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Simulating 500 million years of evolution with a language model
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Abstract

More than three billion years of evolution have

produced an image of biology encoded into the

space of natural proteins. Here we show that lan-

guage models trained on tokens generated by evo-

lution can act as evolutionary simulators to gen-

erate functional proteins that are far away from

known proteins. We present ESM3, a frontier

multimodal generative language model that rea-

sons over the sequence, structure, and function

of proteins. ESM3 can follow complex prompts

combining its modalities and is highly responsive

to biological alignment. We have prompted ESM3

to generate fluorescent proteins with a chain of

thought. Among the generations that we synthe-

sized, we found a bright fluorescent protein at far

distance (58% identity) from known fluorescent

proteins. Similarly distant natural fluorescent pro-

teins are separated by over five hundred million

years of evolution.

Introduction

The proteins that exist today have developed into their

present forms over the course of billions of years of nat-

ural evolution, passing through a vast evolutionary sieve. In

parallel experiments conducted over geological time, nature

creates random mutations and applies selection, filtering

proteins by their myriad sequences, structures, and func-

tions.

As a result, the patterns in the proteins we observe reflect the

action of the deep hidden variables of the biology that have

shaped their evolution across time. Gene sequencing surveys
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of Earth’s natural diversity are cataloging the sequences

(1–3) and structures (4, 5) of proteins, containing billions

of sequences and hundreds of millions of structures that

illuminate patterns of variation across life. A consensus is

building that underlying these sequences is a fundamental

language of protein biology that can be understood using

large language models (6–10).

A number of language models of protein sequences have

now been developed and evaluated (9, 11–14). It has been

found that the representations that emerge within language

models reflect the biological structure and function of pro-

teins (6, 15, 16), and are learned without any supervision on

those properties, improving with scale (5, 17, 18). In artifi-

cial intelligence, scaling laws have been found that predict

the growth in capabilities with increasing scale, describing

a frontier in compute, parameters and data (19–21).

We present ESM3, a frontier multimodal generative model,

that reasons over the sequences, structures, and functions

of proteins. ESM3 is trained as a generative masked lan-

guage model over discrete tokens for each modality. Struc-

tural reasoning is achieved by encoding three-dimensional

atomic structure as discrete tokens rather than with the com-

plex architecture and diffusion in three-dimensional space

employed in recent predictive (22) and generative models

(14, 23–25) of proteins. All-to-all modeling of discrete to-

kens is scalable, and allows ESM3 to be prompted with any

combination of its modalities, enabling controllable genera-

tion of new proteins that respect combinations of prompts.

ESM3 at its largest scale was trained with 1.07×1024

FLOPs on 2.78 billion proteins and 771 billion unique to-

kens, and has 98 billion parameters. Scaling ESM3 to this

98 billion parameter size results in improvements in the

representation of sequence, structure, and function, as well

as on generative evaluations. We find that ESM3 is highly

responsive to prompts, and finds creative solutions to com-

plex combinations of prompts, including solutions for which

we can find no matching structure in nature. We find that

models at all scales can be aligned to better follow prompts.

Larger models are far more responsive to alignment, and
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show greater capability to solve the hardest prompts after

alignment.

We report the generation of a new green fluorescent protein

(GFP) with ESM3. Fluorescent proteins are responsible

for the glowing colors of jellyfish and corals (26) and are

important tools in modern biotechnology (27). They share

an elegant structure: an eleven stranded beta barrel with a

helix that threads its center, which scaffolds the formation

of a light-emitting chromophore out of the protein’s own

atoms. This mechanism is unique in nature—no other pro-

tein spontaneously forms a fluorescent chromophore out of

its own structure—suggesting that producing fluorescence

is hard even for nature.

Our new protein, which we have named esmGFP, has 36%

sequence identity to Aequorea victoria GFP, and 58% se-

quence identity to the most similar known fluorescent pro-

tein. Despite GFP’s intense focus as a target for protein

engineering over several decades, as far as we are aware,

proteins this distant have only been found through the dis-

covery of new GFPs in nature.

Similar amounts of diversification among natural GFPs have

occurred over predictable timescales. Understood in these

terms, the generation of a new fluorescent protein at this

distance from existing proteins appears to be equivalent to

simulating over 500 million years of evolution.

ESM3

ESM3 reasons over the sequence, structure, and function

of proteins. All three modalities are represented by tokens,

and are input and output as separate tracks that are fused

into a single latent space within the model. ESM3 is trained

with a generative masked language modeling objective:

L = −Ex,m

[

1

|m|
∑

i∈m

log p(xi|x\m)

]

A random mask m is applied to the tokens x describing the

protein, and the model is supervised to predict the identity

of the tokens that have been masked. During training, the

mask is sampled from a noise schedule so that ESM3 sees

many different combinations of masked sequence, structure,

and function, and predicts completions of any combination

of the modalities from any other. This differs from the clas-

sical masked language modeling (28) in that the supervision

is applied across all possible masking rates rather than a

single fixed masking rate. This supervision factorizes the

probability distribution over all possible predictions of the

next token given any combination of previous tokens, en-

suring that tokens can be generated in any order from any

starting point (29–31).

To generate from ESM3, tokens are iteratively sampled.

Starting from a sequence of all mask tokens, tokens can be

sampled one at a time, or in parallel, in any order, until all

tokens are fully unmasked (Fig. 1A). Masking is applied

independently to sequence, structure, and function tracks,

which enables generation from any combination of empty,

partial, or complete inputs. ESM3’s training objective is

also effective for representation learning. We choose a

noise schedule that balances generative capabilities with

representation learning (Appendix A.2.2).

Tokenization enables efficient reasoning over structure. Pro-

tein structures are tokenized by a discrete auto-encoder (32),

which is trained to compress the high dimensional space of

three-dimensional structure into discrete tokens (Fig. 1C).

We propose an invariant geometric attention mechanism to

efficiently process three-dimensional structure. The mecha-

nism operates in local reference frames defined by the bond

geometry at each amino acid, and allows local frames to

interact globally through a transformation into the global

frame (Appendix A.1.6). This mechanism can be efficiently

realized through the same computational primitives as at-

tention (33), and is readily scalable. The local structural

neighborhoods around each amino acid are encoded into a

sequence of discrete tokens, one for each amino acid.

When predicting or generating protein structure, struc-

ture tokens output by ESM3 are passed to the decoder,

which reconstructs the all-atom structure. The autoen-

coder is trained to encode and reconstruct atomic coordi-

nates with a geometric loss that supervises the pairwise

distances and relative orientations of bond vectors and nor-

mals (Appendix A.1.7.3.1). This tokenization delivers near-

perfect reconstruction of protein structure (<0.3Å RMSD

on CAMEO, Fig. S3), enabling representation of structure

at the input and output with atomic accuracy.

We also find that providing ESM3 direct access to atomic

coordinates in the input via a geometric attention projec-

tion into the transformer improves the response to atomic

coordinate prompts. ESM3 can be conditioned on either or

both of tokenized structure and atomic coordinates. We sup-

plement these structure representations with coarse grained

tokens encoding secondary structure state (SS8) and solvent

accessible surface area (SASA). Function is presented to

the model in the form of tokenized keyword sets for each

position in the sequence.

ESM3 is a bidirectional transformer. While extensive re-

search has gone into creating specialized architectures and

training objectives for proteins, we find that tokenization

paired with a standard masked language modeling objective

and the basic transformer architecture is highly effective

for both representation learning and generative modeling.

Sequence, structure, and function tracks are input as tokens,

which are embedded and fused, then processed through a

2



PR
EV

IE
W

Simulating 500 million years of evolution with a language model

Figure 1. ESM3 is a generative language model that reasons over the sequence, structure, and function of proteins. (A) Iterative sampling

with ESM3. Sequence, structure, and function can all be used to prompt the model. At each timestep t, a fraction of the masked positions

are sampled until all positions are unmasked. (B) ESM3 architecture. Sequence, structure, and function are represented as tracks of

discrete tokens at the input and output. The model is a series of transformer blocks, where all tracks are fused within a single latent

space; geometric attention in the first block allows conditioning on atomic coordinates. ESM3 is supervised to predict masked tokens. (C)

Structure tokenization. Local atomic structure around each amino acid is encoded into tokens. (D) Models are trained at three scales:

1.4B, 7B, and 98B parameters. Negative log likelihood on test set as a function of training FLOPs shows response to conditioning on each

of the input tracks, improving with increasing FLOPs. (E) Unconditional generations from ESM3 98B (colored by sequence identity to

the nearest sequence in the training set), embedded by ESM3, and projected by UMAP alongside randomly sampled sequences from

UniProt (in gray). Generations are diverse, high quality, and cover the distribution of natural sequences.

3



PR
EV

IE
W

Simulating 500 million years of evolution with a language model

stack of transformer blocks. The first transformer block also

includes a geometric attention layer for atomic structure co-

ordinate conditioning. At the output of the model, shallow

MLP heads project the final layer representation into token

probabilities for each of the tracks.

The largest ESM3 model is trained on 2.78 billion natu-

ral proteins derived from sequence and structure databases

(2, 34–37). As a small fraction of structures have been

experimentally determined relative to sequences, we lever-

age predicted structures (4, 5). We also generate synthetic

sequences with an inverse folding model (described in Ap-

pendix A.2.1.3) for all structures, including predicted ones.

Function keywords are derived by predicting functional an-

notations from sequence using a library of hidden markov

models (38). Overall this increased training data to 3.15

billion protein sequences, 236 million protein structures,

and 539 million proteins with function annotations, totaling

771 billion unique tokens. Full details of the training dataset

are described in Appendix A.2.1.8.

We train ESM3 models at three scales: 1.4 billion, 7 billion,

and 98 billion parameters. In an initial series of experi-

ments to evaluate representation learning performance in

response to architecture hyperparameters, we find a greater

response to increasing depth than to width. This informed

the choice of relatively deep networks for the final archi-

tectures, with the 98 billion parameter model incorporating

216 Transformer blocks (Appendix A.1.5).

Scaling ESM3 from 1.4 billion to 98 billion parameters

results in substantial improvements in the validation loss

for all tracks, with the greatest improvements observed

in sequence loss (Fig. 1D, Fig. S11). These gains in

validation loss lead to better representation learning (Ta-

ble S7 and Fig. S8). In single sequence structure pre-

diction (Table S8) on CAMEO, ESM3 98B obtains 0.895

mean local distance difference test (LDDT) and surpasses

ESMFold (0.865 LDDT). Unconditional generation pro-

duces high-quality proteins—with a mean predicted LDDT

(pLDDT) 0.84 and predicted template modeling score

(pTM) 0.52—that are diverse in both sequence (mean pair-

wise sequence identity 0.155) and structure (mean pairwise

TM score 0.48), spanning the distribution of known proteins

(Fig. 1E, Fig. S13).

Programmable design with ESM3

We explore the ability of ESM3 to follow complex prompts

with different compositions. ESM3 can be prompted with in-

structions from each of its input tracks: sequence, structure

coordinates, secondary structure (SS8), solvent-accessible

surface area (SASA), and function keywords. This allows

prompts to be specified at multiple levels of abstraction,

from atomic level structure to high level keywords describ-

ing the function and fold topology, using the learned gen-

erative model to find a coherent solution that respects the

prompt.

We evaluate ESM3’s ability to follow prompts in each of the

tracks independently. A set of prompts are constructed for

each of the tracks using a temporally held out test set of nat-

ural proteins (Appendix A.3.7). We evaluated the resulting

generations for consistency with the prompt and foldabil-

ity, the confidence of the structure prediction TM-score

(pTM) under ESMFold. We define consistency metrics for

each track: constrained site RMSD (cRMSD) is the RMSD

between the prompt coordinates and the corresponding co-

ordinates in the generation; SS3 accuracy is the fraction of

residues where three-class secondary structure between the

prompt and generations match; SASA spearman ρ is the cor-

relation between the SASA prompt and the corresponding

region of the generation; keyword recovery is the fraction of

prompt keywords recovered by InterProScan (38). Across

all tracks, ESM3 finds solutions that follow the prompt, and

have confidently predicted structures by ESMFold (pTM

> 0.8) (Fig. 2A).

Unconditional generations reflect the distribution of natural

proteins. Since we observed ESM3 can faithfully follow

prompts, we reasoned that prompting could steer the model

to generate proteins that differ from natural proteins. First

we test the ability of the model to follow out-of-distribution

prompts. We construct a set of prompts combining SS8 and

SASA from held out structures (TM < 0.7 to training set).

Under these prompts, while the model continues to generate

coherent globular structures (mean pTM 0.85± 0.03), the

distribution of similarities to the training set (as measured

by TM-score and sequence identity) shifts to be more novel

(average sequence identity to nearest training set protein

< 20% and mean TM-score 0.48± 0.09; Fig. 2B top). To

test the ability to generalize to structures beyond the distribu-

tion of natural proteins, we use secondary structure prompts

derived from a dataset of artificial symmetric protein de-

signs distinct from the natural proteins found in the training

dataset (Appendix A.3.8). Similarly, ESM3 produces high

confidence generations (pTM > 0.8, pLDDT > 0.8) with

low sequence and structure similarity to proteins in the train-

ing set (sequence identity < 20% and TM-score 0.52±0.10;

Fig. 2B bottom), indicating that the model can be used to

generate protein sequences and structures highly distinct

from those that exist in nature.

ESM3 is able to follow complex prompts, and has the ability

to compose prompts from different tracks, and at different

levels of abstraction. To evaluate this ability, we prompt

ESM3 with motifs that require the model to solve for spatial

coordination of individual atoms, including ones requiring

tertiary coordination between residues far apart in the se-

quence, such as catalytic centers and ligand binding sites.

