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ABSTRACT

Foundation models are rapidly being developed for computational pathology applications. However,
it remains an open question which factors are most important for downstream performance with data
scale and diversity, model size, and training algorithm all playing a role. In this work, we present
the result of scaling both data and model size, surpassing previous studies in both dimensions, and
introduce two new models: Virchow 2, a 632M parameter vision transformer, and Virchow 2G, a
1.85B parameter vision transformer, each trained with 3.1M histopathology whole slide images. To
support this scale, we propose domain-inspired adaptations to the DINOv2 training algorithm, which
is quickly becoming the default method in self-supervised learning for computational pathology. We
achieve state of the art performance on twelve tile-level tasks, as compared to the top performing
competing models. Our results suggest that data diversity and domain-specific training can outper-
form models that only scale in the number of parameters, but, on average, performance benefits from
domain-tailoring, data scale, and model scale.

1 Introduction

Stained tissue microscopy slides, also known as whole slide images (WSIs), are routinely collected as part of the
standard of care in cancer. The digitization of these slides, at increasingly large scales, has enabled a revolution in
computational pathology (CPath) towards the use of foundation models. The interest in and success of foundation
models are primarily driven by the ability to learn general representations from vast amounts data that include diverse
stains, tissue types, and disease without task-specific labels via self-supervised learning approaches. The use of these
models represents a paradigm shift in CPath, where previously, expert systems were trained on a single tissue type
with expensive, curated labels for a single task. The generalizability and robustness of a foundation model is therefore
desirable for the pathology domain as there are many tasks such as diagnosis, disease subtyping, biomarker quantifi-
cation, estimation of treatment response, and survival prediction. Motivated by these factors, there have been recent
efforts to collect large pathology image datasets and subsequently several foundation models have been proposed
[53, 17, 3, 12, 50, 21, 24, 57].

Scaling up the dataset and model size has been observed to significantly boost the performance and transferability
of foundation models in other domains [34, 60, 41]. In the natural image domain, foundation models use millions of
images (e.g. ImageNet [20], JFT-300M [47] and LVD-142M [42]) to train models with hundreds of millions to billions
of parameters (e.g. ViT [22]). Early works [12, 50] have suggested these trends exist in CPath as well, both in terms
of dataset and model size, however the topic remains underexplored. Furthermore, the extent to which scaling trends
observed in the natural image domain hold without adaptation to the unique aspects of CPath data is unknown.
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Figure 1: The average weighted F1 score across 8 tile-level benchmarks using public data is shown with respect to two
scaling axes: model size (left), in terms of the number of parameters, and dataset size (right), in terms of the number of
whole slide images (WSIs). Virchow 2 improves over Virchow with pathology-specific modifications to the training
method while scaling up the dataset from 1.5M to 3.1M WSIs, with increased diversity. Virchow 2G then scales the
model size from 632M to 1.8B parameters (ViT-H to ViT-G). Benchmark performance across foundation models in
pathology appears to scale with model and dataset size.

In this work, we explore scaling along both the data and model size axes, while adjusting the training method with
domain-inspired modifications. We present Virchow 2 and Virchow 2G, mixed magnification foundation models for
computational pathology. Virchow 2, a 632M parameter vision transformer (ViT-H) expands on our work developing
Virchow [50], scaling the dataset size from 1.5M WSIs from a single institution with routine hemotoxylin and eosin
(H&E) staining, to 3.1M WSIs from globally diverse institutions with diverse staining such as immunohistochemistry
(IHC). Virchow 2G builds on Virchow 2 by increasing the model size to 1.8B parameters (ViT-G).

We evaluate performance on various in-domain and out-of domain benchmarks at multiple magnifications and demon-
strate the benefits of our domain-inspired adaptations at scale.

2 Background & Related Work

2.1 Self-Supervised Learning

Self-supervision is a learning paradigm where generalizable features are learned from data using a pretext task, an
objective that is constructed from implicit information contained in an input. Joint-embedding self-supervised learn-
ing (JE-SSL) methods are a subclass of SSL approaches that pose the learning objective in terms of alignment and
diversity [7, 52]. Alignment is accomplished by encouraging features, otherwise known as embeddings, of pairs or
sets of samples generated from the same source image via the application of an augmentation policy to be close to one
another [13, 59, 5]. Diversity provides the necessary support to learn representations that avoid collapse or trivial so-
lutions across the entire set of observations [52, 14, 11, 25, 59]. These methods, in particular self-distillation variants,
have emerged as powerful techniques in no-tuning transfer, both in natural images and in CPath [25, 11, 42, 28, 50, 33].

2.2 CPath Foundation Models

In the past two years, at least ten CPath foundation models have been proposed in the literature (see Tab. A1 for an
overview). The CTransPath model [53] was the first and trained a 28M parameter Swin transformer model using
MoCoV3 [16] using 15M tiles from 32K WSIs. Since that time, two works [17, 3] have proposed models using
SimCLR [13], but the vast majority [24, 12, 50, 57, 40, 44, 21] have used DINOv2 [42] or the related iBOT [61].
The prevalence of DINOv2 appears to be largely motivated by its success with natural images as few studies have
released comparative analyses for the choice of algorithm. Kang et al. [33] compared four algorithms, DINO [11],
MoCo v2 [15], SwAV [10] and Barlow Twins [59] and found no clear best method. Conversely, Chen et al. [12] found
that the choice of algorithm has a large effect on performance, observing that MoCoV3 significantly underperformed
DINOv2 in CPath, despite the two approaches having comparable performance on natural image tasks.

Although CPath foundation models have largely aligned on their use of DINOv2, they are quite diverse in terms of
the training dataset. Earlier works [53, 17, 3, 24, 33] relied primarily on open access data, specifically The Cancer
Genome Atlas (TCGA) [55], a repository of approximately 30K WSIs. Models were trained using this data with
varying numbers of tile samples ranging from 4-50M. More recently [12, 21, 50, 44, 40, 31], proprietary datasets
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ranging from 100K-1M WSIs have emerged, allowing for training datasest sizes to reach billions of tiles. It is worth
noting that characterizing data scale in CPath is non-obvious as various works have quantified it in terms of WSIs,
tiles (crops of WSIs used for training), and patients. There are further data dimensions which are also of interest such
as source institution, disease status, tissue of origin, stain, and scanner.

