interest):  - Report A specifies the ROIs with horizontal and vertical positions and area ratios that match those in 
report B. The image analysis confirms the locations of these ROIs. - Score: 2 points
4. Analysis of Abnormal Characteristics:   - Report A describes moderate cardiomegaly, diffuse opacities in the right lung, potential pleural effusions, 
and left retrocardiac atelectasis, which are all consistent with the findings in report B and the image.- Score: 2 points
5. Comparison of Lesions and Surrounding Regions:   - Report A compares the abnormalities in the left and right hemithorax and suggests a 
possible relationship with pleural effusions and atelectasis, which is consistent with the findings in report B and the image. - Score: 2 points
Final scores: [2, 2, 2, 2, 2].No points are deducted as all attributes in Report A are consistent with the findings in Report B and the image 
provided.

Human Annotations Multigranular Annotations

annotations. An example of perfect alignment score results evaluated by GPT-4V is shown in
Figure 11. In these examples, GPT-4V fully aligned with human annotations across all five criteria,
resulting in perfect alignment scores.

The prompt used to query GPT-4V for evaluating the alignment score is shown in Figure 14 of
supplementary.

4 LLaVA-Med++: Experimental Training with MedTrinity-25M

To further demonstrate the validity of our dataset, we compare the performance of LLaVA-Med++ with
and without training on our dataset. We select Visual Question Answering (VQA) as the evaluation
task, which requires models to learn detailed visual and language representations. We assessed the
performance of our model on three biomedical VQA datasets: VQA-RAD [42], SLAKE [22] and
PathVQA [45].

We initially pretrained LLaVA-Med++ using the methodology of LLaVA-Med [9] as our baseline.
Subsequently, for each VQA dataset evaluation, we further pretrained our model on the corresponding
MedTrinity-25M subset to achieve multigranular alignment. The model was then fine-tuned on VQA
datasets for three epochs, with performance results presented in Table 3. A comparative experiment
was conducted without pretraining on MedTrinity-25M , maintaining all other settings. Results
clearly demonstrate that LLaVA-Med++ achieves state-of-the-art performance in two of the three
VQA benchmarks and ranks third in the remaining one. Pretraining on MedTrinity-25M exhibits
performance improvements of approximately 10.75% on VQA-RAD, 6.1% on SLAKE, and 13.25%
on PathVQA compared to the model trained without pretraining on it. This enhancement underscores
the efficacy of pretraining on MedTrinity-25M for downstream multimodal medical tasks, particularly
in visual question answering.
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VQA-RAD SLAKE PathVQA
Method Ref Open Closed Ref Open Closed Ref Open Closed
Supervised finet-tuning results with our own experiment runs
GPT-4V [2] 39.5 78.9 33.6 43.6 - -
LLaVA 50.0 65.1 78.2 63.2 7.7 63.2
LLaVA-Med 55.5 66.5 70.6 54.5 35.9 89.2
LLaVA-Med++(Ours, w/o) 64.6 77.0 79.3 84.0 55.0 94.0
LLaVA-Med++(Ours, w/) 77.1 (+ 12.5) 86.0 (+ 9.0) 86.2 (+ 6.9) 89.3 (+ 5.3) 66.5 (+ 11.5) 99.0 (+ 5.0)
Representative & SoTA methods with numbers reported in the literature
VL Encoder–Decoder [46] 71.5 82.5 71.5 85.6
Q2ATransformer [47] 79.2 81.2 54.9 88.9
Prefix T. Medical LM [48] 84.3 82.0 40.0 87.0
PubMedCLIP [49] 60.1 80.0 78.4 82.5
BiomedCLIP [50] 67.6 79.8 82.1 89.7
M2I2 [51] 66.5 83.5 74.7 91.1 36.3 88.0

Table 3: Comparison with Existing Supervised Methods.The notation w/ and w/o indicate
models with and without pretraining on MedTrinity-25M, respectively. Employing multigranular
alignment pretraining on MedTrinity-25M, LLaVA-Med++achieves state-of-the-art performance in
two of the three VQA benchmarks and ranks third in the remaining one. Our model surpasses both
multimodal large language models and other representative SoTA approaches.