4
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Figure 2. Generative programming with ESM3. (A) ESM3 can follow prompts from each of its input tracks. Density of faithfulness to

prompting for each of the tracks is shown. Generations achieve consistency with the prompt and high foldability (pTM). (B) ESM3 can be

prompted to generate proteins that differ in structure (left) and sequence (right) from natural proteins. Prompted generations (blue) shift

toward a more novel space vs. unconditional generations (red), in response to prompts derived from out-of-distribution natural structures

(upper panel) and computationally designed symmetric proteins (lower panel). (C) ESM3 generates creative solutions to a variety of

combinations of complex prompts. We show compositions of atomic level motifs with high level instructions specified through keyword

or secondary structure. Fidelity to the prompt is shown via similarity to reference structure (for keyword prompts) and all-atom RMSD

to the prompted structure (for atomic coordination prompts). Solutions differ from the scaffolds where the motif was derived (median

TM-score 0.36 ± 0.14), and for many motifs (e.g. serotonin, calcium, protease inhibitor, and Mcl-1 inhibitor binding sites), we could find

no significant similarity to other proteins that contain the same motif. (D) An example of especially creative behavior. ESM3 compresses

a serine protease by 33% while maintaining the active site structure.
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We combine these with prompts that specify the fold archi-

tecture. For each unique combination of motif and scaffold,

we generate samples until the prompt is satisfied (cRMSD

< 1.5Å for coordinates; TM > 0.6 to a representative struc-

ture for fold level prompts; and SS3 accuracy > 80% for

secondary structure prompts) with high confidence (pTM

> 0.8, pLDDT > 0.8).

We find that ESM3 is able to solve a wide variety of such

tasks (Fig. 2C). It does so without retrieving the motif’s orig-

inal scaffold (median TM-score of 0.40 ± 0.10 to reference

protein; Appendix A.3.9). In some cases, the scaffolds are

transferred from existing proteins which have similar motifs

(for example, the ESM3-designed alpha-helical scaffold for

the zinc-binding motif has high similarity to Ni2+-binding

proteins, PDB: 5DQW, 5DQY; Fig. 2C, row 3 column 1).

For many motifs (e.g., binding sites for serotonin, calcium,

protease inhibitor, and Mcl-1 inhibitor) Foldseek (39) finds

no significant similarity to other proteins that contain the

same motif. In these cases we observe that sometimes the

motif has been grafted into entirely different folds (e.g. a

protease inhibitor binding site motif in a beta-barrel which

is most similar to a membrane-bound copper transporter,

PDB: 7PGE; Fig. 2C, row 3 column 3). At other times, the

scaffold appears to be entirely novel, such as an alpha/beta

protein designed to scaffold the Mcl-1 inhibitor binding mo-

tif, which has low structural similarity to all known proteins

in the PDB, ESMAtlas, and the AlphaFold databases (max.

TM-score < 0.5; Fig. 2C, row 4 column 1). Overall, the

generated solutions have high designability, i.e. confident

recovery of the original structure after inverse folding with

ESMFold (median pTM 0.80 ± 0.08; scTM 0.96 ± 0.04;

Appendix A.3.9).

Through experiments with prompt engineering, we have

observed especially creative responses to prompts. Here,

we highlight an example of protein compression. Starting

from a natural trypsin (PDB 1Y3V), we prompt with the

sequence and coordinates of the catalytic triad as well as

functional keywords describing trypsin, but reduce the over-

all generation length by a third (from 223 to 150 residues).

ESM3 maintains the coordination of the active site (cRMSD

0.73Å) and the overall fold with high designability (pTM

0.84, scTM mean 0.97, std 0.006), despite the significant re-

duction in sequence length and the fold only being specified

by the function keyword prompt (Fig. 2D).

These examples illustrate ESM3’s ability to find creative

solutions to prompts specified in any of its input tracks,

individually or in combination. This capability enables a

rational approach to protein design, providing control at

various levels of abstraction, from high-level topology to

atomic coordinates, using a generative model to bridge the

gap between the prompt and biological complexity.

Biological alignment

While we have observed meaningful increases in perfor-

mance in the base models with scale, larger models could

have even greater latent capabilities that we do not observe.

The base ESM3 models can be prompted to perform dif-

ficult tasks such as atomic coordination and composition

of prompts, despite the fact that the models have not been

explicitly optimized for these objectives. Likewise, the prop-

erties we evaluate generative outputs on—such as high pTM,

low cRMSD, and adherence to multimodal prompting—are

only seen by the model indirectly during pre-training. Align-

ing the model directly to these tasks with finetuning could

elicit even greater capability differences with larger models.

We study how the base models can be aligned (40) to

generate proteins that satisfy challenging prompts. To do

this, for each model we construct a dataset of partial struc-

ture prompts, generate multiple protein sequences for each

prompt, and then fold and score each of the sequences us-

ing ESM3 for consistency with the prompt (cRMSD) and

foldability (pTM). High quality samples are paired with

low quality samples for the same prompt to construct a

preference dataset (Appendix A.4). ESM3 is then tuned to

optimize a preference tuning loss, which incentivizes the

model to put higher likelihood on the high quality samples

compared to low quality samples (Appendix A.4) (41, 42).

After aligning the ESM3 1.4B, 7B, and 98B base models,

we evaluate their absolute performance, and the shift in

the distribution of generations. To measure consistency

of a generation with a prompt, the generated sequence is

folded and success is measured based on structural metrics

(backbone cRMSD < 1.5Å) and foldability (pTM > 0.8).

To ensure that the model used for evaluation is orthogonal

to that used for creating the preference dataset, we conduct

these evaluations using ESMFold.

We examine the ability of the model to generate high-

quality scaffolds using challenging tertiary motif scaffolding

prompts. We prompt ESM3 with the amino acid identities

and atomic coordinates of residues derived from a dataset

of 46 ligand binding motifs in a set of temporally held out

proteins (Appendix A.4.5). For each motif task, we create

1024 prompts by permuting the order of the residues, vary-

ing their position in the sequence, and varying the length

of the sequence. A single protein is generated per prompt.

We evaluate success using the percentage of tasks solved

(backbone cRMSD < 1.5Å, pTM > 0.8) after 128 genera-

tions (Appendix A.4.5).

Preference tuned models solve double the atomic coordina-

tion tasks compared to base models (Fig. 3A). While the

base models show differences in the fraction of tasks solved

(9.5% for 1.4B, 19.0% for 7B, 26.8% for 98B; Fig. 3A), a

much larger capability difference is revealed through align-
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Figure 3. The ability to solve complex tasks increases with scale through alignment. ESM3 is aligned to follow atomic coordination

prompts with a dataset of preference pairs constructed from prompted generations, where positive samples with good scores for desired

properties (high pTM, low cRMSD) are paired with negative samples with worse scores. The preference tuning loss encourages the model

to put higher likelihood on the positive samples. After training, models are evaluated by prompting with coordinates in tertiary contact.

(A) We show the effect of finetuning on the fraction of tasks solved with 128 generations (Pass@128). A large gap opens between the

models with scale. The response to alignment shows a latent capability to solve complex tasks in the largest model. Error bars show 2

standard deviations. (B) Number of distinct solutions (clustered at TM > 0.8) generated for each tertiary motif. After finetuning we often

see a number of unique structures for ligands for which we have successes. (C) Densities of prompted generations are shown for the base

model (left) and aligned model (right) at the 98B scale for a number of randomly selected ligands. After alignment, the fidelity to the

prompt (cRMSD) and quality of generations (pTM) tends to improve meaningfully.

ment (9.5% to 18.8%, 19.0% to 37.4%, 26.8% to 65.5% for

the 1.4B, 7B and 98B models, respectively). Preference-

tuned models not only solve a greater proportion of tasks,

but also find a greater number of solutions per task, as evalu-

ated by the number of distinct structural clusters (TM > 0.8)

with backbone cRMSD < 1.5Åand pTM > 0.8 (Fig. 3B).

A shift in the distribution of ESMFold pTM and backbone

cRMSD for each ligand binding motif is observed (Fig. 3C;

Fig. S17). At the 98B scale, the finetuned model produces

more distinct successful clusters than the base model on 37

of the 46 tested ligands, while the remaining 9 ligands were

not solved by either the base or aligned model, indicating

that alignment almost universally improves the faithfulness

to the prompt and the foldability of the generated proteins.

Compared to a supervised finetuning baseline, which only

maximizes the likelihood of the positive examples, pref-

erence tuning leads to larger improvements at all scales

(Appendix A.4.6).

These results demonstrate that preference tuning extracts

latent capability in the models. The capability of larger

models to solve challenging tasks become far more apparent

after alignment. Since alignment can be performed with

arbitrary objectives, this is an indication of a general ability

to respond to finetuning that greatly improves with scale.

Generating a new fluorescent protein

We sought to understand if the base pre-trained ESM3 model

has sufficient biological fidelity to generate functional pro-

teins. We set out to create a functional green fluorescent

protein (GFP) with low sequence similarity to existing ones.

We chose the functionality of fluorescence because it is

difficult to achieve, easy to measure, and one of the most

beautiful mechanisms in nature.

Responsible for the fluorescence of jellyfish and the vivid

colors of coral (43), proteins in the GFP family are unique

in their ability to form a fluorescent chromophore without

cofactors or substrates (27). This property allows the GFP

sequence to be inserted into the genomes of other organisms

to visibly label molecules, cellular structures, or processes,

providing a foundational toolkit that has been broadly ap-

plied across the biosciences.

The GFP family has been the subject of decades of pro-

tein engineering efforts, but still the vast majority of func-

tional variants have come from prospecting the natural

world. Rational design and machine learning-assisted high-

throughput screening have yielded GFP sequences with

improved properties—such as higher brightness or stabil-

ity, or differently colored variants—that incorporated small

numbers of mutations (typically 5 to 15, out of the total 238

amino acid coding sequence) from the originating sequence.

Studies have shown that only a few random mutations re-

duces fluorescence to zero (44–46). whereas in rare cases,

leveraging high throughput experimentation, scientists have

been able to introduce up to 40-50 mutations i.e. a 20%

difference in total sequence identity (44, 47, 48) while

retaining GFP fluorescence.

Generating a new GFP would require materialization of the

complex biochemistry and physics that underlie its fluo-

rescence. In all GFPs, an autocatalytic process forms the

chromophore from three key amino acids in the core of

the protein. The unique structure of GFP, a kinked central

alpha helix surrounded by an eleven stranded beta barrel

7
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Figure 4. Generating a new fluorescent protein with a chain of thought. (A) We prompt ESM3 with the sequence and structure of residues

required for forming and catalyzing the chromophore reaction, as well as the structure of part of the central alpha helix from a natural

fluorescent protein (left). Through a chain of thought, ESM3 generates design candidates (right). (B) ESM3 found a bright GFP distant

from other known GFPs in two experiments. We measured fluorescence in E. coli lysate. Top row, photograph of plates. Bottom row,

plate reader fluorescence quantification. Positive controls of known GFPs are marked with purple circles, negative controls with no GFP

sequence or no E. Coli are marked with red circles. In the first experiment (left) we expressed designs with a range of sequence identities.

A notable design with low sequence identity to known fluorescent proteins appears in the well labeled B8 (highlighted in a black circle

bottom, white circle top). We continue the chain of thought from the protein in B8 for the second experiment (right). A bright design

appears in the well labeled C10 (black circle bottom, white circle top) which we designate esmGFP. (C) esmGFP exhibits fluorescence

intensity similar to common GFPs. Normalized fluorescence is shown for a subset of proteins in experiment 2. (D) Excitation and

emission spectra for esmGFP overlaid on the spectra of EGFP. (E) Two cutout views of the central alpha helix and the inside of the beta

barrel of a predicted structure of esmGFP. The 96 mutations esmGFP has relative to its nearest neighbor, tagRFP, are shown in blue. (F)

Cumulative density of sequence identity between fluorescent proteins across taxa. esmGFP has the level of similarity to all other FPs that

is typically found when comparing sequences across orders, but within the same class. (G) Evolutionary distance by time in millions of

years (MY) and sequence identities for three example anthozoa GFPs and esmGFP. (H) Estimator of evolutionary distance by time (MY)

from GFP sequence identity. We estimate esmGFP is over 500 million years of natural evolution removed from the closest known protein.
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with inward facing coordinating residues, enables this re-

action (49). Once formed, the chromophore must not just

absorb light but also emit it in order to be fluorescent. Light

emission is highly sensitive to the local electronic environ-

ment of the chromophore. For these reasons, obtaining a

new functional GFP would require precise configuration of

both the active site and the surrounding long range tertiary

interactions throughout the beta barrel.

In an effort to generate new GFP sequences, we directly

prompt the base pretrained 7B parameter ESM3 to generate

a 229 residue protein conditioned on the positions Thr62,

Thr65, Tyr66, Gly67, Arg96, Glu222, which are critical

residues for forming and catalyzing the chromophore reac-

tion (Fig. 4A). We additionally condition on the structure

of residues 58 through 71 from the experimental structure

in 1QY3, which are known to be structurally important for

the energetic favorability of chromophore formation (50).

Specifically, sequence tokens, structure tokens, and atomic

coordinates of the backbone are provided at the input and

generation begins from a nearly completely masked array of

tokens corresponding to 229 residues, except for the token

positions used for conditioning.

We generate designs using a chain-of-thought procedure as

follows. The model first generates structure tokens, effec-

tively creating a protein backbone. Backbones that have

sufficiently good atomic coordination of the active site but

differentiated overall structure from the 1QY3 backbone

pass through a filter to the next step of the chain. We add

the generated structure to the original prompt to generate

a sequence conditioned on the new prompt. We then per-

form an iterative joint optimization, alternating between

optimizing the sequence and the structure. We reject chains-

of-thought that lose atomic coordination of the active site

(Appendix A.5.1). We draw a computational pool of 10s

of thousands of candidate GFP designs from the intermedi-

ate and final points in the iterative joint optimization stage

of the generation protocol. We then bucket the designs by

sequence similarity to known fluorescent proteins and fil-

ter and rank designs using a variety of metrics (details in

Appendix A.5.1.5).

We performed a first experiment with 88 designs on a 96

well plate, with the top generations in each sequence sim-

ilarity bucket. Each generated protein was synthesized,

expressed in E. coli, and measured for fluorescence activity

at an excitation wavelength of 485 nm Fig. 4B left. We mea-

sured brightness similar to positive controls from a number

of designs that have higher sequence identity with naturally

occurring GFPs. We also identify a design in well B8 (high-

lighted in a black circle) with only 36% sequence identity

to the 1QY3 sequence and 57% sequence identity to the

nearest existing fluorescent protein, tagRFP. This design

was 50x less bright than natural GFPs and its chromophore

matured over the course of a week, instead of in under a

day, but it presents a signal of function in a new portion of

sequence space that to our knowledge has not been found in

nature or through protein engineering.