3 Learning in the pathology domain

Unlike natural images, which are a 2D projection of a 3D scene, CPath images are acquired from essentially 2D slices
of tissue that are stained and scanned at various resolutions or magnifications (e.g. 5×, 10×, 20×, 40×) through
a digitization process. The resulting image features vastly differ from those found in the natural image domain, as
tissue patterns are repetitive, non-unique, pose-invariant, and contain meaningful but minimal color variation due
to routine staining procedures, such as H&E. CPath foundation models are trained with self-supervised learning on
tissue tiles, i.e. image crops, as WSIs are gigapixel images that are costly to train with directly. Tile size is selected
based on compute cost, and the quality of tile content can be highly variable. Despite these differences from the
natural image domain, most CPath foundation models have directly used training algorithms developed for natural
images and instead focus on the dataset as the primary differentiator. Given the crucial impact of augmentation,
algorithm, and model size on foundation model performance, we present modifications to the DINOv2 recipe at
scale. In the following sections, we address domain differences by adopting more domain-relevant augmentations and
regularization techniques through the lens of feature alignment and diversification.

3.1 Domain-specific augmentations

In the context of joint-embedding self-supervised learning, feature invariance and equivariance are learned through
selective alignment of image pairs, also known as views, that are generated by perturbing an input with a set of random
augmentations. The quality of features is dependent on the complexity of the pretext task as well as its relationship to
the downstream objective.
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Figure 2: a. Virchow 2 and 2G are trained with mixed magnification samples; slides are tiled at 40x, 20x, 10x, or 5x. b.
Illustration of the difference between standard crop-and-resize augmentation (top) and the proposed extended-context
translation (ECT) augmentation (bottom). ECT is expected to be more suitable for pathology images as it avoids
distorting the cell morphology. We tuned the ECT approach to retain the average overlap between crops (shaded, teal).
c. A diversity regularization objective seeks to push apart tile embeddings on a hypersphere (top). For Virchow 2
and 2G, we replace the unstable KoLeo regularizer used by Virchow with a kernel density estimator (KDE) that does
not produce exploding gradients for similar tiles (bottom), which is particularly important for pathology whole slide
images as they contain many highly correlated tiles.

Augmentations are typically categorized as either photometric or geometric, and most augmentation strategies have
been designed for object-centric natural images. In the majority of instances, these augmentations are directly applied
in pathology applications, but there are a small number of exceptions. Examples of pathology-specific photometric
augmentations include stain jitter and transfer [46, 26], where colors are augmented within and across tiles, aiming
to account for differences in staining protocols and facilitate the learning of color invariances. In benchmarking
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studies, Tellez et al. [48], Ciga et al. [17], and Gullapally et al. [26] investigated the impact of color augmentation
and demonstrated improvements in performance using domain-specific approaches. Since then, several models have
employed domain-orientated approaches [53, 33, 21]. However, the benefit of these augmentations when applied to
mixed stain datasets, e.g. datasets that contain IHC, is unclear. Other photometric augmentation methods such as
image solarization have been omitted in some CPath works [23, 33, 21], as this augmentation is hypothesized to
generate color profiles that are not useful for learning relevant invariances.

The random crop operation is arguably the most important geometric augmentation [39]. This augmentation introduces
feature co-occurrences within and across samples. These co-occurrences may be explicitly generated based on the
augmentation parameters which in turn govern the amount of expected overlap [27, 29] or implicitly generated based
on the data distribution. The crop augmentation is paired with a resize operation due to a fixed input size and a
desire for scale invariance (the resulting combination is referred to as crop-and-resize). As cell morphology plays an
important role in understanding tissue structure and disease, depending on the aspect ratio of the crop, a resize may
introduce unwanted distortions, affecting tissue and cell shapes. Indeed, Ciga et al. [17] investigated the impact of
random cropping on model performance and found less random cropping generally improved performance although
the largest observed improvement in any setting was 5%. Chen et al. [12] deviates from DINOv2’s default parameters
and explores less aggressive crop-and-resize scale parameters without changing aspect ratio. As noted above, one
unique aspect of pathology data is that tiles are sourced from larger WSIs. As a result of this workflow, image size is a
design variable and boundaries can be extended without the need for padding or resizing. Because of this, we propose
a translation-like augmentation that uses a larger source field of view to create crops with minimal resizing thereby
minimizing morphological distortions while maintaining the same output size and expected overlap between image
views. This operation differs from typical translations as it does not introduce imaging artifacts along boundaries, i.e.
padded values. It also benefits from extending the relative field-of-view of the WSI without computational overhead.
To demonstrate how this is possible, consider replacing the L×L-sized training tile with an N×N -sized source region
and a target L × L tile to be sub-sampled within the larger window, where N > L (see Fig. 2). The particular value
for N can be selected based on the desired intersection over union of views. This alternative augmentation, which
we refer to as extended-context translation (ECT), can serve as a drop-in replacement for traditional crop-and-resize
approaches and can be combined with other augmentations such as photometric augmentations.

3.2 Accounting for Tissue Redundancy

Self-supervised alignment tasks are inherently unstable and require additional regularization to encourage diversity
and avoid dimension collapse. DINOv2 encourages diversity through contrastive and non-contrastive objectives. Non-
contrastive diversity is achieved using asymmetric centered and sharpened distillation between the student and teacher
models, while contrastive diversity aims to maximize differential entropy using KoLeo. Different diversity regular-
ization objectives often share similar optima such as uniformity of the hypersphere; however, the dynamics of each
method throughout training are considerably different and introduce practical challenges that must be addressed.