5 Conclusion

This paper introduces MedTrinity-25M, a large-scale multimodal medical dataset comprising over
25 million image-ROI-description triplets sourced from more than 90 online resources, spanning
10 modalities and covering over 65 diseases. Unlike existing dataset construction methods that rely
on image-text pairs, we have developed the first automated pipeline to scale up multimodal data by
generating multigranular visual and textual annotations from unpaired image inputs, leveraging expert
grounding models, retrieval-augmented generation techniques, and advanced MLLMs. MedTrinity-
25M’s enriched annotations have the potential to support a wide range of multimodal tasks, such as
captioning, report generation, classification, and segmentation, as well as facilitate the large-scale
pre-training of multimodal medical AI models.
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Gwoździewicz, et al. Mama-mia: A large-scale multi-center breast cancer dce-mri bench-
mark dataset with expert segmentations. arXiv preprint arXiv:2406.13844, 2024.

15

http://arxiv.org/abs/2003.10778
http://arxiv.org/abs/2403.17834
http://arxiv.org/abs/2308.01982
http://arxiv.org/abs/2402.17246
http://arxiv.org/abs/2406.13844


[71] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and Ronald M
Summers. ChestX-Ray8: Hospital-scale chest x-ray database and benchmarks on weakly-
supervised classification and localization of common thorax diseases. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE, July 2017.

[72] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and Ronald M
Summers. ChestX-Ray8: Hospital-scale chest x-ray database and benchmarks on weakly-
supervised classification and localization of common thorax diseases. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE, July 2017.

[73] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and Ronald M Sum-
mers. ChestX-ray: Hospital-scale chest x-ray database and benchmarks on weakly supervised
classification and localization of common thorax diseases. In Deep Learning and Convolutional
Neural Networks for Medical Imaging and Clinical Informatics, Advances in computer vision
and pattern recognition, pages 369–392. Springer International Publishing, Cham, 2019.

[74] Masayuki Tsuneki and Fahdi Kanavati. Inference of captions from histopathological patches. In
International Conference on Medical Imaging with Deep Learning, pages 1235–1250. PMLR,
2022.

[75] Masakata Kawai, Noriaki Ota, and Shinsuke Yamaoka. Large-scale pretraining on pathological
images for fine-tuning of small pathological benchmarks. In Workshop on Medical Image
Learning with Limited and Noisy Data, pages 257–267. Springer, 2023.

[76] Yuri Tolkach, Lisa Marie Wolgast, Alexander Damanakis, Alexey Pryalukhin, Simon Schallen-
berg, Wolfgang Hulla, Marie-Lisa Eich, Wolfgang Schroeder, Anirban Mukhopadhyay, Moritz
Fuchs, et al. Artificial intelligence for tumour tissue detection and histological regression
grading in oesophageal adenocarcinomas: a retrospective algorithm development and validation
study. The Lancet Digital Health, 5(5):e265–e275, 2023.

[77] Jason J Lau, Soumya Gayen, Asma Ben Abacha, and Dina Demner-Fushman. A dataset of
clinically generated visual questions and answers about radiology images. Scientific data,
5(1):1–10, 2018.

[78] Carsen Stringer and Marius Pachitariu. Cellpose3: one-click image restoration for improved
cellular segmentation. bioRxiv, pages 2024–02, 2024.

[79] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 9650–9660, 2021.

[80] N. Gaggion, C. Mosquera, M. Aineseder, L. Mansilla, D. Milone, and E. Ferrante. CheXmask
Database: a large-scale dataset of anatomical segmentation masks for chest x-ray images
(version 0.1). https://doi.org/10.13026/dx54-8351, 2023.