We continue the chain of thought starting from the sequence

of the design in well B8 to generate a protein with improved

brightness, using the same iterative joint optimization and

ranking procedure as above. We create a second 96 well

plate of designs, and using the same plate reader assay we

find that several designs in this cohort have a brightness in

the range of GFPs found in nature. The best design, located

in well C10 of the second plate (Fig. 4B right), we designate

esmGFP.

We find esmGFP exhibits brightness in the distribution of

natural GFPs. We evaluated the fluorescence intensity at 0,

2, and 7 days of chromophore maturation, and plot these

measurements for esmGFP, a replicate of B8, a chromophore

knockout of B8, along with three natural GFPs avGFP,

cgreGFP, ppluGFP (Fig. 4C). esmGFP takes longer to ma-

ture than the known GFPs that we measured, but achieves

a comparable brightness after two days. To validate that

fluorescence was mediated by the intended Thr65 and Tyr66,

we show that B8 and esmGFP variants where these residues

were mutated to glycine lost fluorescence activity (Fig. S21).

Analysis of the excitation and emission spectra of esmGFP

reveals that its peak excitation occurs at 496 nm, which

is shifted 7 nm relative to the 489 nm peak for EGFP,

while both proteins emit at a peak of 512nm (Fig. 4D).

The shapes of the spectra indicated a narrower full-width-

half-maximum (FWHM) for the excitation spectrum of es-

mGFP (39mm for esmGFP vs 56 nm for EGFP), whereas

the FWHM of their emission spectra were highly compa-

rable (35nm and 39 nm, respectively). Overall esmGFP

exhibits spectral properties consistent with known GFPs.

We next sought to understand how the sequence and struc-

ture of esmGFP compares to known proteins. A BLAST

(51) search against the non-redundant protein sequences

database and an MMseqs (52) search of ESM3’s training

set report the same top hit—tagRFP, which was also the

nearest neighbor to B8—with 58% sequence identity, rep-

resenting 96 mutations throughout the sequence. tagRFP

is a designed variant, and the closest wildtype sequence to

esmGFP from the natural world is eqFP578, a red fluores-

cent protein, which differs from esmGFP by 107 sequence

positions (53% identity). Sequence differences between es-

mGFP and tagRFP occur throughout the structure (Fig. 4E)

with 22 mutations occurring in the protein’s interior, which

is known to be intensely sensitive to mutations due to chro-

mophore proximity and a high density of interactions (46).

Examination of a sequence alignment of 648 natural and de-

signed GFP-like fluorescent proteins revealed that esmGFP

9
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has the level of similarity to all other FPs that is typically

found when comparing sequences across taxonomic orders,

but within the same taxonomic class (Fig. 4F). For example,

the difference of esmGFP to other FPs is similar to level of

difference between FPs belonging to the orders of sclerac-

tinia (stony corals) and actiniaria (sea anemones) both of

which belong to the larger class anthozoa of marine inver-

tebrates (Fig. 4G). The closest FPs to esmGFP come from

the anthozoa class (corals and anemones), average sequence

identity 51.4%, but esmGFP also shares some sequence

identity with FPs from the hydrozoa (jellyfish) where the

famous avGFP was discovered, average sequence identity

33.4% (Fig. S22).

We can draw insight from evolutionary biology on the

amount of time it would take for a protein with similar

sequence identity to arise through natural evolution. In

Fig. 4G we show esmGFP alongside three Anthozoan GFPs.

We use a recent time-calibrated phylogenetic analysis of

the Anthozoans (53) that estimated the millions of years

ago (MYA) to last common ancestors to estimate evolu-

tionary time between each pair of these species. Using a

larger dataset of six Anthozoan GFPs and species for which

we have accurate MYA to last common ancestors and GFP

sequence identities, we construct a simple estimator that

correlates sequence identity between FPs to MY of evo-

lutionary time between the species (Fig. 4H) to calibrate

against natural evolution. Based on this analysis we estimate

esmGFP represents an equivalent of over 500 million years

of evolution from the closest protein that has been found in

nature.

Discussion

We have found that language models can reach a design

space of proteins that is distant from the space explored

by natural evolution, and generate functional proteins that

would take evolution hundreds of millions of years to dis-

cover. Protein language models do not explicitly work

within the physical constraints of evolution, but instead can

implicitly construct a model of the multitude of potential

paths evolution could have followed.

Proteins can be seen as existing within an organized space

where each protein is neighbored by every other that is one

mutational event away (54). The structure of evolution ap-

pears as a network within this space, connecting all proteins

by the paths that evolution can take between them. The

paths that evolution can follow are the ones by which each

protein transforms into the next without the collective loss

of function of the system it is a part of.

It is in this space that a language model sees proteins. It sees

the data of proteins as filling this space, densely in some

regions, and sparsely in others, revealing the parts that are

accessible to evolution. Since the next token is generated

by evolution, it follows that to solve the training task of

predicting the next token, a language model must predict

how evolution moves through the space of possible proteins.

To do so it will need to learn what determines whether a

path is feasible for evolution.

Simulations are computational representations of reality. In

that sense a language model which can predict possible out-

comes of evolution can be said to be a simulator of it. ESM3

is an emergent simulator that has been learned from solving

a token prediction task on data generated by evolution. It has

been theorized that neural networks discover the underlying

structure of the data they are trained to predict (55, 56). In

this way, solving the token prediction task would require

the model to learn the deep structure that determines which

steps evolution can take, i.e. the fundamental biology of

proteins.

In ESM3’s generation of a new fluorescent protein, it is the

first chain of thought to B8 that is the most intriguing. At 96

mutations to B8’s closest neighbor there are
(

229
96

)

× 1996

possible proteins, an astronomical number out of which

only a vanishingly small fraction can have function, since

fluorescence falls off sharply even after just a few random

mutations. The existence of C10 and other bright designs

in the neighborhood of B8 confirms that in the first chain

of thought to B8, ESM3 found a new part of the space of

proteins that, although unexplored by nature, is dense with

fluorescent proteins.
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enables sensitive protein sequence searching for the

analysis of massive data sets. Nature biotechnology,

35(11):1026–1028, 2017.

[53] Andrea M. Quattrini, Estefanı́a Rodrı́guez,

Brant C. Faircloth, Peter F. Cowman, Mercer R.

Brugler, Gabriela A. Farfan, Michael E. Hellberg,

Marcelo V. Kitahara, Cheryl L. Morrison, David A.

Paz-Garcı́a, James D. Reimer, and Catherine S.

McFadden. Palaeoclimate ocean conditions

shaped the evolution of corals and their skeletons

through deep time. Nature Ecology & Evolution,

4(11):1531–1538, August 2020. ISSN 2397-

334X. doi: 10.1038/s41559-020-01291-1. URL

https://www.nature.com/articles/

s41559-020-01291-1.

[54] John Maynard Smith. Natural selection and the con-

cept of a protein space. Nature, 225(5232):563–564,

1970.

[55] Geoffrey E. Hinton, James L. McClelland, and

David E. Rumelhart. Distributed representations. In

The Philosophy of Artificial Intelligence, 1986.

[56] Naftali Tishby, Fernando C Pereira, and William

Bialek. The information bottleneck method. arXiv

preprint physics/0004057, 1999.

[57] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz

Kaiser, and Illia Polosukhin. Attention Is All

You Need. In Advances in Neural Information

Processing Systems, pages 5998–6008, 2017.

URL https://papers.nips.cc/paper/

7181-attention-is-all-you-need.

pdf.

[58] Ruibin Xiong, Yunchang Yang, Di He, Kai

Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,

Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On

layer normalization in the transformer architecture.

arXiv:2002.04745, 2020.

15

https://www.nature.com/articles/nature17995
https://www.nature.com/articles/nature17995
https://www.nature.com/articles/s41467-023-38099-z
https://www.nature.com/articles/s41467-023-38099-z
https://www.biorxiv.org/content/early/2018/06/02/337154
https://www.biorxiv.org/content/early/2018/06/02/337154
https://www.science.org/doi/10.1126/science.273.5280.1392
https://www.science.org/doi/10.1126/science.273.5280.1392
https://www.pnas.org/doi/full/10.1073/pnas.2133463100
https://www.pnas.org/doi/full/10.1073/pnas.2133463100
https://www.nature.com/articles/s41559-020-01291-1
https://www.nature.com/articles/s41559-020-01291-1
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf


PR
EV

IE
W

Simulating 500 million years of evolution with a language model

[59] John Jumper, Richard Evans, Alexander Pritzel,

Tim Green, Michael Figurnov, Olaf Ronneberger,

Kathryn Tunyasuvunakool, Russ Bates, Augustin
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A. Materials and Methods

A.1. ARCHITECTURE

A.1.1. Notation

In the following, we use L to denote the sequence length, d
for the embedding dimension, {a..b} to denote the inclusive

set of integers from a to b, and [a, b] an interval of real

numbers. SE(3) is the special Euclidean group, which we

use to denote frames (Appendix A.1.6.1).

A.1.2. Overview

ESM3 is all-to-all generative model that both conditions

on and generates a variety of different tracks. As input,

ESM3 is conditioned on various tracks as described in Ap-

pendix A.1.5.1, and as output, ESM3 generates predictions

detailed in Appendix A.1.5.2.

The generative pipeline is as follows.

Tokenization First, raw inputs are tokenized as described

in Appendix A.1.3. Structural inputs are tokenized

via a VQ-VAE (Appendix A.1.7). Function keywords

are tokenized by quantizing the TF-IDF transform of

functional keywords with locality sensitive hashing

(LSH), detailed in Appendix A.1.8.

Transformer Trunk A standard Transformer (57, 58) ar-

chitecture processes the post-tokenized inputs. Geo-

metric Attention (Algorithm 6 and Fig. S2) directly

processes structural coordinates as input. Model out-

puts are logits over token space, and can be sampled

to obtain outputs described in Appendix A.1.5.2. The

overall architecture is diagrammed in Fig. S1.

Decoder Most tracks can be naively decoded into tokens

detailed in Appendix A.1.3. Structure tokens must

be decoded with a model - we use a 700M parameter

transformer model to do this, trained post-hoc (Ap-

pendix A.1.7.2). The decoder uses sequence tokens and

structure tokens to directly predict coordinates, pTM,

and pLDDT (59). Function tokens are decoded using

a small 3-layer transformer, trained post-hoc to invert

the LSH quantization procedure (Appendix A.1.8.2.1).

A.1.3. Tokenization

During tokenization, special beginning-of-sequence (BOS)

and end-of-sequence (EOS) tokens are prepended and ap-

pended to mark the real start of sequences. When sequences

are cropped due to length, the BOS and EOS tokens are

cropped out to indicate protein fragments. In all cases, one

token per track is used for each amino acid.

Sequence Protein sequences are tokenized as the 20 canon-

ical amino acids, plus BOS, EOS, mask, pad, unknown.

We keep four non-standard amino acids as in Lin et al.

(5), B - Asparagine, U - selenocysteine, Z - glutamic

acid, and O - ornithine. This totals to 29 tokens.

Structure Structure tokenization is described in Ap-

pendix A.1.7.1. ESM3 uses a codebook size of 4096

with 4 special tokens - EOS, BOS, mask, and pad.

Secondary Structure Secondary structure is taken to be

the canonical 8-class tokens (60), with unknown and

mask, for a total of 10 tokens. The mask token is forced

to be the 0-vector during embedding.

SASA The continuous values representing SASA are to-

kenized by discretization into a fixed set of 16 bins.

SASA bin boundaries were chosen by computing

SASA on 100 random structures and ensuring an equal

number of residues belong in each bin. Unknown and

mask are used for a total of 18 tokens. The mask token

is forced to be the 0-vector during embedding.

Function annotations We tokenize function annotations

as bags of keywords, described in Appendix A.1.8.

Keywords are quantized using LSH into 8 tokens per

residue, each of which can be one of 255 tokens. There

are three special tokens, empty set, no-annotation, and

mask. Again, the mask token is forced to be the 0-

vector during embedding.

Residue annotations InterPro annotations are tokenized

as a multi-hot feature vector (1478 dimensions) over

possible InterPro labels (38). Input annotations are

limited to a maximum of 16. When annotations are not

present, we enforce that the 0-vector is added.

A.1.4. ESM3 Inputs and Forward Pass

As mentioned above, ESM3 can take several tracks, all of

which are optionally disabled via masking. In the following,

we concisely denote the inputs to ESM3 as

xinputs =



















xstructure ∈ {0..4099}L, xss8 ∈ {0..10}L,
xsasa ∈ {0..18}L, xfunc ∈ {0..258}L×8,

xres ∈ {0, 1}L×1478, xres ∈ {0, 1}L×1478,

xplddt ∈ [0, 1]L, xavgplddt ∈ [0, 1]

We now present the high level algorithm for a forward pass

of ESM3:
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Figure S1. The ESM3 architecture. ESM3 is a masked language model that reasons over protein sequence, structure, and function, each

of which are represented as token tracks at the input and output. Tokens are embedded and summed at the input to a transformer stack.

The first block (expanded on the right) contains an additional geometric attention layer for processing atomic coordinate inputs. During

training, random masks are sampled and applied to each track. Masked token positions are predicted at the output.
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Algorithm 1 esm3_forward

Input: xinputs

1: z
(0)
embed = encode_inputs (xinputs) ▷RL×d

2: for ℓ ∈ {1..nlayers} do

3: z
(ℓ)
embed = transformer_block (z

(ℓ−1)
embed )

4: end for

5: for track in desired output tracks do

6: ztrack = regression_head (z
(nlayers)
embed )

7: end for

8: return Track specific logits ztrack ∈ R
L×ctrack

In the next few sections, we detail each component.