Feature diversity is dependent on the training data distribution and training methodology. In CPath, the likelihood of
contrasting two similar tissue tiles may be high, unlike when contrasting images from large uncurated natural image
datasets. Therefore, any contrastive diversity estimators should be constructed under the assumption that features are
not independent, may be very close together, and cannot be arbitrarily separated. DINOv2 approximates differential
entropy using KoLeo defined as

HKoLeo(f) =
1

n

n∑
i=1

min
j ̸=i

log d(zi, zj), (1)

where i indexes the samples in a batch of size n, d is a distance measure and z is an embedding normalized to
the hypersphere [43]. The inclusion of an entropy maximization objective using KoLeo aims to spread out learned
embeddings via a convex regularizer. While this method has demonstrated value in natural image pretraining settings
for linear and nearest neighbour classification objectives where sample diversity is high [42], it is clear that when two
samples are very similar, and distance approaches zero, the loss approaches infinity. In practice, KoLeo is stabilized
with the addition of an ϵ > 0 and is implemented such that samples are not compared across devices. These factors
introduce numeric and hardware dependent hyperparameter that are unexplored.

Any entropy estimator can be used as an effective replacement in order to mitigate the issues associated with KoLeo in
a setting where features may be clustered, if the estimator is bounded for nearby points. We select the kernel density
estimator (KDE), defined as

HKDE(f) = − 1

n

n∑
i=1

log

n∑
j=1

k(zi, zj), (2)
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where k is an appropriate kernel function and all other terms are as defined above. Self-comparisons ensure the the gra-
dients are bounded. Similar objectives have been used in various other methods [58, 52]. The kernel density estimator
has different regularization effects for local behaviors, i.e. for samples with large and small distances, but maintains
the population effect of promoting diversity. Examples of kernels include Gaussian, von Mises-Fisher, inverse multi-
quadratic, or Laplacian kernel each of which allows for different repulsion characteristics that have bounded gradients
which can also vanish for a given pair. In our work, density estimation for entropy regularization is computed using
an unnormalized von Mises-Fisher (vMF) kernel,

kvMF(x,y) = exp(κx⊤y), (3)
where κ is a scaling constant also known as the concentration. The vMF kernel is selected because of its favorable
computational qualities and its demonstrated success in encouraging diverse embeddings [52, 8].

4 Stabilizing self-supervised vision transformers at scale

Vision transformers are notoriously challenging to train. Architecture based instability in self-supervised learning
protocols have been empirically correlated with high gradient norms occurring in the patch embedding layer at the
stem of the network for large batch sizes [16]. As model size is increased, large gradient norms become increasingly
problematic across layers of the ViT and partial failures may not be recoverable without the manual intervention of
a complete rollback prior to the event. This is costly, time consuming, and may not guarantee success. To address
the architectural challenges associated with training large models, dual patch normalization (DPN) [37] and query-key
normalization (QKN) [19] have been introduced in the literature and are adopted in our work. Both normalization
techniques aim to limit problematic gradients, aside from gradient clipping techniques, by standardizing activations
throughout the network. The inclusion of DPN circumvents the need to freeze the randomly initialized weights of the
linear projection in the patch embedding layer.

Optimizing ViTs requires adaptive methods like AdamW and its variations [? ]. The stability of AdamW depends
on the efficacy of the warm-up phase, on the learning rate, and on the selection of momentum parameters. Gradient
spikes have been correlated with the ratio of first and second moments for an update step which provide insights on
when a collapse event is likely to occur [38, 56]. For example, instability has been observed in the weights of the patch
embedding layer [16, 56]. It is possible to reduce these issues by lowering the second moment hyperparameter but this
may incur reduced downstream task performance. StableAdamW is explored as a means of stabilizing weight updates
when the ratio between the first and second moments are too large (such as when nearly converged weights suddenly
need a correction during a long training run) by mitigating large update steps with root-mean-square clipping [56].

Aside from architectural and optimization instability, self-supervised methods commonly suffer from partial or com-
plete dimension collapse as a result of the imbalance between alignment and diversity objectives. Like DINO, DINOv2
primarily avoids collapse over class and patch tokens using an asymmetric centered and sharpened cross-entropy loss
between the student and teacher networks. Stability over the distillation objective is highly dependent on the sharpness
of the distributions which is controlled by temperature parameters. DINO studied the effects of varying teacher tem-
perature for a fixed student temperature. Results demonstrated that higher teacher temperatures yield better transfer
performance but require a warm-up period to avoid collapse, whereas a lower choice of temperature produced marginal
performance drops with increased stability [11]. Moreover, registers [18] may be added mitigate the possibility of en-
countering high norm tokens as model size increases. High norm tokens are explored in object-centric settings where
background information is redundant and of lesser importance. In contrast, pathology image tiles filtered to the tissue
foreground have no such bias, thus the addition of registers is precautionary.

5 Ablations investigating learning in the pathology domain

We present an ablation study to evaluate modeling choices for the pathology domain. In order to understand the
performance impacts of various augmentations and regularization methods prior to model and data scaling, a sweep
is performed at a smaller scale on limited data to assess the viability of each technique. The goal of the ablation is to
gain better insights into how different elements of a complex training procedure are coupled, despite the possibility
that any performance gains or losses attributed to these changes may not be a factor at scale for long training horizons.
The axes of exploration are in terms of geometric and photometric augmentations through the use of crop-and-resize
and ECT, as well as the presence of solarization, while regularization is explored through the use of KoLeo and KDE.

5.1 Training data

The ablation training dataset is comprised of 1.5M H&E stained WSI from 120K MSKCC patients scanned at
5×, 10×, 20×, 40× resolutions across 17 tissue types (the original Virchow training set [50]). WSI are subdivided
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into 224 × 224 or 392 × 392 non-overlapping tiles and filtered to include a minimum tissue coverage of 45% as de-
termined by a hue, saturation, and value (HSV) filter with an acceptance criterion in ranges [90, 180], [8, 255], [103,
255], respectively.

5.2 Pretraining metholodology

A ViT-B/16 is trained using variations of DINOv2 [42] on 224 × 224 global views and 96 × 96 local views sampled
from image tiles. The method uses a batch size of 1024, a stochastic depth drop rate of 0.4, and the AdamW optimizer
with a learning rate equal to 2× 10−4 on a cosine schedule for approximately 112K iterations, or equivalently 115M
tiles sampled from the dataset detailed in section 5.1, using 16 Nvidia V100 GPUs. The student DINO and iBOT
temperature is set to 0.1 while the teacher temperature is warmed up from 0.04 to 0.07 over a period of 12K iterations.