16

https://doi.org/10.13026/dx54-8351


Appendix

Supplementary material

We present the following items in the supplementary material section:

1. Data source about MedTrinity-25M. (Section A)
2. Quantitative comparison between GPT-4V and LLaVA-Med Captioner (Section B).
3. Example of ROI for normal regions (Section C).
4. The list of expert ROI models (Section D).
5. Prompt for evaluating MedTrinity-25M alignment with human annotations (Section E).
6. Prompt for generating MedTrinity-25M. (Section F).
7. A Datasheet [52] for MedTrinity-25M (Section G).

A Data Source

Table 4: Data sources for MedTrinity-25M from various medical image datasets, detailing their
modalities, biological structures, quantities, and annotations.

Dataset Name Modality Biological
Structures Quantity Text Disease

Type BBox Mask

BHX[53] MRI brain 973908 ✗ ✗ ✗ ✓
BRATS24-MICCAI[54] MRI brain 2535132 ✗ ✗ ✓ ✗
BRATS-ISBI[55] MRI brain 987340 ✗ ✗ ✓ ✗
breast histopathology[56, 57]Histopathology breast 547403 ✗ ✓ ✗ ✗
BreastCancer[58] Histopathology breast 1824 ✗ ✗ ✓ ✗
CheXpert[7] X-Ray lung 183242 ✗ ✓ ✗ ✗

CISC[59] Histopathology

Adrenal,
Bile duct,
Bladder,
Breast,
Colon,
Cervix,
Esophagus
Kidney,
Liver,etc

16285 ✗ ✓ ✓ ✗

CPD[60] Histopathology skin 204 ✗ ✗ ✓ ✗

CT-RATE[61] CT

lung,
liver,
mediastinum,
kidney,
heart, etc.

3869640 ✓ ✗ ✗ ✗

DeepLesion[40] CT

bone,
abdomen,
mediastinum,
liver,
lung,
kidney,
soft tissue,
pelvis

2889672 ✗ ✗ ✗ ✓
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Table 4 : Continued from previous page

Dataset Name Modality Biological
Structures Quantity Text Disease

Type BBox Mask

FLARE23[62] CT

Liver,
kidney,
spleen,
pancreas,
Aorta,
adrenal gland,
Gallbladder,
esophagus,
stomach,
duodenum,etc.

13770 ✗ ✓ ✓ ✗

ihc4bc[63] Microscopy cell 102535 ✗ ✓ ✗ ✗

KIPA22[64, 65, 66, 67] CT kidney,
cervix 26878 ✗ ✗ ✓ ✗

LLaVA-Med[68]

CT,
MR,
Endoscopy,
X-Ray,
Ultrasound,
Histopathology,
Dermoscopy,
Microscopy,
Fundus,
PET

cell, rib,
tissue,
face,
brain,
vascular,
liver,
bone,
lymph, etc.

22550 ✓ ✗ ✗ ✗

LLD-MMRI[69] MRI liver 21523 ✗ ✗ ✓ ✗
MAMA-MIA[70] MRI breast 316113 ✗ ✗ ✓ ✗
MIMIC-CXR-JPG[8] X-Ray lung 240506 ✓ ✓ ✗ ✓
NCT-CRC-HE-100K[43] Histopathology colon 100361 ✗ ✓ ✗ ✗
NIH-CXR[71, 72, 73] X-Ray lung 986 ✗ ✗ ✗ ✓
PadChest[6] CT lung 96284 ✓ ✗ ✗ ✗
PatchGastricADC22[74] MRI brain 98399 ✗ ✓ ✗ ✗

Path-VQA training[45] Pathology

gastrointestinal,
colon,
appendix,
pinworm,etc.

13375 ✓ ✓ ✗ ✗

PMC-OA[24]

CT,
MR,
Endoscopy,
X-Ray,
Ultrasound,
Histopathology,
Dermoscopy,
Microscopy,
Fundus,
PET

cell,
tissue,
vascular,
brain,
bone,
liver,
lymph,
eye,
epithelium, etc.