A.1.5. Transformer

Our network is based on the transformer architecture (57),

incorporating several subsequent improvements: We use

Pre-LN instead of Post-LN (58), rotary embeddings (61)

instead of absolute positional embeddings, and we replace

ReLU non-linearity with SwiGLU (62). The hidden dimen-

sion is set to approximately 8
3d, rounded to the nearest

multiple of 256 for training efficiency. No biases are used in

linear layers or layer norms, as suggested by PaLM (63). We

have observed through the literature and in internal experi-

ments that these architecture changes improve the stability

and performance of models.

A core architectural modification we make is the insertion

of the Geometric Attention sub-layer in the first block of the

network only (Appendix A.1.5, line 3).

Algorithm 2 transformer_block

Input: x ∈ R
L×d, T ∈ SE(3)L

1: s =
√

36
nlayers

▷R

2: x = x+ s · MultiHeadSelfAttention(x) ▷RL×d

3: x = x+ s · geometric_mha (x, T ) ▷RL×d

4: x = x+ s · SwiGLUMLP(x) ▷RL×d

ESM3-small (1.4B) is a 48-layer network, while ESM3-

medium (7B) has 96 layers, and ESM3-large (98B) has

216 layers. We experimented with different width-to-depth

ratios and observed higher returns for depth than width.

Prior work also demonstrates that modalities like ours bene-

fit more from deeper networks (64, 65). Detailed network

specifications can be found in Table S1.

A.1.5.1. EMBEDDING

There are 7 unique input tracks to ESM3: (a) sequence

(amino acid tokens), (b) structure coordinates, (c) struc-

ture tokens, (d) 8-class secondary structure labels (SS8),

(e) quantized solvent-accessible surface area (SASA) val-

ues, (f) function keyword tokens and (g) residue (InterPro)

annotation binary features.

There are two additional tracks used during pre-training

only: (h) per-residue confidence (pLDDT) and (i) averaged

confidence (pLDDT). At inference time, these values are

fixed, and these tracks are equivalent to adding a constant

vector zplddt.

Structure coordinates are parsed through the Geometric At-

tention and are not embedded.

For keyword-based function tokens, each of the eight in-

tegers per residue is converted to a “sub-embedding” (Ap-

pendix A.1.5.1 line 5), then concatenated to form the per-

residue embedding (Appendix A.1.5.1 line 6). For InterPro

residue annotations, the inputs are multi-hot. To create

an embedding vector, we sum the embeddings for each

of the “on” features (equivalent to the matrix-multiply on

Appendix A.1.5.1 line 7).

The largest model, 98B has an additional taxonomy track

detailed in Appendix A.1.9.2, only enabled in the final 30K

steps of pre-training.

The embeddings are all summed as input to the first layer in

the network architecture.

Algorithm 3 encode_inputs

Input: xinputs =
{xseq, xstructure, xss8, xsasa, xfunc, xres, xplddt, xavgplddt}

1: zseq = embed(xseq) ▷RL×d

2: zstructure = embed(xstructure) ▷RL×d

3: zss8 = embed(xss8) ▷RL×d

4: zsasa = embed(xsasa) ▷RL×d

5: hfunc,i = embed([xfunc]:,i) ▷RL× d

8

6: zfunc = [hfunc,1 | hfunc,2 | . . . | hfunc,8] ▷RL×d

7: zres = xresWres ▷RL×d

8: zplddt = plddt_embed (xplddt, xavgplddt) ▷RL×d

9: return zseq +zplddt +zstructure +zss8 +zsasa +zfunc +zres

A.1.5.2. LOGITS

We use a regression_head to take in d dimensional

last layer hidden features and produce ctrack-dimensional

logits for each of the tracks, where ctrack corresponds to the

size of the vocabulary per track. Note that for the keyword

function tokens, we produce cfunc × 8 logits, and softmax

over each of the 8 independently when calculating the loss.
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Params nlayers dmodel dhead Context

length

Learning

rate

Warmup

steps

Batch

size in

tokens

Num

steps

Total

tokens

FLOPs

1.4B 48 1536 64 2048 4.0e-4 5K 1,572,864 50K ∼80B 6.72× 1020

1.4B 48 1536 64 2048 4.0e-4 5K 1,572,864 200K ∼320B 2.7× 1021

7.7B 96 2560 128 2048 2.5e-4 5K 3,932,160 140K ∼550B 2.47× 1022

98.5B 216 6144 128 2048 1.0e-4 20K 4,194,304 430K ∼1.8T 1.07× 1024

Table S1. Parameter details for different model configurations.

Algorithm 4 regression_head

Input: x ∈ R
...×d

1: z = projin(x)
2: z = GeLU(z)
3: z = LayerNorm(z)
4: z = projout(z)
5: return z

Except for structure coordinates, we output predictions for

each of the tracks detailed in Appendix A.1.5.1: (a) se-

quence, (b) structure tokens, (c) SS8, (d) quantized SASA,

(e) function keyword tokens and (f) residue (InterPro) anno-

tation binary features.

Except for the multi-hot residue annotations, all other tracks

are predicted as a categorical distribution over possible to-

kens.

A.1.6. Geometric Attention

As mentioned in Appendix A.1.5.1, ESM3 processes struc-

tural information in two independent ways:

Geometric Attention Described in Algorithm 6, this lever-

ages fine-grained 3D information via conditioning on

exact coordinates. We find that conditioning on coor-

dinates is critical to good inverse folding performance.

Coordinates are only used as model inputs.

Structure Tokens Described in Appendix A.1.7, structure

tokens enable faster learning due to rich local neighbor-

hood semantics being compressed into tokens. Struc-

ture tokens are generally used as model outputs.

Geometric attention enables high-throughput encoding of

protein structures. Protein backbone structure can be rep-

resented by the relative distance and orientation of frames

defined by each residue’s backbone coordinates. Reasoning

over the relative orientation of frames is important to capture

the local backbone geometry when only partial structure is

provided. Geometric attention is an SE(3) invariant all-

to-all attention mechanism which reasons over the relative

distances and orientations of all defined frames in the input

(Fig. S2). Because this attention operation can be realized

using the same computational primitives as attention, it is

readily scalable.

We first provide an overview of frames, and then describe

how geometric attention uses them:

A.1.6.1. FRAMES

Frames are representations that encapsulate the 3D posi-

tional and rotational information of residue backbones and

sidechains in a protein structure. We use a formulation simi-

lar to Ingraham et al. (66). Each frame T ∈ SE(3) consists

of a rotation matrix R ∈ SO(3) and a translation vector

t ∈ R
3.

Definition: A frame Ti for residue i is defined as:

Ti =

[

Ri ti
01×3 1

]

∈ SE(3)

where Ri ∈ SO(3) and ti ∈ R
3.

Rotation Matrix: The rotation matrix Ri for residue i is

composed of three 3-dimensional vectors [x̂, ê1, ê2]:

1. x̂ and ê1 are orthogonal unit vectors on the N −
Cα − C plane.

2. ê2 is a unit vector perpendicular to both x̂ and ê1.

This matrix rotates vectors to a local coordinate system

where the N − Cα − C plane for the corresponding

residue spans the xy plane.

Translation Vector: The translation vector ti specifies the

position of the residue’s Cα.

Transformation: To transform a point p ∈ R
3 from the

local frame of residue i to the global coordinate system,

the following equation is used:

pglobal = Ti(p) = Rip+ ti

Inverse Transformation: To transform a point pglobal ∈
R

3 from the global coordinate system back to the local

frame of residue i, the following equation is used:

p = T−1
i (pglobal) = R−1

i (pglobal − ti)
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Figure S2. Geometric attention. Geometric attention is an SE(3) invariant all-to-all attention mechanism where the attention score matrix

is a weighted sum of two terms: (1) the pairwise distances between queries and keys rotated and translated by their respective backbone

frames, and (2) the pairwise dot products between queries and keys rotated by their respective backbone frames. This attention mechanism

encodes structural information with throughput comparable to the standard attention operation in transformers.
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To create frames, all we require is a translation vector t⃗, and

two vectors x⃗ and y⃗ defining the local xy plane after con-

version to global coordinates, from which the frame T can

be calculated with the standard Gram-Schmidt algorithm:

Algorithm 5 gram_schmidt

Input: t⃗ ∈ R
L×3, x⃗ ∈ R

L×3, y⃗ ∈ R
L×3

1: x̂ = x⃗
∥x⃗∥

2: e⃗1 = y⃗ − (x̂ · y⃗)x̂
3: ê1 = e⃗1

∥e⃗1∥
4: ê2 = x̂× ê1
5: R = [x̂, ê1, ê2] ▷SO(3)L

6: T =
[

R t⃗
01×3 1

]

▷SE(3)L

7: return T

We construct frames such that the Cα is at the origin of the

frame (⃗t), C on the negative x-axis (−x⃗), and N is on the

xy-plane.

A.1.6.2. GEOMETRIC SELF-ATTENTION

Algorithm 6 details the Geometric Self-Attention layer.

It can be efficiently implemented using similar ideas as

FlashAttention (33). It is used twice in our system: in the

VQ-VAE encoder for structure tokens (Appendix A.1.7.1),

and in the first layer of ESM3.

Unlike regular self-attention, which only operates on per-

residue embeddings, Geometric Attention incorporates the

per-residue frames T to integrate geometric information in

a rotation and translation invariant way. The process of

forming the attention matrix A is as follows:

1. QKV Projections: Two sets of keys and queries

(Qr,Kr) and (Qd,Kd), along with V , all with shapes

∈ R
L×h×3 are linearly projected from layer input X .

L is the sequence length, h is the number of heads.

2. Convert QKV to global frame: Each of the queries,

keys and values are initially assumed to be in the local

frame of their corresponding residue.

(a) Convert to Global Rotational Frame: We con-

vert each of the vectors in Qr,Kr, V from their

local frame (where the xy plane is the N−Cα−C
plane for each residue) to a global rotational frame

(where the xy plane is aligned for all residues) by

applying Ri (Algorithm 6, lines 3, 4).

(b) Convert to Global Distance Frame: We convert

each of the vectors in Qd,Kd from their local

frame to a global frame by applying Ti (Algo-

rithm 6, lines 5, 6).

3. Directional Attention: The pairwise, per-head h ro-

tational similarity R between keys i and queries j is

calculated using the dot product [R]i,j,h = 1√
3
[qr]i,h,: ·

[kr]j,h,:. This is equivalent to the cosine distance be-

tween projected points.

4. Distance Attention: The pairwise, per-head h dis-

tance similarity D between keys i and queries j is com-

puted using the L2 norm of the difference [D]i,j,h =
1√
3
∥[qr]i,h,: − [kr]j,h,:∥2.

5. Scale Factor: R and D are scaled per-head with

learned scalars [w̄r]h and [w̄d]h, respectively, where

w̄r, w̄d ∈ R
h. We use the softplus function to trans-

form weights into [0,∞)h. This scaling allows certain

heads to specialize in attending via distance or direc-

tional attention.

Algorithm 6 geometric_mha

Input: X ∈ R
L×d, T ∈ SE(3)L

1: Qr,Kr, Qd,Kd, V = Linear(X) ▷(RL×h×3)×5

2: (Ri, ti) = Ti ▷(SO(3)L,RL×3)

3: [Qr]i,h,: = Ri([Qr]i,h,:) ▷RL×h×3

4: [Kr]i,h,: = Ri([Kr]i,h,:) ▷RL×h×3

5: [Qd]i,h,: = Ti([Qd]i,h,:) ▷RL×h×3

6: [Kd]i,h,: = Ti([Kd]i,h,:) ▷RL×h×3

7: [R]i,j,h = 1√
3
[qr]i,h,: · [kr]j,h,: ▷RL×L×h

8: [D]i,j,h = 1√
3
∥[qr]i,h,: − [kr]j,h,:∥2 ▷RL×L×h

9: A = softplus(w̄r)R− softplus(w̄d)D ▷RL×L×h

10: A = softmaxj(A)
11: [V ]i,h,: = Ri([V ]i,h,:)
12: O = A · V ▷RL×h×3

13: [O]i,h,: = R−1
i ([O]i,h,:)

14: X = X + Linear(O) ▷RL×d

A.1.7. Structure Tokenizer

Each residue is associated with one of 4,096 structure tokens

(+4 special tokens), designed to provide a rich, learned

representation of its local neighborhood. The tokens are

generated with a VQ-VAE encoder, with a corresponding

decoder to enable decoding of generated tokens back to 3D

coordinates.

A.1.7.1. ENCODER

The VQ-VAE encoder fenc consists of two geometric at-

tention blocks (Transformer blocks, but self-attention re-

placed with geometric_mha ) with an embedding width

of 1024 and 128 geometric heads per geometric attention

layer.

The VQ-VAE encoder reasons over the backbone frames
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and the relative sequence position of residues in the local

structure. Relative sequence positions are encoded through

a learned positional embedding. Sequence positions are

determined relative to the query residue (i.e., if the query

residue has residue index 56, then the residue in index 58

has a +2 sequence position). Relative sequence positions

are clamped to +/- 32 before encoding, meaning long-range

contacts share sequence positional embeddings. Relative

sequence positional embeddings define the initial encoder

state N , and has shape L × 16 × d (Algorithm 7, line 4).

Note that this means the input to the VQ-VAE encoder is

purely structural: no sequence (amino acid), function or

other information is used here. Furthermore, each neigh-

borhood is processed completely independently; for each

residue, the encoder only uses the information of its 16

nearest neighbors.

Geometric attention blocks operate similar to Transformer

blocks in that they transform a state according to an attention

operation ( geometric_mha ) and feedforward network

(SwiGLU MLP). As such, the output has the same shape as

the input. In this case, this means that the encoder outputs 16

latents per residue. However, we want to learn a single token,

i.e., a single latent per residue, hence we take the embedding

corresponding to the query residue position N:,0,:.

The process of generating structure tokens (Algorithm 7)

from the full 3D coordinates of the protein then is as follows:

1. Local Neighborhood: For each residue, obtain the in-

dices Nidx ∈ {0..L−1}L×16 of the 16 nearest residues

(as measured by Cα distance). The first of the 16 neigh-

bors is always the residue itself. We also obtain the

frames for each residue in a local neighborhood with

Tknn.