The augmentation policy is composed of horizontal and vertical flips, grayscale, and color jitter, while the crop-and-
resize is interchanged with ECT. The crop-and-resize operation is applied to 224 × 224 tiles and follows the default
parameters used in DINOv2, which include scale ranges of (0.32, 1.0) and (0.05, 0.32) for global and local views with
an aspect ratio range of (0.75, 1.33). ECT is applied to regions of size 392× 392 pixels and uses a base scale range of
(0.9, 1.1) and aspect ratio range of (0.95, 1.05). The scale range is then adjusted using the relative ratio of the source
and target size for both global and local views.

Entropy regularization is performed using KoLeo, a differential method, or KDE, a resubstitution method. Density
estimation is performed using the vMF kernel and the concentration is set to 5 for all experiments based on empirical
results in the literature.

5.3 Tile benchmarks

A mix of seven in-distribution (ID) and out-of-distribution (OOD) tile level classification tasks across various mag-
nifications are used to evaluate the quality and separability of the learned features of the teacher network via a linear
probe protocol.

PanMSK XX× is an in-distribution cancer detection task performed at 5×, 10×, and 20× magnifications. 1,196,171
224 × 224 pixel tile samples, sourced from 3,999 WSI from MSKCC representing 17 tissue types, are labeled either
cancer or benign [50].

PCam is a public (PatchCamelyon) dataset of 327,680 lymph node images labeled as cancer or benign [6, 49]. Images
are upsampled from 96× 96 at 10× magnification to 224× 224 for analysis.

MHIST is a public dataset of 3152 colorectal polyp images (5× magnification 224 × 224 pixels) labeled benign or
precursor [54], used as a “minimalist histopathology image analysis dataset” (MHIST). Since a validation data split is
not provided, we randomly split 10% of the training set into a validation set.

CRC is a public dataset with colorectal cancer (CRC), composed of 100,000 colorectal images (20× magnification
224× 224 pixels) classified into 9 morphologies [35].

MIDOG is a binary mitotic cell detection task that we created from the public MItosis DOmain Generalization (MI-
DOG++) dataset, containing 21,806 mitotic and non-mitotic events labeled on 503 7K × 5K pixel WSI regions from
several tumor, species, and scanner types at 40× magnification [2, 50]. This data was converted into a binary clas-
sification task by expanding each 50 × 50 pixel annotation to 224 × 224 regions and then randomly shifting in the
horizontal and vertical regions such that the event is not centered in the tile. All negative instances that overlapped
with positive instances were removed from the dataset.

5.4 Linear evaluation protocol

Performance is assessed by training a linear classifier on z-score normalized frozen embeddings generated from non-
augmented samples. The classifier is trained with a batch size of 4096 using stochastic gradient descent with a cosine
learning rate schedule from 1 × 10−2 to 0 for a total of 12.5K iterations, to maximize convergence. The classifier
checkpoint achieving the lowest validation loss was selected for evaluation on a holdout test set. All benchmark
datasets are partitioned to include a validation set if not provided by the public resource. If no validation set exists, a
random split of 10% is created from the training set.

5.5 Ablation results

Tab. 1 presents the results of the ablation analysis. In a majority of tasks (5/7), using all three domain-inspired changes,
results in the best performance as well as the best average performance on in-distribution tasks. Using only ECT and
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KDE regularization has the best performance of 3/7 tasks and the highest average performance on out-of-distribution
tasks, although the gap with all three is only 0.002. Interestingly, we observe that using only ECT leads to a small
drop in performance while using only KDE regularization leads to a small improvement in performance on out-of-
distribution tasks. Combining the two leads to a pronounced improvement, as noted above. All changes improved
in-distribution tasks.

Geo.
Aug.

Phot.
Aug.

Reg.
PanMSK

20×
PanMSK

10×
PanMSK

5× PCam CRC MHIST MIDOG
ID

Avg.
OOD
Avg.

0.860 0.888 0.890 0.833 0.940 0.793 0.628 0.879 0.798
✓ 0.866 0.895 0.899 0.848 0.933 0.766 0.635 0.886 0.796

✓ 0.880 0.901 0.900 0.841 0.949 0.777 0.664 0.894 0.808
✓ ✓ 0.894 0.920 0.922 0.867 0.953 0.804 0.665 0.912 0.822
✓ ✓ ✓ 0.899 0.924 0.933 0.867 0.958 0.792 0.663 0.919 0.820

Table 1: Weighted F1 results for seven evaluation tasks and five model settings with a ViT-B/16. For each change, a
checkmark indicates a deviation from the standard DINOv2 training protocol. In-distribution evaluation tasks include
PanMSK XX, while out-of-distribution tasks include PCam, CRC, MHIST, and MIDOG. Boldface indicates the best
performance and italics indicates the second best performance. In a majority of tasks and on average, ECT, KDE, and
no solarization regularization performs best.

6 Results

We improve on the training recipe of Virchow with pathology specific tuning and scale up the training first along the
data axis (Virchow 2) and then along the model axis (Virchow 2G). We evaluate these models against other foundation
models in pathology on tile-level benchmark tasks.

6.1 Training data

Virchow 2 is trained on a dataset of 3.1M biopsy and resection WSIs processed from 225,401 patients across 5×,
10×, 20×, 40× magnifications, with both hematxylin and eosin (H&E) and immunohistochemical (IHC) staining.
This dataset extends the 1.5M WSI dataset that Virchow was trained on and is no longer restricted to 17 tissue types
(indeed, it contains nearly 200 recorded tissue types). In addition to samples collected by the Memorial Sloan Kettering
Cancer Center (MSKCC) 15% of the WSIs and 57% of the patients are sourced from diverse institutions worldwide
that submitted challenging cases to MSKCC for consultation.