856999 ✓ ✗ ✗ ✗

PMC-VQA[28]

CT,
MR,
Endoscopy,
X-Ray,
Ultrasound,
Histopathology,
Dermoscopy,
Microscopy,
Fundus,
PET

cell,
brain,
tissue,
artery,
bone,
face,
rib,
vascular,
liver,
eye, etc.

144999 ✓ ✗ ✗ ✗

PTCGA[75] Histopathology

brain,
breast,
uterine corpus,
kidney,
lung,
thyroid

3293965 ✗ ✓ ✓ ✗
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Table 4 : Continued from previous page

Dataset Name Modality Biological
Structures Quantity Text Disease

Type BBox Mask

Quilt-1M[10] Histopathology

skin,
lung,
soft tissue,
blood,
kidney,
bone, etc.

643819 ✓ ✗ ✗ ✗

SAMMed-20M[44]

X-Ray,
PET,
CT,
MR,
Endoscopy,
dermoscopy

brain,
kidney,
liver,
lung,
pancreas,
pulmonary,
hepatic,
skin, etc.

5491274 ✗ ✓ ✓ ✗

SLAKE training[22]
CT,
MRI,
X-Ray

brain,
liver,
kidney,
pelvic,
lung

646 ✓ ✓ ✓ ✗

TCGA[75] Histopathology tissue 1142221 ✗ ✗ ✓ ✗

ULS23 CT

lung,
lymph nodes,
bladder,
brain,
colon,
kidney,
lung,
pancreas.

105669 ✗ ✗ ✓ ✗

VALSET[76] Histopathology oesophagus,
stomach 277565 ✗ ✓ ✗ ✗

VQA-RAD training[77] X-Ray,
MRI

brain,
lung,
abdomen,etc.

1758 ✓ ✓ ✗ ✗

Total 25016845

B Quantitative Comparison of LLaVA-Med++ with GPT-4V

As detailed in Section 3.2.2 of the main paper, we developed an enhanced version of LLaVA-Med [9], called
LLaVA-Med++. This enhancement leverages the latest LLaMA3 [36] to boost linguistic capabilities and
incorporates multi-scale feature extraction [37] to improve vision capabilities.

To justify the selection of our specialized medical model, LLaVA-Med++, over GPT-4V for generating textual
descriptions, we conducted a quantitative comparison of the outputs generated by both models. We assessed
the level of detail by comparing the average word count of text descriptions generated for the same sample. As
shown in Figure 12, LLaVA-Med++, after task-specific fine-tuning, outperformed GPT-4V by 3.6% in word
count, indicating that the descriptions generated by LLaVA-Med++ are more detailed. Based on these findings,
we selected LLaVA-Med++ to generate fine-grained captions for our entire MedTrinity-25M.

Figure 12: Qualitative comparison of the relative average word count of samples generated by
LLaVA-Med++ and GPT-4V.
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Figure 13: Examples of ROIs for normal regions.

(a) A no infection sample from MIMIC-CXR.
The ROIs highlight the left and right lungs.

(b) A healthy sample from SLAKE. The ROI
points out the liver.

Table 5: List of expert models used to generate ROIs for different datasets.
ID Dataset Name Model

1 breast histopathology

HoverNet [78]

2 BreastCancer
3 CISC
4 CPD
5 NCT-CRC-HE-100K
6 PTCGA
7 TCGA
8 VALSET
9 ihc4bc
10 Quilt-1M

11 CT-RATE SAT [29]

12 PMC-OA

DINO [79]13 PMC-VQA
14 LLaVA-Med
15 Path-VQA training

16 PadChest
CheXmask [80] [31]17 MIMIC-CXR-JPG

18 CheXpert

C Examples of ROIs for Normal Regions

As detailed in Section 3.1 of the main paper, the regions of interest (ROIs) identified using expert grounding
models predominantly contain pathological findings such as lesions, inflammation, neoplasms, infections, or
other potential abnormalities. In the few instances where no abnormalities are present, the ROIs typically
highlight the primary object or organ in the image. Examples of ROIs without abnormalities are shown in
Figure 13.