2. Embed Neighbors: Embed the relative distance in

sequence space for each neighbor, ∆i = clamp(Nidx−
i,−32, 32) to form N ∈ R

L×16×d.

3. Encode: Pass N through a shallow encoder fenc con-

sisting of 2 Transformer blocks, with regular multi-

head self-attention swapped with geometric_mha .

The attention is unmasked, all-to-all over the entire

neighborhood.

4. Quantize: Extract the first element N:,0,: from the

neighborhood, which corresponds to the residue itself.

Project it linearly, and quantize by replacing with the

nearest vector in a codebook. This yields the structure

token per residue.

Algorithm 7 structure_encode

Input: xCα
∈ R

L×3, T ∈ SE(3)L

1: Nidx = knn(xCα
) ▷{0..L− 1}L×16

2: Tknn = T [Nidx] ▷SE(3)L×16

3: ∆i = clamp(Nidx − i,−32, 32)
4: N = embed(∆i) ▷RL×16×d

5: N = fenc(N,Tknn) ▷RL×16×d

6: z = Linear(N:,0,:) ▷RL×d′

7: z = quantize (z) ▷{0..4095}L×16

A.1.7.1.1. Codebook Learning

quantize transforms the L latents into L discrete tokens.

Since the VQ-VAE was initially proposed (67), numerous

approaches and tricks have been developed to address is-

sues with poor codebook utilization and unstable training.

We chose to learn the codebook as an exponential moving

average of encoder outputs (67–69). To improve codebook

utilization, unused codes are re-initialized to encoder out-

puts.

A.1.7.1.2. Parallel Encoding

To improve training and inference efficiency, we encode

all local structure graphs within a protein in parallel. In

practice, this means that given a batch of B proteins with

average sequence length L, then the inputs to the structure

encoder will have shape BL× 16× d.

A.1.7.2. DECODER

While the encoder independently processes all local struc-

tures in parallel, the decoder fdec attends over the entire

set of L tokens to reconstruct the full structure. It is com-

posed using a stack of bidirectional Transformer blocks with

regular self-attention.

As discussed in Appendix A.1.7.3, the VQ-VAE is trained

in two stages. In the first stage, a smaller decoder trunk

consisting of 8 Transformer blocks with width 1024, rotary

positional embeddings, and MLPs is trained to only predict

backbone coordinates. In the second stage, the decoder

weights are re-initialized and the network size is expanded

to 30 layers, each with an embedding dimension of 1280

(∼600M parameters) to predict all atom coordinates.

The exact steps to convert structure tokens back to 3D all-

atom coordinates using the decoder is provided in Algo-

rithm 8 and detailed as follows,

1. Transformer: We embed the structure tokens and pass

them through a stack of Transformer blocks fdec (reg-

ular self-attention + MLP sublayers, no geometric at-

tention).
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2. Projection Head: We use a projection head to regress

3 3-D vectors per residue: a translation vector t⃗, and

2 vectors −x⃗ and y⃗ that define the N − Cα − C plane

per residue after it has been rotated into position. This

head also predicts the unnormalized sine and cosine

components of up to 7 sidechain torsion angles.

3. Calculate T : We use gram_schmidt to convert t⃗,

x⃗, and y⃗ into frames T ∈ SE(3)L.

4. Calculate Tlocal: We normalize the sine and cosine

components and convert them to frames Tlocal ∈
SE(3)L×7 corresponding to rotations around the pre-

vious element on the sidechain.

5. Compose Frames: We compose each element of Tlocal

with its predecessors on a tree rooted at T to form

Tglobal ∈ SE(3)L×14, corresponding to the transfor-

mations needed for each heavy atom per residue in

atom14 representation.

6. Apply Frames: We then apply the frame to the X⃗ref ∈
R

L×14×3 coordinates in a reference frame, to rotate

and transform each residue into their final positions.

Algorithm 8 structure_decode

Input: z ∈ {0..4099}L×16

1: z = embed(z) ▷RL×d

2: z = fdec(z) ▷RL×d

3: t⃗, x⃗, y⃗, sin θ, cos θ = proj(z) ▷(RL×3)×3, (R
L×7)×2

4: T = gram_schmidt (⃗t,−x⃗, y⃗) ▷SE(3)L

5: sin θ = sin θ√
sin θ

2
+cos θ

2
▷[−1, 1]L×7

6: cos θ = cos θ√
sin θ

2
+cos θ

2
▷[−1, 1]L×7

7: Tlocal = rot_frames (sin θ, cos θ) ▷SE(3)L×7

8: Tglobal = compose (Tlocal, T ) ▷SE(3)L×14

9: X⃗ = Tglobal( ⃗Xref ) ▷RL×14×3

A.1.7.3. TRAINING

When using a VQ-VAE to learn discrete representations

which maximize reconstruction quality, it is common to

train in the autoencoder in two stages (70). In the first

stage, the encoder and codebook is learned with a relatively

small and efficient decoder. In the second stage, the encoder

and codebook are frozen and a larger or otherwise more

computationally expensive decoder is trained to maximize

reconstruction quality. We follow this two-stage training

approach for the structure tokenizer.

A.1.7.3.1. Stage 1.

The VQ-VAE is trained for 90k steps on a dataset of single

chain proteins from the PDB, AFDB, and ESMAtlas. We

use the AdamW optimizer (Loshchilov et al. 2017) with

learning rate annealed from 4e-4 according to a cosine decay

schedule. Proteins are cropped to a maximum sequence

length of 512. Five losses are used to supervise this stage

of training. The geometric distance and geometric direction

losses are responsible for supervising reconstruction of high

quality backbone structures.

Additionally, a distogram and binned direction classifica-

tion loss are used to bootstrap structure prediction but are

ultimately immaterial to reconstruction. We have found that

these structure prediction losses formulated as classification

tasks improve convergence early in training. To produce

these pairwise logits, we use a pairwise_proj_head ,

that takes x ∈ R
L×d and returns logits z ∈ R

L×L×d′

. It

works as follows:

Algorithm 9 pairwise_proj_head

Input: x ∈ R
L×d

1: q, k = proj(x), proj(x)
2: prodi,j,:, diffi,j,: = qj,: ⊙ ki,:, qj,: − ki,:

3: z = regression_head ([prod | diff]) ▷RL×L×d′

4: return z

Finally, an inverse folding token prediction loss (i.e., a cross-

entropy loss between predicted sequence and ground truth

sequence) is an auxiliary loss used to encourage the learned

representations to contain information pertinent to sequence-

related tasks.

The five losses are covered in detailed as follows:

1. Backbone Distance Loss: Compute the pairwise L2

distance matrix for the predicted and true coordinates

of the 3 backbone atoms (N , Cα, C). Let Dpred, D ∈
R

3L×3L. Compute (Dpred −D)2, clamp the maximum

error to (5 Å)2, and take the mean.

Algorithm 10 backbone_distance_loss

Input: X̂ ∈ R
L×3×3, X ∈ R

L×3×3

1: Ẑ, Z = flatten(X̂), flatten(X) ▷R3L×3,R3L×3

2: [Dpred]i,j = ∥[Ẑ]i,: − [Ẑ]j,:∥22 ▷R3L×3L

3: [D]i,j = ∥[Z]i,: − [Z]j,:∥22 ▷R3L×3L

4: E = (Dpred −D)2

5: E = min(E, 25)
6: l = meani,j(E) ▷R
7: return l

2. Backbone Direction Loss: Compute six vectors for

both predicted and ground truth coordinates for each

residue:
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(a) N → Cα

(b) Cα → C

(c) C → Nnext

(d) nCα
= −(N → Cα)× (Cα → C)

(e) nN = (Cprev → N)× (N → Cα)

(f) nC = (Cα → C)× (C → Nnext)

Compute the pairwise dot product, forming Dpred, D ∈
R

6L×6L. Compute (Dpred −D)2, clamp the maximum

error to 20, and take the mean.

In algorithm form (with compute_vectors com-

puting the six vectors described above):

Algorithm 11 backbone_direction_loss

Input: X̂ ∈ R
L×3×3, X ∈ R

L×3×3

1: V̂ = compute_vectors (X̂) ▷R6L×3

2: V = compute_vectors (X) ▷R6L×3

3: [Dpred]i,j = [V̂ ]i,: · [V̂ ]j,: ▷R6L×6L

4: [D]i,j = [V ]i,: · [V ]j,: ▷R6L×6L

5: E = (Dpred −D)2

6: E = min(E, 20)
7: l = meani,j(E) ▷R
8: return l

3. Binned Direction Classification Loss: This loss cap-

tures a coarser similarity between ground truth and

predicted orientations to stabilize early training. It uses

the last layer representations of the decoder, not the

predicted coordinates. The process is as follows:

(a) Unit vectors: Compute three vectors per residue

from ground truth coordinates: Cα → C, Cα →
N , and nCα

= (Cα → C) × (Cα → N), and

normalize them to unit length.

(b) Dot Products: Compute pairwise dot products

between each pair of vectors for all residues, form-

ing D ∈ [−1, 1]L×L×6. Bin the dot products into

16 evenly spaced bins in [−1, 1], forming classifi-

cation labels y ∈ {0..15}L×L.

(c) Pairwise Logits: Pass the final layer represen-

tations of the decoder h ∈ R
L×d through a

pairwise_proj_head to obtain logits z ∈
R

L×L×6×16.

(d) Cross Entropy: Calculate cross-entropy loss us-

ing the labels y from the ground truth structure

and the logits z, and average over all L× L× 6
values.

4. Distogram Loss: Similar to the Binned Direction Clas-

sification Loss, this loss bins the true distances between

residues (specifically, their Cβ) to get ground truth

targets and computes a cross-entropy between these

targets and pairwise logits. In detail:

(a) Calculate Cβ: Given the ground truth N , Cα,

and C coordinates, we compute the location of

Cβ :

i. Obtain the three vectors N → Cα, Cα → C,

and n = (N → Cα)× (Cα → C).

ii. Define the following scalars:

a = −0.58273431

b = 0.56802827

c = −0.54067466

iii. Compute the location of Cβ using the for-

mula:

Cβ = an+ b(N → Cα)+ c(Cα → C)+Cα

(1)

(b) Pairwise Cβ distances: Compute an L × L
pairwise distance matrix of the Cβ , and bin

them into one of 64 bins, with lower bounds

[0, 2.31252, (2.3125 + 0.3075)2, . . . , 21.68752],
forming the labels y ∈ {0..63}L×L.

(c) Pairwise logits: Pass the final layer represen-

tations of the decoder h ∈ R
L×d through a

pairwise_proj_head to obtain the logits

z ∈ R
L×L×64.

(d) Cross Entropy: Calculate the cross-entropy us-

ing the labels y computed from the ground truth

structure and the logits z, then average over all

L× L values.

5. Inverse Folding Loss: Pass final layer representations

of the decoder through a regression head to produce

logits z. Using ground truth residues as labels y, com-

pute cross-entropy for the classification task of predict-

ing residues from final layer representations.

A.1.7.3.2. Stage 2.

In the second stage of VQ-VAE training, the encoder and

codebook are frozen and a new, deeper, decoder is trained.

This second stage of training has multiple purposes. First,

a larger decoder improves reconstruction quality. Second,

augmented structure tokens from ESM3 are added to enable

learning pAE and pLDDT heads. Third, we add sequence

conditioning and train with all-atom geometric losses to

be able to decode all-atom protein structures. Fourth, we

extend the context length of the decoder to be able to decode

multimers and larger single chain proteins.

Training data for stage 2 consists of predicted structures in

AFDB and ESMAtlas, as well as single chain, multimer,

and antibody-antigen complexes from the PDB. Sequence

conditioning was added to the decoder via learned embed-

dings which are summed with structure token embeddings

at the input to the decoder stack.
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The structure token decoder was trained in three stages: 2A,

2B, 2C detailed in Table S2. The purpose of stage 2A is to

efficiently learn decoding of all-atom structures. Enhanced

training efficiency is achieved by keeping a short context

length and omitting the pAE and pLDDT losses, which are

both memory-consuming and can be in competition with

strong reconstruction quality. In stage 2B, we add the pAE

and pLDDT losses. These structure confidence heads cannot

be well-calibrated unless structure tokens are augmented

such that ESM3-predicted structure tokens are within the

training distribution. To this end, for stages 2B and 2C we

replace ground truth structure tokens with ESM3-predicted

structure tokens 50% of the time. In stage 2C, we extend

context length to 2048 and upsample experimental structures

relative to predicted structures.

1. All-atom Distance Loss: We generalize the Back-

bone Distance Loss to all atoms by computing a

pairwise L2 distance matrix for all 14 atoms in the

atom14 representation of each residue. This results in

Dpred, D ∈ R
14L×14L. The rest of the computation fol-

lows as before: (Dpred −D)2, clamping to (5 Å)2, and

taking the mean, while masking invalid pairs (where

any atom14 representations are “empty”).

2. All-atom Direction Loss: We extend the Backbone

Direction Loss to all heavy atoms:

(a) Compute a pairwise distance matrix per residue

from the 3D coordinates of each atom in atom14

representation, resulting in R
L×14×14.

(b) Mark atoms less than 2 Å apart (excluding self)

as covalent bonds.

(c) Filter to keep atoms with at least 2 covalent bonds,

keeping only the first 2 bonds per atom, with or-

dering determined by the atom14 representation.

(d) For each selected atom, compute a normal (z-

axis) vector to the plane spanned by its two cova-

lent bonds, resulting in three vectors per selected

atom.

(e) Randomly subsample to 10,000 vectors per pro-

tein if the number exceeds 10,000, ensuring the

same vectors are sampled in both predicted and

ground truth structures.

(f) Compute all-to-all pairwise dot products, forming

Dpred, D ∈ R
n×n. Compute (Dpred −D)2, clamp

the max to 20, and take the mean.

3. pLDDT Head: Uses a Regression Head with 50 out-

put classes (each capturing 0.02 units from 0 to 100).

Predicted structures are compared to ground truth to

calculate per-residue pLDDT values, which are super-

vised with cross-entropy loss.