Non-overlapping region tiles of size 392 × 392 pixels with at least 65% tissue by area are used for model training.
Note that Virchow 2 and Virchow 2G extract 224× 224 crops from these tiles. Tissue segmentation is performed with
a trained fully-convolutional network, with post processing via Otsu thresholding with thresholds of (0.4, 0.5).

Due to the long-tail nature of the data, balancing is explored in terms of tissue type, diagnosis, stain, and magnification.
Metadata is not complete for all samples and the presence of cancer, precursor, and neoplastic tissue does not imply the
lack of benign tiles within these large samples. Given these sources of noise, we aim to balance with the best available
data. Cancer is sampled at 40% and precursor is sampled at 15%, which closely matches the observed frequency
of precursor samples in the dataset (17.9%, where 12.3% contain both cancer and precursor and 5.6% contain only
precursor). Benign and benign non-neoplasms are sampled at approximately half their observed frequencies for a total
of 8%. Benign neoplasms are sampled at 2%. Samples with unknown diagnosis are sampled at 35% (see Fig. 2c
for the observed distribution). Tissue type balancing is performed to flatten out the distribution while maintaining
the proportion of IHC in an H&E dominant dataset. This approach primarily decreases the prevalence of breast and
increases the prevalence of tissues with small sample size and unknown tissue (see Fig. 3d). Magnification balancing
is performed to increase uniformity in batches during training under the assumption that each resolution may contain
unique feature sets that should be contrasted against one another. 40% of WSI do not have 40× magnifications,
therefore these slides are sample 1.5× more often than those which do not. Sampling of the magnifications is also
balanced to yield a final approximate distribution of 20%, 40%, 20%, and 20% for 40×, 20×, 10×, 5×, respectively.

6.2 Pretraining methodology

Two models are trained for a full schedule using insights from the ablations detailed in section 5.2. Both models
include ECT instead of crop-and-resize augmentations as well as KDE rather than KoLeo for diversity regularization.
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Figure 3: Overivew of the training dataset. a. A breakdown of the scale of the training dataset with 3.1M whole slide
images (WSIs), showing the distribution of slides with hemotoxylin and eosin (H&E) and immunohistochemical (IHC)
stains. b. The data are globally diverse, with 15% of the slides and 57% of the patients sourced from many institutions
across all continents. These slides were submitted to MSKCC for review. c. The distribution of most severe diagnoses
of the WSIs, in decreasing order of severity: cancer, precursor, benign, unknown. d. The top identified tissue types
shown as a fraction of the WSIs. There are over 150 additional tissue types in the long tail, summarized here as ‘Other
Tissues’ (shown gray, along with ‘Unknown Tissue’, on the right). Online data balancing when training Virchow 2G
affected these tissue distributions as shown by the magenta dotted line.

Global tiles of size 224× 224 pixels and local tiles of size 98× 98 are extracted from the 392× 392 extended context
source regions, following the DINOv2 multi-view recipe. Each model is trained on 512 Nvidia V100 GPUs. Further
configuration details are found in appendix A2.

Virchow 2, a ViT-H/14 with 4 registers, explores the effects of increased data scale and diversity across a mix of
magnifications paired with the algorithmic changes proposed. Virchow 2 is trained with solarization on a cosine
schedule and is optimized with AdamW for a base learning rate equal to 2 × 10−4 with a batch size of 4096 over a
total of 2B unbalanced tiles.

Following the modifications made to the ViT-g architecture to maximize compute efficiency [42], we introduce Vir-
chow 2G, a ViT-G/14 that adopts similar architectural changes. Virchow 2G increases the embedding dimension from
1,664 to 1,792 to be a multiple of 256 and increases the number of attention heads from 16 to 28 in order to have
64 dimensions per head. Additionally, Virchow 2G adopts additional normalization via DPN and QKN and has 8
registers. Virchow 2G is trained without solarization on a cosine schedule and is optimized with StableAdamW for a
base learning rate equal to 1× 10−4 and a batch size of 3072 over a total of 2B balanced tiles. For stability, the second
moment optimizer hyperparameter was reduced from 0.999 to 0.95. Additionally, both iBOT and DINO head teacher
temperatures are reduced from 0.07 to 0.04. Further configuration details are found in appendix A3.

6.3 Embedding generation

For a 224 × 224 input tile image, a Virchow embedding is defined as the concatenation of the class token and the
mean across all 256 of the patch tokens. This produces an embedding size of 2,560 (1,280 × 2) for Virchow, or 3,584
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(1,792 × 2) for Virchow 2 / 2G. The class token is used for H-optimus-0 [44], Prov-GigaPath [57], UNI [12], and
Phikon [24]. For CTransPath [53], the mean of all tokens is used as there is no class token.

6.4 Tile benchmarks

The benchmarking protocol is the same as described in Sec. 5.3. In addition to the aforementioned tasks, we add an
additional four out-of-distribution tasks.

CRC No-Norm is a variation of the CRC task where the testing set does not use Macenko stain normalization. This
simulates a distribution shift between the training or validation sets and the testing set.

WILDS is a public dataset (Camelyon17-WILDS) of 455,954 images, each at a resolution of 96 × 96 pixels at 10×
magnification upsampled to 224 × 224 derived from the larger Camelyon17 dataset [36]. The images are labeled to
indicate the presence or absence of tumor. The validation and testing data are from institutions not represented in the
training data.

DLBCL is a binary 5-year survival prediction task from the public DLBCL-Morph dataset containing 42 tissue mi-
croarrays from 209 Diffuse Large B-Cell Lymphoma (DLBCL) cases/patients, with H&E staining and five IHC stains
(CD10, BCL6, MUM1, BCL2, and MYC.) at 40× magnification [51]. Due to damaged or missing cores, some stains
are missing for some patients. Training, validation, and testing sets are created on the patient level.

TCGA-TILS is a public dataset of 304,097 images, each at a resolution of 100 × 100 pixels at 20× magnification.
The images are labeled to indicate the presence of tumor-infiltrating lymphocytes (TILs) if at least two TILs are
present [32, 1, 45].