D List of Expert models to locate ROIs

As detailed in Section 3.2.1 of the main paper, for datasets lacking localization information such as segmentation
masks and bounding boxes, we employ various pretrained expert models to identify the ROIs. The specific
expert models used for each dataset are listed in Table 5.

E Evaluation Prompt of Alignment to Human Annotations

The prompt used to query GPT-4V for evaluating the alignment score is shown in Figure 14.
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Figure 14: Prompt used to evaluate the alignment of generated fine-grained captions.

Let's think it step by step. Evaluate the multigranular radiology report annotations (Repor
t A) compared to the radiology report B step by step. Both reports are based on the same i
mage. Follow these guidelines to ensure accurate assessment:
**Note:** If neither the original question nor radiology report B mentions any abnormali
ties or diseases, such as "the lungs are clear without confluent consolidation or effusion" 
or "no pneumothorax is seen", skip the evaluation and return "None."
### Basic Rating Rules:
1. Evaluate each attribute in Report A against radiology report B and verify the informati
on by analyzing the image. Do not deduct points without image analysis.
2. Judge correctness based on the accuracy of medical facts and diagnoses, not on the exa
ct alignment of sentence structure or organization.
3. If radiology report B does not mention any abnormalities or diseases, skip the evaluati
on and return "None," such as "the lungs are clear without confluent consolidation or effu
sion" or "no pneumothorax is seen".
4. Each of the 5 attributes should be judged independently. Errors in one attribute should 
not affect the scoring of other attributes.
### Attributes and Corresponding Rating Rules:
1. **Modality Used for Imaging:**
- **Rating Rule:** Compare with radiology report B. Different names for the same moda
lity (e.g., "chest X-ray" and "CXR") are acceptable.
2. **Specify the Organ and Anatomical Structures:**
- **Rating Rule:** Check if the organs and anatomical structures in Report A match thos
e in radiology report B or appear in the image.
    - Mentioned in both: 2 points
    - Mentioned in one: 1 point
    - Not mentioned in either: 0 points
    - Do not deduct points without image analysis.
3. **Locations of ROI (Regions of Interest):**
- **Rating Rule:** Compare the "horizontal" and "vertical" positions, and the "area ratio
" of ROIs with radiology report B. A 5% error in the area ratio is acceptable. If Report A 
includes at least one ROI from radiology report B, no points are deducted, even if all ROI
s are not covered.
4. **Analysis of Abnormal Characteristics:**
- **Rating Rule:** Characteristics indicating pathology should match those in radiology 
report B or appear in the image.
    - Mentioned in both: 2 points
    - Mentioned in one: 1 point
    - Not mentioned in either: 0 points
    - Do not deduct points without image analysis.
5. **Comparison of Lesions and Surrounding Regions:**
- **Rating Rule:** Differences in features and disease progression should match those in 
radiology report B or appear in the image.
    - Mentioned in both: 2 points
    - Mentioned in one: 1 point
    - Not mentioned in either: 0 points
    - Do not deduct points without image analysis.
**Note:** Return the scores in a list. For example, if attributes 4 and 5 get deducted 1 po
int each, while others score 2 points each, return [2, 2, 2, 1, 1]. Provide a short reason (wi
thin 80 words) for each point deduction.