4. pAE Head: Use a Pairwise Projection Head to pro-

duce 64 logits per residue pair ∈ R
L×L×d, converting

to probabilities p via softmax. Each probability corre-

sponds to a bin representing 0.5 Å of positional error,

with centers [0.25, 0.75, . . . , 31.25, 31.75].

Computing Loss:

(a) Compute the pairwise distances between residues

in both the predicted and ground truth struc-

tures, resulting in distance matrices Dpred and

D ∈ R
L×L.

(b) Calculate the differences (Dpred −D).

(c) Bin these differences into 64 bins, generating clas-

sification targets for the logits.

(d) Compute the loss using cross-entropy between

these targets and the logits.

Computing pAE: Multiply probabilities by bin centers

and sum to obtain the expected positional error per

residue pair, with values ∈ [0.25, 31.75].

Computing pTM: Additionally, the pairwise logits are

used to compute the pTM (Predicted Template Model-

ing) score, as follows:

(a) Compute fd for sequence length L as:

d0 = 1.24 · (max(L, 19)− 15)
1

3 − 1.8

fd =
1

1 +
(

bins
d0

)2

(b) Compute pTM using previously computed proba-

bilities p:

pTM = max
i





1

L

∑

j

(

∑

bin

[p]i,j,bin[fd]bin

)





A.1.7.4. EVALUATION

We evaluate the reconstruction quality of the structure to-

kenizer after stage 1 and stage 2 of training using a set of

CAMEO, CASP14, and CASP15 proteins taken after the

training cutoff date (Fig. S3). Both decoders consistently

reach RMSD < 1Å, LDDT-CA > 0.98. The retraining of

the structure token decoder results in substantial improve-

ments in reconstruction quality across all test sets. The

stage 2 decoder, trained with an all-atom reconstruction

loss and a sequence input, achieves strong all-atom recon-

struction as well (Fig. S3C). We also visualize a random

sample of backbone reconstructions on the CAMEO test

set (Fig. S4A). Looking at the proteins with worse recon-

struction quality, we find that long regions with few tertiary

contacts, disordered regions, and unresolved coordinates
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Stage Steps All-atom

geometric

losses

pAE and

pLDDT

losses

Augmentation

with ESM3-

predicted

tokens

Context

length

Data mixture

2A 90k ✓ ✗ ✗ 512 Roughly uniform sampling of pre-

dicted and experimental structures

2B 20k ✓ ✓ ✓ 512 Roughly uniform sampling of pre-

dicted and experimental structures

2C 30k ✓ ✓ ✓ 2048 Upsampling experimental structures

Table S2. Training details for stage 2 training of an all-atom structure token decoder.

can lead to inaccurate global orientation of structural ele-

ments, while local structure reconstruction remains largely

error-free (Fig. S4B). This behavior can be explained by the

fact that the tokenizer relies on tertiary contacts to resolve

the global orientation of a residue.

We also investigate the vocabulary learned by the structure

tokenizer by visualizing the local neighborhoods which map

to the same learned structure token. We find that many

structure tokens encode semantically coherent sets of local

neighborhoods (Fig. S5A). However, a number of tokens

appear to represent multiple local neighborhoods (Fig. S5B).

While the meaning of a single token may be ambiguous,

the high-fidelity reconstruction quality from the decoder

suggests that it is able to disambiguate given surrounding

context in the full set of structure tokens.

Fig. S6 indicates that pLDDT and pTM are well-calibrated.

We assess the calibration of the structure confidence heads

on the CAMEO test set using structure tokens predicted by

ESM3 7B. Most predictions for pLDDT lie along the diag-

onal, though there is a small bias towards more confident

predictions. As pTM is a pessimistic estimator of the TM-

score, we find that pTM is biased downwards. Anecdotally,

we also find that pLDDT can be poorly calibrated for some

generated sequences, particularly in alpha helical regions

where it can be an overestimate.

A.1.8. Function Tokenization

ESM3 processes annotations of functional characteristics of

proteins through two tracks: function tokens, and residue

annotations. Both support input conditioning and output

heads for generation. Appendix A.1.5.1 outlines how tokens

are processed into the network: we further describe the

creation of the tokens themselves in this section.

A.1.8.1. FUNCTION TOKENS

Function tokens are a dense semantic representation of func-

tional characteristics of proteins derived from free-text de-

scriptions of the InterPro and Gene Ontology (GO) terms at

each residue. At training time, function tokens are produced

from each protein’s InterPro annotations by a multi-step

process illustrated in Fig. S7. At a high level:

1. For each residue, we gather free-text for each Inter-

Pro annotation via annotation term names, associated

GO terms per annotation (via InterPro2GO mapping),

and all ancestor GO terms. We parse the free-text

into counts from a vocabulary of 68,103 keywords.

The vocabulary is composed of unigram and bigrams

extracted from the free-text of all valid InterPro anno-

tations (and their associated GO/ancestor GO terms) in

our training datasets.

2. The keywords are converted to a sparse TF-IDF vector

per InterPro annotation. During training, we also pro-

duce a corrupted version by dropping keywords at the

protein level (i.e. the same keywords have their counts

set to 0 across all residues) at a 15% probability per

keyword.

3. To create a vector per residue from the per annota-

tion vectors, we max pool the TF-IDF vectors for the

annotations per residue. During training, we further

corrupt the “corrupted” version by dropping annota-

tions at the protein level (i.e. the same annotations are

removed from the max pool across all residues) at a

15% probability per annotation.

4. We then quantize each residue’s vector (a highly sparse

vector with float entries) into a discrete representation

suitable for input to the language model as tokens by

applying a fixed series of 8 locality sensitive hashes

(LSH), each with 8 hyperplanes.

The result is a sequence of 8 tokens each ranging in value

from 0 to 255 per-residue. We reserve a special token

<none> to represent positions with an empty set of In-

terPro annotations. For proteins that lack any functional

annotations, the tokens are filled with the <pad> token

which has an embedding value fixed to all zeros. At test
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Figure S3. Structure tokenizer reconstruction quality. Reconstruction quality of the structure tokenizer after stage 1 and stage 2 of

VQ-VAE decoder training evaluated on temporally held out CAMEO, CASP14, and CASP15. (A) Reconstruction LDDT-CA. (B)

Reconstruction backbone RMSD. (C) All-atom reconstruction RMSD from the stage 2 decoder which additionally receives sequence

input.

time, we can produce per residue vectors using the pro-

cess described, or directly creating a TF-IDF vector with

keywords.

During pre-training we use the corrupted versions of the

function tokens at input, predicting the un-corrupted version

function tokens at positions which have been masked. 90%

of the time, the entire input is replaced with <mask> . The

other 10% of the time, we replace all 8 tokens of selected

residue with a <mask>, with the per-residue selection prob-

ability sampled from a cosine masking schedule per protein.

The model has an output head which predicts each of the 8

function tokens in positions with <mask> as input, and is

trained with a categorical cross entropy loss.

Function tokenization offers several key advantages as com-

pared to simpler approaches for example using a dedicated

InterPro tag vocabulary. Encoding functional annotations

with a generic functional keyword vocabulary enables flex-

ible prompting of the model at test time, by combinations

of keywords that were not encountered during training time.

This enhances the programmability of ESM3 in designing

novel proteins with not previously observed functional char-

acteristics.

Function tokenization can also be viewed through the lens

of data compression. This choice of representation reduces

the input/output space from all possible InterPro combina-

tions which would naively be represented by 35k bits, to a

reduced space of 8 tokens x 8 bits / token = 64 bits. This

also affords significant memory saving during pre-training

by eliminating the need to perform multi-class multi-label

binary classification.

A.1.8.2. FUNCTION PREDICTION

ESM3 is trained to predict all 8 function tokens, each span-

ning 256 possible values. To extract interpretable predic-

tions of protein function from ESM3 we decode the pre-

dicted function tokens into function keywords using a seper-

ately trained function token decoder.

A.1.8.2.1. Function Token Decoder

We train a 3-layer transformer model to learn the inverse

map of the function tokenization process. The model takes

as input the 8 function tokens representing the locality sen-

sitive hash of function keywords. It outputs for each residue

the binary-classification predictions predicting the presence

of each function keyword, as well as predicting InterPro

annotations from which the keywords originate. We find

that unpacking the 8-bit LSH tokens into single-bit tokens

improves training dynamics of the function token decoder.

We train the function token decoder offline using combina-

tions of InterPro tags from the UniRef annotated proteins.

Since the function token vocabulary is fixed the decoder is

applied identically across different ESM3 model sizes.

A.1.8.2.2. Evaluation

To evaluate ESM3’s performance in predicting protein func-

tion, we compute Average Precision, a standard measure

of information retrieval, using the validation set of proteins

from the UniRef and their associated InterProScan function

annotations. We present results in Fig. S8.
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Figure S4. Visualization of structure tokenizer backbone reconstructions. (A) A random sample of reconstructions from the structure

tokenizer on the CAMEO test set. The vast majority of structures have near perfect backbone reconstruction (B) A selection of the worst

reconstructions in CAMEO. Long stretches of disordered regions, a lack of tertiary contacts, and unresolved coordinates can lead to

inaccurate global orientation of structural elements, while local structure reconstruction remains largely error-free.
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Figure S5. Visualization of local neighborhoods which map to the same learned structure token. The VQ-VAE encoder reasons over local

structure neighborhoods (highlighted in red) which include the query residue and the 15 nearest neighbors in structure space. (A) Rows

correspond to token indices 585, 59, and 3692 for top, middle, and bottom, respectively. Columns show different local structures mapping

to the same token. (B) Some tokens represent multiple types of local neighborhoods. All local neighborhoods in B map to the same

codebook index 3276. While the meaning of a single token may be ambiguous, the decoder is able to disambiguate given surrounding

context in the full sequence of structure tokens.
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Figure S6. pTM and pLDDT calibration. Calibration of the structure token decoder pLDDT and pTM (using ESM3 7B as the structure

token prediction model) on the CAMEO test set.

Figure S7. Schematic of function tokenization. The set of InterPro and GO descriptions of protein function are vectorized by a TF-IDF

model and then hashed by a locality sensitive hash to produce 8 tokens each containing 8 bits.
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Figure S8. Function prediction benchmarking results. Mean Aver-

age Precision (mAP) for function keyword prediction. Predictions

and labels are compared on a per-position basis to evaluate the

model’s ability to localize site-specific functional attributes by

keywords such as ”active site”. We report mAP for the full key-

word set (red) with a ”micro” average because many keywords

have few or no labels in the validation set. To report a ”macro”

average mAP we compute mAP for each of the top 1,000 most

prevalent keywords in our evaluation set (discarding uninformative

keywords such as ”the”) and report a uniform average (blue). 95%

confidence intervals are shown by shading.

A.1.8.3. RESIDUE ANNOTATIONS TRACK

Residue annotations label a protein’s sites of functional

residues with a vocabulary of 1474 multi-hot labels emitted

by InterProScan. To gather this data, we run InterProScan

with databases (SFLD, CDD, PIR) on all cluster members in

our UniRef and Mgnify datasets (seq-id 90 clustered). We

take all unique residue annotation descriptions that occur in

more than 1k proteins across all of UniRef90 and MGnify90,

and deduplicate labels by punctuation and case insensitivity.

We join these annotations into our UniRef, MGnify, AFDB,

and ESMAtlas datasets for training.

As introduced in Appendix A.1.5.1, ESM3 has a track dedi-

cated to processing residue annotations that supports input

conditioning, and an output head for generation. The residue

annotation labels for a protein are tokenized into a sequence

of token-sets in length equal to the protein. At each position

there is an unordered set of tokens representing the residue

annotations present at that position. The tokens are input to

ESM3 first through an embedding lookup followed by a sum

over embeddings. The permutation invariance of the sum

retains that the labels are represented to an unordered set as

a model. The per-position embedding sums are then added

onto the per-position sequence embedding before input into

the first transformer block. Positions with no residue anno-

tations are represented by a <pad> token which has an

embedding fixed to zeros.

The residue annotations track has an output head which

outputs a set of binary classification logits predicting for

each position the presence or absence of each residue an-

notation in the vocabulary. We apply a masking procedure

to partially/fully mask residue annotation labels, and train

the output head with a binary cross-entropy loss function to

reconstruct the full residue annotation. In pre-training, with

90% probability all residue annotations are masked, and

otherwise we independently sample positions to mask with

a square root schedule. The head is trained to predict the

presence of any residue annotation label that was masked.

A.1.9. Other Tracks

A.1.9.1. CONFIDENCE TRACKS

As mentioned in Appendix A.1.5.1, ESM3 has two addi-

tional tasks that are only used during pre-training, and only

used as input (we do not have output heads predicting these

values). The first is a per-residue pLDDT: for ground

truth PDB structures, these values are all 1; for AlphaFold-

DB/ESMFold structures, we use the provided pLDDT. We

also provide an averaged pLDDT across all the residues

when structure is provided (1 otherwise), with the average

calculated before any tokens are masked.

This information allows the model to distinguish between

gold-standard structures and computationally predicted

ones; at inference time, we set these to 1 throughout, with

the goal of producing structures better than the computa-

tional predictions used to pre-train the model. The embed-

ding itself is straightforward, with the pLDDT values first

having a radial basis function, followed by a Linear layer

applied to them:

Algorithm 12 rbf

Input: x ∈ R
...×L, a ∈ R, b ∈ R, n ∈ Z

+

1: ∆ = b−a
n−1 ▷R

2: c = [a, a+∆, a+ 2∆, . . . , a+ (n− 2)∆, b] ▷Rn

3: σ = b−a
n

▷R
4: [z]...,i,j =

1
σ
([x]...,i − [c]j) ▷R...×L×n

5: return exp(−z2) ▷R...×L×n

Algorithm 13 plddt_embed

Input: xplddt ∈ [0, 1]L, xavgplddt ∈ [0, 1]

1: rbfplddt = rbf (xplddt, 0.0, 1.0, 16) ▷RL×16

2: rbfavgplddt = rbf (xavgplddt, 0.0, 1.0, 16) ▷R16

3: zavgplddt = Linear(rbfavgplddt) ▷Rd

4: zplddt = Linear(rbfplddt) ▷RL×d

5: [zplddt]i,: = [zplddt]i,: + zavgplddt ▷RL×d

6: return zplddt
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A.1.9.2. TAXONOMY TRACK

The final 30,000 steps in the pre-training of the 98B variant

of ESM3 includes a track for processing the taxonomic and

species classification of the organism from which the pro-

tein sequence originates. For each protein, the taxonomic

and species classifications are concatenated to create a full

taxonomic lineage. The list of terms is then tokenized us-

ing a vocabulary comprised of the top 40,000 taxonomic

terms in the UniRef training dataset. At input, learned em-

beddings (dimension 768) for each term in the lineage are

summed and projected by a learned linear projection to a

single embedding of dmodel. This low-rank embedding bag

saves memory as compared to using full-dimension embed-

dings. This single embedding is then repeated across the

length of the sequence and summed into the positional em-

beddings with all the other tracks. The linear projection is

zero-initialized at the start of this stage of training to pre-

serve model behavior, enabling continuation of pre-training

with no degradation in performance.