HEST-Benchmark is a public dataset of 74 spatial transcriptomics profiles from 48 patients grouped into 10 tasks
based on organ [30]. The aim of the task is to predict the expression levels of the 50 most variable genes from 112
×112µm H&E stained image patches, each centered on a spatial transcriptomics spot. Here we present the results
of a random forest classifier following the protocol described in Jaume et al. [30], as opposed to the linear protocol
described in Sec. 5.3.

6.5 Scaling results

Virchow 2 and 2G, along with Virchow and other baseline foundation models, were evaluated on in-distribution (ID)
tile-level benchmarks (Tab. 2) and out-of-distribution (OOD) tile-level benchmarks (Tab. 3). The pathology-specific
modifications to the training recipe of Virchow 2, along with increased training data scale and diversity, yielded a
substantial boost in ID performance, raising the average weighted F1 score from 0.944 (Virchow) to 0.966 (Virchow
2). Gains in ID performance from further scaling the model size with Virchow 2G were more modest, further raising
the score to 0.971. OOD average weighted F1 score increased from 0.877 with Virchow to 0.885 with Virchow 2 and
0.894 with Virchow 2G, demonstrating the benefits of model and data scale, as well as algorithmic improvements.
Indeed, Fig. 1 demonstrates a log-linear trend in average OOD performance with model and data scale, across all
models.

Although H-optimus-0 and Prov-GigaPath both use a ViT-g with 1.1B parameters, Virchow with ViT-H and 632M
parameters matches or exceeds their performance on average, being surpassed only on PanMSK 20×, MHIST, PCam,
and WILDS by H-optimus-0 and on PanMSK 5×, PCam, and WILDS by Prov-GigaPath. Virchow 2, also with 632M
parameters but with a larger training set and improved training recipe, outperforms H-optimus-0 and Prov-Gigapath
on all ID (PanMSK) tasks and MHIST, and bridges the gap on WILDS. Scaling up the model size to ViT-G (1.8B
parameters) with Virchow 2G, results in top performance on all benchmark tasks. We note that while Virchow 2G
achieves a weighted F1 score of 0.948 on TILS, as compared to the top score of 0.949 (Virchow, H-optimus-0), these
scores are similar and performance on this task appears to have saturated. A major source of improvement lies in the
addition of mixed magnifications. Virchow 2 and Virchow 2G both significantly improve on ID PanMSK tasks at 10×
and 5× magnification. High resolution 40× OOD tasks such as MIDOG and DLBCL further illustrate the benefits of
training on magnifications other than 20×.

While we use the concatenation of the class [CLS] token with the mean of the patch tokens for all Virchow models,
experiments are also performed using only the class token, with models denoted as “Virchow [CLS]”, “Virchow 2
[CLS]”, and “Virchow 2G [CLS]”. While Virchow 2 [CLS] performs similarly to Virchow 2, Virchow and Virchow
2G benefit from the concatenated embedding. Using Virchow 2 [CLS] may be favourable to using Virchow 2 in
practice due to the reduced storage cost for smaller embeddings; however, further task-specific validation is necessary
to confirm that performance is retained in this configuration.
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Tab. 4 presents the Pearson correlation coefficient results for the HEST-benchmark. Here we observe less consistency
in the performance of the models, possibly because the training protocol is fixed and the hyperparameters are not tuned.
Virchow 2G has the best performance on 1/10 tasks, second best on 5/10 tasks, and the best average performance. H-
optimus-0 has the best performance on 3/10 tasks, second best on 1/10 tasks, and the second best average performance.

Model PanMSK 20× PanMSK 10× PanMSK 5× Average

CTransPath 0.897 0.892 0.894 0.894
Phikon 0.932 0.926 0.901 0.920
UNI 0.943 0.950 0.936 0.943
Prov-GigaPath 0.940 0.947 0.944 0.944
H-optimus-0 0.952 0.947 0.932 0.944
Virchow [CLS] 0.950 0.949 0.924 0.941
Virchow 2 [CLS] 0.964 0.967 0.967 0.966
Virchow 2G [CLS] 0.966 0.972 0.975 0.971
Virchow 0.950 0.948 0.933 0.944
Virchow 2 0.964 0.966 0.967 0.966
Virchow 2G 0.966 0.971 0.975 0.970

Table 2: Weighted F1 score results for the in-distribution tile-level benchmark tasks. Best results are bolded and
second best are in italics. For the Virchow models, embeddings are defined as the concatentation of class and mean
patch tokens. [CLS] indicates the use of class tokens only.

Model CRC
CRC

No-Norm
MHIST PCam WILDS TILS DLBCL MIDOG Average

CTransPath 0.962 0.844 0.817 0.871 0.947 0.931 0.542 0.643 0.820
Phikon 0.959 0.888 0.794 0.904 0.972 0.944 0.544 0.700 0.838
UNI 0.963 0.943 0.843 0.934 0.983 0.945 0.565 0.749 0.866
Prov-GigaPath 0.967 0.968 0.822 0.941 0.976 0.941 0.573 0.782 0.871
H-optimus-0 0.963 0.943 0.848 0.937 0.987 0.949 0.582 0.781 0.874
Virchow [CLS] 0.970 0.932 0.836 0.934 0.966 0.948 0.591 0.760 0.867
Virchow 2 [CLS] 0.976 0.971 0.860 0.935 0.985 0.947 0.615 0.800 0.886
Virchow 2G [CLS] 0.974 0.970 0.857 0.944 0.983 0.947 0.628 0.804 0.888
Virchow 0.973 0.968 0.836 0.933 0.971 0.949 0.602 0.787 0.877
Virchow 2 0.974 0.969 0.859 0.935 0.987 0.948 0.606 0.804 0.885
Virchow 2G 0.973 0.970 0.864 0.947 0.988 0.948 0.629 0.836 0.894

Table 3: Weighted F1 score results for the out-of-distribution tile-level benchmark tasks. Best results are bolded and
second best results are in italics. For the Virchow models, embeddings are defined as the concatentation of class and
mean patch tokens. [CLS] indicates the use of class tokens only.