Prompting MLLMs to evaluate the alignment of generated 
multi-granular annotations with human annotations
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caption_template = Template('''<image>
`Caption of the image`:{{caption}}
`Disease or organ`:{{disease}}
`Specific position`:{{descs}}
`Knowledge`:{{knowledge}}
You are provided with a biomedical image from a medical dataset,the disease type (or organ na
me if there is no disease) of the dataset(`Disease or organ`),the medical Knowledge of the diseas
e(`Knowledge`) and a coarse caption(`Caption`) of the image.In addition,the green bounding bo
x and its specific position in the image(`Specific position`)are given,indicating appearance of dis
ease.If no green bounding box,there is no disease.
Your task is to answer the following questions based on the image, green bounding box, caption, 
disease type and disease knowledge,and condense your answers into caption-styled text. 
### question1
Give me a detailed description of the image, including type of the image,organs in the image,app
roximate location of these organs and relavant locations of these organs and any medical devices 
(if present) visible in the image as detailedly as possible.
Note when answering question1:
1. Not all disease knowledge is relevant to this image; only utilize disease knowledge pertinent t
o the condition depicted in this image for analysis.
2. The coarse caption may not explicitly describe the image,for example,there may appear multi
ple organs in the caption.You should utilize your knowledge to figure out the most ONE organ a
nd ONE disease to give your description.
3. Your answer should not contain anything about the green bounding box like the contour itself 
and its outline.
4. Do not explain or emphasize your analysis.
### question2
Specify the specific location of the green bounding box in the image and its relative position to o
ther reference objects in the image.Describe what is unusual in the green bounding box indicatin
g the disease（color,texture,size and other features）.
Note when answering question2:
1. "specific location" is the given parameter `Specific position` but "relative position"is not prov
ided.
2. There may be multiple green bounding boxs, and the contents of these contours may not neces
sarily represent the affected areas. Therefore, you need to first answer the questions based on the 
contents within each green bounding box. Afterward, analyze the location of the disease based o
n your answers.
3. Do not use phrase "green bounding box" in your response,use "region of interest" as a substitu
tion.Do not contain phrases "caption","medical annotation","medical knowledge".
4. Do not say anything that is not needed in your analysis,like introduction of the disease and me
dical equipments.
5. Do not explain or emphasize your analysis.
### question3
What may be the relationship between the content in the green bounding box and other regions
(others being cause of the disease/jointly affected by the diseases/one affect the others/relative p
ositional relationships)?Why and is it possible?
Note when answering question3:
1. Utilize external knowledge,if possible,to choose relationships and give necessary analysis.
2. You can only give an explanation to your choice within two sentence.
3. Do not summarize what you've said.
4. Do not emphasize your analysis.
### Integrate Information
Describe your answers in a descriptive sentence,not in a"Question-Answer" style.Combine and s
lightly shorten your answers to the above three questions into a coherent text,keeping as much in
formation of your answers as possible.
Note when integrating information and outputing your response:
1. Don't respond saying you're unable to assist with requests.
2. You should only output your combined and shorteded text.      
''')
prompt = caption_template.render([caption,disease,knowledge,loc_descs])

Prompting MLLMs to generate multigranular textual description
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F Prompt Template for Generation of Multigranular Text Description

To generate multigranular textual descriptions, we design a multi-task prompting approach, breaking down this
task into several smaller descriptive tasks. The model’s responses to these different tasks collectively form the
final fine-grained text description.

appendix F illustrates our prompt template consisting of a three-level hierarchical framework with questions to
instruct MLLMs:

Step 1 - Global Understanding: Instruct MLLMs to provide a comprehensive description of the image, de-
tailing all modalities, identified anatomical structures, and their approximate locations. This step ensures that
MLLMs gains an overarching understanding and basic information about the image.

Step 2 - Local Analysis: Instruct MLLMs to conduct a detailed analysis of the regions of interest (ROI), including
their locations, abnormalities, and textures. This step guides MLLMs to focus on specific lesions for a thorough
assessment.

Step 3 - Local-Global Relationship: Instruct MLLMs to examine the relationship between local and global
regions and predict how the surrounding areas will be affected by the lesions in the ROI. This step aims to
understand the interaction between local and global attributes, assessing the impact of local abnormalities on the
entire organ for accurate disease diagnosis.