In pre-training we apply random corruption to the taxonomic

lineages and train ESM3 to reconstruct the full lineage by

predicting dropped terms with a shallow MLP head trained

on the final layer’s representations. To corrupt the taxo-

nomic lineage, we either drop all terms (probability 25%)

or drop a set of the most specific terms of the lineage of

size chosen uniformly at random from 1 to the length of

the lineage (probability 25%). We also independently drop

any taxonomic term with probability 10%. The output head

outputs binary classification logits over the full set of 40,000

taxonomic lineage terms, and is trained to predict the miss-

ing terms via a binary-cross entropy loss.

A.1.10. ESM3 Inference

Since ESM3 is a bidirectional transformer capable of repre-

senting arbitrary factorizations of the joint probability in any

order or combination of tracks, we have significant flexibil-

ity during inference: We can generate sequence, structure,

or function conditioned on any or no combination of other

tracks. We also have a choice of how much compute to

apply during generation.

The usual inference strategy is to fix a prompt (which may

be a combination of any of the tracks, either fully or par-

tially specified) and choose a track for generation (which

may have been partially specified). When predicting the

tokens for the generation track, a number of strategies are

possible. Two notable strategies Argmax decoding, which

predicts all tokens in the generation track in a single for-

ward pass of the model; this computation is O(L2) in the

length of the protein and is extremely efficient. Iterative

decoding, on the other hand, samples tokens one position at

a time, conditioning subsequent predictions on those already

sampled. The runtime for iterative decoding, comparable

to slower algorithms such as ESMFold and AlphaFold, is

O(L3) in the length of the protein.

Additionally, the number of decoding steps can be chosen

at runtime. Argmax decoding is equivalent to decoding in

one step, while iterative decoding is equivalent to decoding

in L steps. It is possible to select any number of decoding

steps between these two extremes to find an optimal tradeoff

between computation and accuracy for a particular use case.

See Appendix A.3.4 for a case study in the case of structure

prediction, in which the generation track is the structure

tokens track.

When using iterative decoding, ESM3 further allows flexi-

bility in choosing the next position to decode. We choose

the position based off of the logits output of ESM3, and for

the results of this paper utilize two strategies: entropy de-

coding, which chooses the position with the lowest entropy

after softmax, or max logit decoding, which chooses the

position with the maximum logit. To generate k tokens in

one pass, we rank by either entropy or max logit and take

the top k positions.

In the following algorithm, assume a single forward pass of

ESM3 is a function f of a prompt x, and that we can access

the logits of a specific token track through a subscript; e.g.

sequence logits would be fsequence(x) ∈ R
L×32. Further-

more, denote π(·; z) as the probability distribution induced

by the logits z, including an implicit softmax, and T ∈ R
L

a temperature schedule.

Algorithm 14 generate from track

Input: xprompt, ndecode ∈ {1..L}, T ∈ R
ndecode

1: k = L/ndecode ▷ # steps to decode at each step

2: for s ∈ {1..ndecode} do

3: zlogits = esm3_forward (xprompt) ▷z ∈ R
L×ctrack

4: {p1, . . . , pk} = CHOOSEPOSITIONS(z)
5: for i ∈ {p1, . . . , pk} in parallel do

6: xi ∼ π(x; zi/Ts) ▷Sample i with temp Ts

7: xprompt = {xprompt, xi} ▷Update prompt

8: end for

9: end for

A.2. TRAINING ESM3

A.2.1. Pre-training Data

A.2.1.1. SEQUENCE DATABASES

UniRef release 2023 02 is downloaded and parsed from the

official UniRef website (71). MGnify90 version 2023 02

is downloaded and parsed from MGnify (35). All non-

restricted studies available in JGI on July 31st, 2023 are

downloaded and concatenated into the JGI dataset (72).

OAS, which includes over a billion antibody sequences from
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80 studies, is downloaded and clustered at 95% sequence

identity (36).

A.2.1.2. CLUSTERING

In all cases, data is clustered with mmseqs2 (73), with

flags --kmer-per-seq 100 --cluster-mode

2 --cov-mode 1 -c 0.8 --min-seq-id

<seqid>.

In order to do cluster expansion, we separately cluster the

dataset at the two levels, and perform a join to determine

cluster member and cluster center based on IDs. We first

sample a cluster center at the lower level, and then sam-

ple a sequence within the cluster at the higher level. As

an example, for expansion of UniRef70 at 90%, we first

cluster UniRef at 70% sequence similarity using mmseqs

linclust. Then, we cluster it separately at 90%. Since each

UniRef90 cluster center is by definition a UniRef70 cluster

member, we filter out UniRef70 for all cluster members that

are in the UniRef90 clusters. We can then drop all cluster

centers without any members, which may occur due to the

nondeterminism of clustering. This allows us to sample a

UniRef70 center, and then a member within that cluster, of

which each are 90% sequence similarity apart. For ease of

dataloading, we additionally limit the number of data points

within a cluster to 20.

A.2.1.3. INVERSE FOLDING

As data augmention we train a 200M parameter inverse fold-

ing model and use it to create additional training examples.

The inverse folding model uses the geometric attention layer

for structure conditioning and output projection head for the

sequence logits as ESM3. Unlike ESM3 the transformer

stack alternates between blocks with geometric attention and

standard attention. The model is trained on the sequence

and structure pairs in PDB, AlphaFold-DB, and ESMAtlas,

with the single training task of (and loss computed on) pre-

dicting sequence at the output given structure at the input.

Model architecture and training methodology is otherwise

substantially similar to ESM3.

This model is used to generate additional sequences corre-

sponding to each structure in the training data for ESM3

(5 sequences per structure for ESMAtlas and AlphaFold-

DB, 64 sequences per structure for the PDB). When training

ESM3, with 50% probability the original sequence and struc-

ture pair is presented to the model as a training example.

The other 50% of the time one of these 5 sequences is paired

with the structure as the training example seen by ESM3.

A.2.1.4. FUNCTIONAL LABELS

Functional labels are obtained from InterPro (38) and Inter-

ProScan (74), both version 95.0. All annotations for UniPro-

tKB were downloaded from the InterPro website via the

‘protein2ipr.dat.gz’ file. InterProScan was applied to the en-

tirety of MGnify90 with flags --goterms --iprlookup

--pathways --disable-precalc. The resultant values

are taken as ground truth functional labels for model train-

ing.

A.2.1.5. STRUCTURAL DATA

We use all PDB chains, clustered by unique PDB ID and

entity ID within the PDB structure. We filter to all struc-

tures deposited before May 1, 2020, determined by X-ray

crystallography, and better than 9Å resolution. (37)

AlphaFoldDB is downloaded as the v4 version specified

on their website (4). We notice that structures with high

pLDDT are disproportionately alpha helices. Therefore, we

ensure globularity by measuring the number of long range

(>12 sequence distance) contacts in the chain. If this value

is < 0.5L with an L length protein, we omit it from our

training set. We also filter out all proteins < 0.7 pLDDT.

ESMAtlas is downloaded as version v0 and v2023 02. Sim-

ilarly we use a < 0.7 pLDDT filter. We use a 0.7 pTM
cutoff as well to enforce globularity. High pTM structures

tends to be more compact.

Structural data also includes any functional labels that exist

for the corresponding sequence.

A.2.1.6. SOLVENT ACCESSIBLE SURFACE AREA AND

SECONDARY STRUCTURE

For solvent accessibility surface area, we use the Shrake-

Rupley rolling probe algorithm as implemented in biotite

(75). This generates a set of real numbers, or a nan value

when structural coordinates are not provided. Similarly, SS8

labels are generated using the mkdssp tool (76) and taken

as ground truth labels.

In both cases, we use the set of high quality predicted struc-

tures in AlphaFoldDB and ESMAtlas. We split our datasets

into structural and sequence data. Structural data is shown

separately in order to weight the ratios of structural data

(mostly synthetic) properly with the amount of sequence

data (mostly real).

An oversight was that we did not manage to apply these

augmentations to PDB. However, since PDB constituted a

relatively small portion of our training data, and these struc-

tural conditioning tasks did not depend on precise sidechain

positions, we reasoned that high confidence synthetic struc-

tures would perform equally well and annotation of PDB

was not necessary.
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A.2.1.7. PURGING OF VALIDATION SEQUENCES

We keep track of validation set performance on a set

of held out sequences from each training set, UniRef,

MGnify, and JGI. In order to properly hold out a suffi-

ciently diverse set of validation proteins, we first sample

25000 proteins from each set. Then we use mmseqs

easy-search to filter out proteins from this set with a 70%

sequence identity threshold. We choose the set of proteins

from our training set to be the “query” set, and the set

of validation proteins as our “target” set for mmseqs.

We use the flags --alignment-mode 3 -c 0.8

{cov-mode 0 --max-seqs 300 --max-accept

3 --start-sens 2 -s 7 --sens-steps 3.

This query is designed such that early stopping in mmseqs

will not affect if we find a hit in the “query” training set.

Train purges are run to generate a list of blacklisted UniRef,

MGnify, and JGI IDs, which are removed from the training

set.

A.2.1.8. TOKEN COUNTS

The dataset counts in Table S3 are computed after limiting

the large clusters to 20. The number of tokens are computed

by multiplying the number of sequences with the average

length of the dataset.

In order to compute the approximate number of sequences

and tokens seen during training, we first compute the num-

ber of times the dataset is repeated at the cluster level. Given

the the number of repeats, we know the expected number

of unique samples seen when sampling with replacement

is n
(

1−
(

1− 1
n

)k
)

with a cluster of size n and k items

selected. Computing this on the size of each cluster and

number of dataset repeats results in the approximate number

of tokens we present as presented in Table S4. Our largest

model is trained on all of this data, while our smaller models

use a portion of it depending on the model’s token budget.

A.2.2. Pre-training Tasks

A.2.2.1. NOISE SCHEDULE

In the masked generative framework, corruption is applied

to each input to the model. To enable generation, the amount

of noise applied to an input is sampled from a distribution

with probability mass on all values between 0 and 1.

We select various noise schedules for different tracks with

several goals in mind. First, ESM3 should see all combina-

tions of tracks as input and output, enabling it to generate

and predict based on arbitrary inputs. Second, ESM3 should

maintain a balance of strong representation learning and

high quality generations. Third, the type of inputs provided

should be representative of what users would like to prompt

the model with.

In initial experimentation, we found that a fixed 15% noise

schedule led to poor generation results, while a linear noise

schedule where probability of each mask rate was constant

led to good generation but poor representation learning re-

sults. We find a good trade-off between representation learn-

ing and generation by sampling the noise schedule from

a mixture distribution. 80% of the time, the mask rate is

sampled from a β(3, 9) distribution with mean mask rate

25%. 20% of the time, the mask rate is sampled from a

uniform distribution, resulting in an average overall mask

rate of 30%.

The noise schedules applied to each input are listed in Ta-

ble S6. For the structure coordinate track, we also modify

the noise to be applied as span dropping, as opposed to i.i.d

over the sequence with 50% probability. This ensures that

the model sees contiguous regions of masked and provided

coordinates, which better mimics the types of inputs users

may provide.

A.2.2.2. TRACK DROPOUT

Along with applying noise to each track, we want to ensure

ESM3 is able to perform well when some tracks are not

provided at all (e.g. to perform structure prediction when

no structure is provided as input). We enable this by wholly

dropping out some tracks with varying probabilities, listed

in Table S6.

A.2.2.3. STRUCTURE NOISE

We apply gaussian noise with standard deviation 0.1 to all

coordinates the model takes as input.

A.2.2.4. ATOMIC COORDINATION SAMPLING

An interesting use case of generative protein models in-

volves conditioning on key structural information, such as

an active site, and generating the sequence and structure of a

protein that contains this information. It is possible to define

an atomic coordination task as 3 residues which are mutu-

ally in contact in structure space (Cα−Cα distance < 6Å),

but are distant in sequence space (≥ 10 positions apart) (23).

Training on this conditioning may enable the model to better

perform the type of atomic coordination required for active

site sampling.

While this task will be sampled with some probability under

the standard noise schedules, we also manually sample the

task with 5% probability whenever a structure is available.

If the task is sampled and a valid atomic coordination triplet

is found, the structure coordinates for that triplet are shown

to the model. For each residue in the triplet, the adjacent

residues are also independently shown with 50% probability,

which leads to a total size of between 3 and 9 residues. All

other structure coordinates are masked. Normal masking is
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Dataset Type Clustering Level Expansion Level Tokens Release

UniRef Sequence 70% (83M) 90% (156M) 54.6B 2023 02

MGnify Sequence 70% (372M) 90% (621M) 105.5B 2023 02

JGI Sequence 70% (2029M) - 256B All non-restricted studies available on

July 30th, 2023.

OAS Sequence 95% (1192M) - 132B All sequences available on July 30th,

2023.

PDB Structure - (203K) - 0.054B All chains available on RCSB prior to

May, 1st, 2020PDB Clustered Structure 70% (46K) 100% (100K) 0.027B

AlphaFoldDB Structure 70% (36M) 90% (69M) 40.5B v4

ESMAtlas Structure 70% (87M) 90% (179M) 23.5B v0, v2023 02

Table S3. Pre-training dataset statistics. Includes number of tokens, release, and clustering level. Numbers are derived after dataset

filtering.