7 Discussion

Our results suggest that foundation model performance in computational pathology continues to benefit from model
and data scale. Nevertheless, substantial gains can still be achieved by methodological improvements even at small
scales. We therefore built Virchow 2 and Virchow 2G, which scale the dataset size and then the model size, respec-
tively, on top of modifications of the DINOv2 training setup, tailored to the pathology domain.

Our ablation results demonstrate that such modifications can significantly improve benchmark performance. Chang-
ing the KoLeo regularizer to a kernel density estimator (KDE) also boosted performance. This is likely because the
conditions that produce instability with KoLeo are particularly common in pathology images: that is, tiles within a
minibatch are much more likely to be similar to each other compared to ImageNet [20] images within a minibatch.
Furthermore, the proposed extended-context translation (ECT) is more fitting for pathology data than crop-and-resize
because it avoids distorting the cell morphology which is crucial for interpreting pathology images. Although decreas-
ing random resizing during training may reduce the model’s scale invariance, we can retain it for pathology by training
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IDC PRAD PAAD SKCM COAD READ ccRCC HCC LUAD LIDC Avg.

CTransPath 0.476 0.363 0.416 0.557 0.118 0.093 0.177 0.063 0.560 0.255 0.308
Phikon 0.468 0.383 0.397 0.581 0.136 0.138 0.175 0.043 0.566 0.264 0.315
UNI 0.498 0.371 0.437 0.637 0.142 0.160 0.178 0.052 0.565 0.261 0.330
Prov-GigaPath 0.514 0.386 0.437 0.577 0.144 0.156 0.188 0.057 0.568 0.274 0.330
H-optimus-0 0.536 0.378 0.446 0.649 0.159 0.160 0.210 0.068 0.591 0.271 0.347
Virchow [CLS] 0.529 0.364 0.431 0.612 0.150 0.120 0.205 0.065 0.584 0.274 0.334
Virchow 2 [CLS] 0.563 0.379 0.402 0.631 0.143 0.169 0.224 0.060 0.591 0.275 0.344
Virchow 2G [CLS] 0.547 0.375 0.420 0.638 0.140 0.146 0.213 0.056 0.590 0.271 0.339
Virchow 0.545 0.372 0.465 0.624 0.159 0.133 0.211 0.065 0.601 0.269 0.344
Virchow 2 0.539 0.382 0.425 0.617 0.127 0.168 0.226 0.056 0.586 0.273 0.340
Virchow 2G 0.559 0.385 0.458 0.632 0.139 0.175 0.222 0.062 0.588 0.274 0.350

Table 4: Pearson correlation results for the HEST-Benchmark tasks. Best results are bolded and second best results
are in italics. For the Virchow models, embeddings are defined as the concatentation of class and mean patch tokens.
[CLS] indicates the use of class tokens only.

across multiple magnifications. Similarly, removing solarization boosted performance (especially on PCam), as also
previously observed [33, 21]. Indeed, it has been shown that the effects of augmentation are often data dependent
and vary across classes [4], however, with a sufficiently large and diverse training dataset, the importance of photo-
metric data augmentations diminishes [39]. Nevertheless, suitable image transforms, like cropping, are still necessary
between the two views of an input in joint embedding models like DINOv2.

Further adjustments to the training recipe were required to allow scaling Virchow both along the data size and the
model size axes. Without KDE, DINOv2 training collapsed before enough of the 3.1M slide dataset could be
processed. Additional stabilizations were required to then scale up the model from ViT-H (632M parameters) to
ViT-G (1.8B parameters). We note that largest models previously trained with DINOv2 had 1.1B parameters (ViT-
g) [42, 44, 57]. The types of challenges encountered are classified into numerical issues and collapse events. Numerical
issues are determined when a training run fails due to NaNs that could not be caught and mitigated and may be due
to the use of FP16 rather than BF16. These are addressed by DPN, QKN, and gradient and update clipping in Sta-
bleAdamW. Collapse events are categorized by sudden spikes in a loss component when features collapse to a lower
dimensional subspace that is correlated with the degradation in downstream performance. Collapse primarily occurs in
the iBOT head and is mitigated by reducing the learning rate, reducing the β2 momentum parameter in StableAdamW
from 0.999 to 0.95, and reducing the teacher temperature from 0.07 to 0.04 based on the guidance in DINO [11].
No collapse was observed in the DINO head. It is possible that diversity regularization provided sufficient support to
avoid catastrophic events where asymmetric centering and sharpening was insufficient. These modifications reduce
the convergence rate but allow training longer.

Based on the scaling plots (Fig. 1) and performance of Virchow 2 and Virchow 2G, benchmark performance continues
to improve with model and data scale; however, additional benchmarks on which performance has not yet saturated
may be necessary to gauge further gains (like MIDOG, DLBCL, or PanMSK, all of which contain magnifications
other than 20×). No substantial improvements with model scale were observed on WILDS, CRC, CRC-No-Norm,
or TILS beyond ViT-H (632M parameters). Indeed, F1 scores for these tasks, as well as PCam and PanMSK are
between 0.95 and 0.99 (where 1.00 is the maximum), suggesting that further performance gains may be insignificant
or unmeasurable due to label noise. MHIST results are difficult to interpret due to their high variance. Although
PanMSK [50] covers 17 tissue types (all the tissue types that Virchow was trained on), it does not evaluate the long
tail of tissue types learned by Virchow 2 and Virchow 2G and it could be made more challenging by enriching it for
rare cancers. Indeed, in order to quantify the benefits and impact of model and data scale, it is imperative to prepare
diverse benchmarks across different tasks, as some benchmarks may saturate more quickly than others. Without a
reliable suite of downstream tasks, confident claims cannot be made about the quality of a model.

Ultimately, there is still room to improve benchmark performance along the axes of model scale, data scale, and
algorithmic improvements. We demonstrate the value of pathology-specific improvements, as well as training on
mixed magnifications, allowing improved performance on diverse benchmark tasks towards a unified image-based
foundation model.
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Tomasev, Jovana Mitrović, Patricia Strachan, et al. Robust and data-efficient generalization of self-supervised
machine learning for diagnostic imaging. Nature Biomedical Engineering, 7(6):756–779, 2023.