G Datasheet for MedTrinity-25M

In this section, we present a DataSheet [52] for MedTrinity-25M, synthesizing many of the other analyses we
performed in this paper.

1. Motivation For Datasheet Creation

• Why was the dataset created? The dataset was created to provide a large-scale, multimodal,
multigranular medical dataset to support a wide range of multimodal tasks such as captioning,
report generation, classification, and segmentation. It aims to facilitate large-scale pre-training of
multimodal medical AI models by providing enriched annotations from unpaired image inputs.

• Has the dataset been used already? Yes. Multigranular annotations enable a wide range of
tasks like Medical Visual Question Answering, which we discuss in Section 4.

• What (other) tasks could the dataset be used for? The MedTrinity-25M dataset could be
used for multiple medical imaging tasks such as classification, segmentation, detection, and
medical report generation. Its extensive and detailed annotations make it suitable for training
and evaluating machine learning models across these tasks.

• Who funded dataset creation? This work is partially supported by the OpenAI Researcher
Access Program, AWS Cloud Credit for Research Program, TPU Research Cloud (TRC) program
and Google Cloud Research Credits program.

2. Data composition

• What are the instances? Each instance in the dataset is a triplet consisting of an image, a
Region of Interest (ROI), and a multigranular textual description. The ROI is associated with
abnormalities and represented by bounding boxes or segmentation masks.

• How many instances are there? The dataset comprises over 25 million image-ROI-description
triplets sourced from more than 90 online resources, spanning 10 modalities and covering over
65 diseases.

• What data does each instance consist of? Each instance consists of a medical image, a
corresponding ROI (highlighting abnormalities within the image), and a detailed, multigranular
textual description that includes disease/lesion type, modality, region-specific description, and
inter-regional relationships.

• Is there a label or target associated with each instance? Yes, the textual description serves as
a detailed label or target, providing information about the disease or lesion type, as well as other
relevant medical details.

• Is any information missing from individual instances? No.
• Are relationships between individual instances made explicit? Not applicable – we do not

study relationships between disparate medical samples.
• Does the dataset contain all possible instances or is it a sample?

Our generation pipeline includes all instances collected from available medical data sources.
However, the current list of medical dataset sources is not exhaustive, indicating a high probability
of collecting additional instances in the future.
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• Are there recommended data splits (e.g., training, development/validation, testing)? There
are no recommended data splits, as this data was curated mainly for pretraining rather than
evaluation.

• Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide
a description. Yes. Despite multiple efforts to minimize errors using coarse captions and
external medical knowledge, the textual descriptions generated by MLLMsmay still contain
inaccuracies.

• Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? The dataset is largely self-contained. However, it
was constructed using data from over 90 online resources such as TCIA, Kaggle, Zenodo, and
Synapse. The images and related data were collected from these sources, but the dataset itself
does not rely on external resources like websites or tweets for its primary functionality once
compiled.

3. Collection Process

• What mechanisms or procedures were used to collect the data? The data collection involved
an automated pipeline that scales up multimodal data by generating multigranular visual and
textual annotations from unpaired images. Data was collected from over 90 different sources,
preprocessed, and grounded using domain-specific expert models to identify ROIs related to
abnormal regions.

• How was the data associated with each instance acquired? Was the data directly observable
(e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly
inferred/derived from other data?
The data associated with each instance was indirectly inferred and derived from the collected
images using domain-specific expert models and multimodal large language models (MLLMs).
The images were annotated with bounding boxes, segmentation masks, and textual descriptions,
transforming them into image-ROI-description triplets.

• If the dataset is a sample from a larger set, what was the sampling strategy (e.g., determin-
istic, probabilistic with specific sampling probabilities)? The dataset is not a sample from a
larger set but an extensive collection aggregated from multiple datasets and online sources. The
strategy was to include as many diverse images and annotations as possible from a wide range of
medical datasets.