[4] Randall Balestriero, Leon Bottou, and Yann LeCun. The effects of regularization and data augmentation are class
dependent, 2022.

[5] Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regularization for self-
supervised learning. arXiv preprint arXiv:2105.04906, 2021.

[6] Babak Ehteshami Bejnordi, Mitko Veta, Paul Johannes Van Diest, Bram Van Ginneken, Nico Karssemeijer,
Geert Litjens, Jeroen AWM Van Der Laak, Meyke Hermsen, Quirine F Manson, Maschenka Balkenhol, et al.
Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast
cancer. JAMA, 318(22):2199–2210, 2017.

[7] Florian Bordes, Randall Balestriero, and Pascal Vincent. Towards democratizing joint-embedding self-supervised
learning. arXiv preprint arXiv:2303.01986, 2023.

[8] Sergiy V Borodachov, Douglas P Hardin, and Edward B Saff. Discrete energy on rectifiable sets, volume 4.
Springer, 2019.

[9] Gabriele Campanella, Ricky Kwan, Eugene Fluder, Jennifer Zeng, Aryeh Stock, Brandon Veremis, Alexandros D
Polydorides, Cyrus Hedvat, Adam Schoenfeld, Chad Vanderbilt, et al. Computational pathology at health system
scale–self-supervised foundation models from three billion images. arXiv preprint arXiv:2310.07033, 2023.

[10] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsupervised
learning of visual features by contrasting cluster assignments. In Advances in Neural Information Processing
Systems, 2020.
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A Appendix

A.1 Foundation models in CPath

Model Data source Data size Model architecture Model size Objective function
WSI Tiles

Virchow 2G MSKCC 3.4M 1.8B ViT-G 1.8B DINOv2

Virchow 2 MSKCC 3.4M 1.7B ViT-H 632M DINOv2

Virchow [50] MSKCC 1.5M 2B ViT-H 632M DINOv2

Hibou [40] Proprietary 1.1M 1.2B ViT-L 307M DINOv2

H-optimus-0 [44] Proprietary 500K ViT-g 1.1B DINOv2

Campanella et al. [9] Mount Sinai 400K 3B ViT-S 22M DINO, MAE

Prov-GigaPath [57] Providence 170K 1.3B ViT-g 1.1B DINOv2

PLUTO [31] Proprietary 158K 195M ViT-S 22M DINOv2 + MAE
+ Fourier

RudolfV [21] TCGA + Properitary 103K 750M ViT-L 307M DINOv2

UNI [12] Mass-100K 100K 100M ViT-L 307M DINOv2

Lunit [33] TCGA + TULIP 37K 33M ViT-S 22M Various

CTransPath [53] TCGA + PAIP 32K 15M Swin Transformer 28M MoCoV3

Remedis [3] TCGA 29K 50M ResNet-152 232M SimCLR

Ciga et al. [17] TCGA + CPTAC ++ 25K 4.2M ResNet 11-45M SimCLR

Phikon [24] TCGA 6K 43M ViT-B 86M iBOT

Table A1: Summary of proposed foundation models in computational pathology highlighting the size of the training
data, size of the model architecture, and training objective. Works are ordered based on the number of training WSI.
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A.2 Hyperparameters

Virchow 2 Hyperparameter Value

Vision Transformer
Patch Size 14
Embedding Dimension 1280
Layers 32
Heads 16
MLP Ratio 4
MLP Activation SwiGLU
MLP Bias True
QKV Bias True
Registers 4
Qk Normalization False
Dual PatchNorm False

Projection Heads
Shared Heads False
Layers 3
Bottleneck Dimension 384
Hidden Dimension 2048

Loss Functions
Sinkhorn Centering True
Student Temperature 0.1
Teacher Temperature (0.07, 0.04)
Prototypes 131072
Regularizer KDE
Regualrizer Parameter 5
Regularizer Weight 0.05

Augmentations Tile Context Size 392
Global View Size 224
Local View Size 98
Method ECT
Aspect Ratio Range (0.95, 1.05)
Scale Range (0.9, 1.1)
Solarization True
Vertical Flips True

Optimizer AdamW
Optimizer Momentum (0.9, 0.999)
Optimizer Epsilon 1× 10−8

Optimizer Weight Decay (0.04, 0.2)
Learning rate 2× 10−4

Learning Rate Schedule Cosine
Learning Rate Scaling Square Root-1024
Teacher Momentum (0.994, 1.0)
Batch size 4096
Gradient clipping norm 3.0
Drop Rate 0.4
Precision FP16

Table A2: Virchow 2 adapted hyperparameters from DINOv2 trained on 512 NVIDIA V100 32GB GPUs. Default
augmentations are not included and are left unchanged.
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Virchow 2G Hyperparameter Value

Vision Transformer
Patch Size 14
Embedding Dimension 1792
Layers 48
Heads 28
MLP Ratio 4
MLP Activation SwiGLU
MLP Bias True
QKV Bias True
Registers 8
Qk Normalization True
Dual PatchNorm True

Projection Heads
Shared Heads False
Layers 3
Bottleneck Dimension 384
Hidden Dimension 2048

Loss Functions
Sinkhorn Centering True
Student Temperature 0.1
Teacher Temperature 0.04
Prototypes 131072
Regularizer KDE
Regualrizer Parameter 5
Regularizer Weight 0.05

Augmentations Tile Context Size 392
Global View Size 224
Local View Size 98
Method ECT
Aspect Ratio Range (0.95, 1.05)
Scale Range (0.9, 1.1)
Solarization False
Vertical Flips True

Optimizer StableAdamW
Optimizer Momentum (0.9, 0.95)
Optimizer Epsilon 1× 10−8

Optimizer Weight Decay (0.04, 0.2)
Learning rate 1× 10−4

Learning Rate Schedule Cosine
Learning Rate Scaling Square Root-1024
Teacher Momentum (0.994, 1.0)
Batch size 3072
Gradient clipping norm 3.0
Drop Rate 0.4
Precision FP16

Table A3: Virchow 2G adapted hyperparameters from DINOv2 trained on 512 NVIDIA V100 32GB GPUs. Default
augmentations are not include and are left unchanged.
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