• Who was involved in the data collection process (e.g., students, crowdworkers, contractors)
and how were they compensated (e.g., how much were crowdworkers paid)? Data collection
was primarily done by the co-authors of this paper.

• Over what timeframe was the data collected? Does this timeframe match the creation
timeframe of the data associated with the instances (e.g., recent crawl of old news articles)?
If not, please describe the timeframe in which the data associated with the instances was
created. The data was collected from April 2024 to June 2024.

4. Data Preprocessing

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, pro-
cessing of missing values)? Extensive preprocessing and annotation were performed, including
segmentation, bounding box creation, and generating multigranular textual descriptions. The
preprocessing also involved integrating metadata and knowledge retrieval from sources like
PubMed to create comprehensive descriptions.

• Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)? If so, please provide a link or other access point to the
‘raw’ data. The raw data was saved, but at this time we do not plan to release it directly due to
copyright and privacy concerns.

• Is the software used to preprocess/clean/label the instances available? If so, please pro-
vide a link or other access point. The software for preprocessing and labeling, including
the automated pipeline and MLLMs, is available at https://github.com/yunfeixie233/
DataProcessingSystem.

• Does this dataset collection/processing procedure achieve the motivation for creating the
dataset stated in the first section of this datasheet? If not, what are the limitations? Yes. The
preprocessing and collection procedures align with the motivation of creating a comprehensive,
large-scale multimodal dataset to support the development of advanced medical AI models. The
dataset’s multigranular annotations enable a wide range of tasks like Medical Visual Question
Answering, which we discuss in Section 4.

5. Dataset Distribution
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• How will the dataset be distributed? The dataset is publicly available and can be
accessed via the provided link: MedTrinity-25M https://yunfeixie233.github.io/
MedTrinity-25M/.

• When will the dataset be released/first distributed? What license (if any) is it distributed
under? We will release it as soon as possible, using a permissible license for research-based use.

• Are there any copyrights on the data? We believe our use is ‘fair use,’ however, due to an
abundance of caution, we will not be releasing any of the videos themselves.

• Are there any fees or access restrictions? No.

6. Dataset Maintenance

• Who is supporting/hosting/maintaining the dataset? The first authors of this paper.
• Will the dataset be updated? If so, how often and by whom? We do not plan to update it at

this time.
• Is there a repository to link to any/all papers/systems that use this dataset? Not right now,

but we encourage anyone who uses the dataset to cite our paper so it can be easily found.
• If others want to extend/augment/build on this dataset, is there a mechanism for them to

do so? Not at this time.

7. Legal and Ethical Considerations

• Were any ethical review processes conducted (e.g., by an institutional review board)? No
official processes were done, as our research is not on human subjects, however, because the
dataset is in the medical domain we had significant internal discussions and deliberations when
choosing the scraping strategy.

• Does the dataset contain data that might be considered confidential? The dataset does not
contain data that might be considered confidential, as it uses publicly available sources and
anonymized medical data.

• Does the dataset contain data that, if viewed directly, might be offensive, insulting, threat-
ening, or might otherwise cause anxiety? If so, please describe why? The dataset does not
contain data that might be offensive, insulting, threatening, or anxiety-inducing. It consists of
medical images and associated annotations for clinical and research use.

• Does the dataset relate to people? The dataset relates to people as it involves medical images
and data. However, it is anonymized and does not include identifiable information.

• Does the dataset identify any subpopulations (e.g., by age, gender)? Not explicitly (e.g.
through labels)

• Is it possible to identify individuals (i.e., one or more natural persons), either directly or
indirectly (i.e., in combination with other data) from the dataset? The dataset does not
identify specific subpopulations directly in the provided description. Additionally, it is not
possible to identify individuals from the dataset as it is anonymized and compiled from various
sources.
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