Dataset Name Unique Samples(M) Unique Tokens(M)

UniRef 133 40,177

MGnify 406 65,780

JGI 2,039 265,070

OAS 203 22,363

PDB 0.2 55

AFDB 68 20,510

ESMAtlas 168 38,674

AFDB inverse folded 111 33,300

ESMAtlas inverse folded 251 57,730

Sequence 3,143 484,441

Structure 236 177,710

Annotation 539 105,957

Total unique training tokens 768,109

Table S4. Pre-training unique token statistics. Broken down by token type and dataset type.

Dataset Inverse Folding Function Labels SASA Secondary Structure

UniRef ✓ ✓ - -

MGnify ✓ ✓ - -

JGI ✗ ✗ - -

OAS ✗ ✗ - -

PDB ✗ ✗ ✗ ✗

AlphaFoldDB ✓ ✓ ✓ ✓

ESMAtlas ✓ ✓ ✓ ✓

Table S5. Data augmentation and conditioning information applied to each dataset.
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Track Noise Schedule Dropout Prob

Sequence betalinear30 0

Structure Tokens cosine 0.25

Structure Coordinates cubic 0.5

Secondary Structure (8-class) square root 0.9

SASA square root 0.9

Function Tokens square root 0.9

Residue Annotations square root 0.9

Table S6. Noise Schedules and Dropout Probabilities.

Figure S9. Visualization of noise schedules used. Left shows the probability density function of all noise schedules used. Right shows the

betalinear30 distribution (which is drawn from β(3, 9) with 80% probability and a linear distribution with 20% probability) against a

beta30 distribution (defined by β(3, 7)) and a linear distribution.

applied to the other tracks.

A.2.2.5. TERTIARY INTERFACE SAMPLING

Predicting and generating binding interfaces is another im-

portant task for generative protein models. To help with this

capability, we add computational data augmentation that

simulates the binding interface task.

We define a tertiary interface as one involving a long range

contact (Cα − Cα distance < 8Å,≥ 24 sequence posi-

tions). When this task is sampled (5% probability whenever

a structure is present), a long range contact is found, then the

chain is split into two chains, each containing one side of the

contact interface. Suppose the contacting positions are given

by the indices i, j. Then the first chain will contain residues

between [RANDINT(1, i − 3), RANDINT(i + 3, j − 15)],
while the second chain will contain residues between

[RANDINT(i+ 15, j − 3), RANDINT(j + 15, L)]. This en-

sures there is always a residue gap between the two pseudo-

chains. A chainbreak token “—” is inserted to represent the

residue gap.

A.2.2.6. RESIDUE GAP AUGMENTATION

To encourage the model to learn to represent residue gaps

using the chainbreak token, we introduce a task which ran-

domly splits a single chain into multiple subchains.

First, a number of chains to sample is sampled from a geo-

metric distribution with probability 0.9, up to a maximum

of 9 possible chains. If the number of chains sampled is 1,

no additional transformations are applied. A minimum sep-

aration of 10 residues between chains is defined. Sequence

lengths of the chains along with gaps are sampled from

a dirichlet distribution to maintain identically distributed

sequence lengths for each chain. This transformation is

applied to all samples.

A.2.2.7. GEOMETRIC ATTENTION MASKING

In the case that multiple chains are provided to the model

from either the interface sampling or pseudo-multimer aug-

mentation tasks, we mask the geometric attention layer to

prevent the model from attending to cross-chain coordinates.

This simulates tasks where the structure of individual chains

is known, but the interface is unknown.

A.2.3. Training Details

A.2.3.1. HYPERPARAMETERS

We train all models using AdamW optimizer (77), with

the following hyperparameters: β1 = 0.9, β2 = 0.95. We

use a weight decay of 0.01 and gradient clipping of 1.0.

We employ 5K to 20K warmup steps until reaching the

maximum learning rate, and utilize a cosine decay scheduler

to decay LR to 10% of the maximum learning rate by the

end of training.
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A.2.3.2. INFRASTRUCTURE

Our training codebase uses Pytorch. We use Pytorch’s

FSDP (78) implementation for data parallelism. We also

use custom components from the TransformerEngine (79)

library.

We have made several optimizations to increase the training

speed of our models. For multi-head attention uses, we

use the memory efficient implementation from the xformers

library (80). We also save activations that are expensive

to compute during training when necessary. We employ

mixed precision training, utilizing FP8, BF16, and FP32 as

needed based on accuracy requirements and kernel availabil-

ity throughout our network.

A.2.3.3. STABILITY

Scaling ESM3 to 98 billion parameters with its novel archi-

tecture, multi-modal inputs, and low precision computation

requirements poses significant training stability challenges.

Our model is significantly deeper than its NLP counterparts,

and literature has shown that deeper networks are harder to

train due to attention collapse (81).

We observed training instability early in the architectural

innovation phase, which we addressed through several

changes. We apply layer normalization to the query and key

vectors within the attention mechanism (82). We observe

longer warm up helps (83). Another source of instability

is the masking rate in pre-training tasks. We found that

a very high masking rate is more likely to cause training

divergences than a lower one, especially early in the train-

ing. Choosing a masking schedule biased towards lower

mask rates improved both performance and training stability.

Interestingly, the introduction of conditioning from other

modalities also improves training stability, perhaps suggest-

ing that stability is related to the degree of underspecification

of a task.

An incorrectly set learning rate is another source of instabil-

ity. To ensure the right balance between learning effective-

ness and stability, we optimized the learning rate on smaller

models and scaled it according to best practices as outlined

in (84, 85). We find empirically that the initialization has

a small effect on model stability, and the majority of sta-

bilization can be gained from simply scaling the learning

rate at the appropriate rate. By applying the rules in both

width-µP and depth-µP, we can simply scale the learning

rate inversely proportional to the square root of the number

of parameters, and find this results in stable training.

Following these modifications, we successfully trained our

98-billion-parameter model without any issues related to

training instability.

A.2.3.4. STAGED TRAINING

We stage training to alter dataset composition, train on

longer contexts that would be too expensive for the entire

pre-training, or introduce features such as the taxonomy

track (A.1.9.2.

A.3. MODEL EVALUATIONS

ESM3 is both a generative model and a representation learn-

ing model that can be adapted for predictive tasks. In this

section, we present benchmarking results for both capabili-

ties.

A.3.1. Models

ESM3 models are trained at three scales—1.4B, 7B, and

98B parameters—on approximately 75B, 560B, and 1.8T

training tokens, respectively.

The ESM3 1.4B model, trained on 75B tokens and noted for

its small size and speed, allows rapid iteration both during

training and at inference. Optimal model size and number

of training tokens are studied by extrapolating from a se-

ries of smaller runs, given a training compute budget, model

architecture, and dataset characteristics (19, 21). After deter-

mining compute optimality for training, a variety of factors

such as release frequency, amount of inference, ease of use,

and usage patterns are also taken into account to determine

the ideal number of tokens on which to train the model. To

enable efficient inference for the benefit of the research com-

munity, we have trained two additional versions of ESM3

1.4B, named 1.4B Overtrained and 1.4B Open, which are

trained on 300B tokens, far beyond their compute optimality

for training.

A.3.2. Data

In the following benchmarks for this section, unless other-

wise noted, models are evaluated on a test set of 902 proteins

whose structures are temporarily held out from the ESM3

training set. The proteins were sourced from the Continuous

Automated Model EvaluatiOn (CAMEO) targets released

from May 1, 2020 through Aug 1, 2023 (86).

For contact and structure prediction evaluations, we also

evaluate on the CASP14 (71 proteins) and CASP15 (70

proteins) structure prediction benchmarks (87, 88). The

CASP14 and CASP15 sets are obtained directly from the

organizers.

A.3.3. Representation Learning

The contact prediction model is a multilayer perceptron

(MLP) head that operates independently over the represen-

tations of each amino acid pair, outputting the probability
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of contact between them. We use LoRA (89) for finetuning,

which is a common alternative to full weight finetuning that

uses much less memory while attaining strong performance.

LoRA is applied to the base model for finetuning, and the

MLP along with the LoRA weights are trained end-to-end

using the cross-entropy loss with respect to the ground truth

contact prediction map. For the ground truth, all residues

at least 6 positions apart in the sequence and within an 8Å

Cα-Cα distance are labeled as a contact. All models are

trained with LoRA rank 4, batch size 64 and a learning rate

of 1e-3 for 10k steps on a mix of sequence and structure data

from PDB, AlphaFold-DB, ESMAtlas, and OAS Predicted

Structures. Data are sampled in a ratio of 1:3:3:0.03 from

these datasets.

Table S7 shows the performance on each structural test set

through the metric of precision at L (P@L), which evaluates

the precision of the top-L most confident predictions, where

L is the length of the protein. The smallest ESM3 model,

with 1.4B parameters, achieves a P@L of 0.76 ± 0.02 on

the CAMEO test set, which is higher than the 3B parameter

ESM2 model (0.75 ± 0.02). Furthermore, it trains on an

order of magnitude less compute during pre-training (6.72×
1020 FLOPS vs. 1.8 × 1022 FLOPS), demonstrating the

benefits of multimodal pre-training.

A.3.4. Structure Prediction

ESM3 can directly predict protein structures without addi-

tional finetuning by first predicting structure tokens, then

decoding these tokens into coordinates. When predicting

structure tokens, we follow the strategy outlined in Ap-

pendix A.1.10 and test both argmax decoding and full itera-

tive decoding.

For more difficult datasets, such as CASP14 and CASP15,

iterative decoding has an outsized impact (see Table S8),

whereas for easier datasets like CAMEO, argmax prediction

is sufficient. On both the CAMEO and CASP15 datasets,

argmax prediction for the 7B model is comparable to ESM-

Fold, and iterative decoding with ESM3 98B closes the

gap between ESMFold and Alphafold2. Structure predic-

tion scaling curves as a function of training compute, are

provided in Fig. S10

A.3.5. Conditional Likelihood

The conditional likelihood of an output given a prompt

serves as a proxy for the generative capabilities of a model.

Fig. S11 and Table S9 evaluate the performance of ESM3

as a conditional generative model, using its negative log

likelihood (NLL) on the test set. For each track - sequence,

structure, function, SASA, and secondary structure - NLL

is evaluated both unconditionally and conditioned on each

of the other tracks.

Figure S10. Scaling curves for structure prediction. Error bars are

single standard deviations.

Unlike, for example, an autoregressive model, ESM3

is a generative model over masking patterns, so is

trained to predict tokens given any masking pattern.

The NLL of a sample under ESM3 is given by
1
L!

∑

o∈O

1
L

∑L
i=1 log p(xoi |xo1 , . . . , xoi−1

), where O is

the set of all decoding orders with normalization constant

Z = 1
L! . This computation is intractable (as the set of all

decoding orders is exponential in length of a protein), but

can be approximated by sampling a single decoding order

o for each x in our dataset. At each step teacher forcing

is used to replace the masked token with the ground truth

token and report the mean NLL over the output tokens.

There are many straightforward relationships in this data.

For example, the unconditional NLL (Fig. S11, black lines)

is always higher than conditional, and conditioning on full

3D structure reduces the loss on secondary structure predic-

tion to nearly zero (1.4B: 0.24, 7B: 0.19, 98B: 0.16).

Other trends may be more surprising. Conditioning on

sequence results in a lower structure prediction loss than

conditioning on secondary structure (98B; sequence: 3.13,

secondary structure: 3.37). There are some diminishing

returns to scale for the prediction of structure, function,

SASA, and secondary structure. However, this diminishing

is not observed for sequences, where we observe a clear log-

linear relationship between pre-training FLOPS and NLL,

regardless of conditioning.

A.3.6. Unconditional Generation

To assess the model’s unconditional generation capability,

we sampled 100 protein lengths randomly from the PDB and

generated 1,024 sequences for each using ESM3 98B with

a constant temperature of 0.7. The sampled length distribu-

tion is shown in Fig. S13A. Structures for each sequence

were predicted using ESM3 7B, and the distribution of pTM
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Model CASP14 CASP15 CAMEO

ESM2 3B 0.57 (0.49 - 0.64) 0.57 (0.48 - 0.65) 0.75 (0.73 - 0.77)

ESM3 1.4B 0.56 (0.48 - 0.64) 0.59 (0.50 - 0.66) 0.76 (0.74 - 0.78)

ESM3 7B 0.62 (0.54 - 0.70) 0.64 (0.56 - 0.73) 0.82 (0.80 - 0.84)

ESM3 98B 0.66 (0.57 - 0.74) 0.66 (0.57 - 0.75) 0.85 (0.83 - 0.86)

Table S7. Precision @ L results. Measured on CASP14, CASP15 and CAMEO for the ESM3 model family. Intervals represent

bootstrapped 95% confidence intervals.

Iterative / O(L3) Argmax / O(L2)
Model CAMEO CASP14 CASP15 CAMEO CASP14 CASP15

1.4B Open 0.830 0.705 0.733 0.805 0.640 0.677

1.4B Overtrained 0.846 0.714 0.750 0.825 0.651 0.700

1.4B 0.807 0.693 0.697 0.775 0.608 0.636

7B 0.870 0.742 0.764 0.852 0.607 0.726

98B 0.895 0.763 0.801 0.884 0.719 0.770

ESMFold 0.865 0.728 0.735

AlphaFold2 0.904 0.846 0.826

Table S8. Protein structure prediction results. We benchmark ESMFold, ESM3 models, and Alphafold2. Left side: ESM3 iterative

inference of structure tokens conditioned on sequence. Because iterative inference is O(L3) in length of a protein sequence, it is

comparable to ESMFold and AF2, both of which share the same runtime complexity. Right panel: Single-pass argmax structure token

given sequence. In all cases, the more difficult the dataset, the more iterative decoding appears to help - 98B has a +4.4 LDDT boost on

CASP14, compared to a +1.0 LDDT boost on CAMEO. Both the Open and Overtrained models are both trained up to 200k steps. The

plain 1.4B model is used for scaling comparisons, and is trained to 50k steps.

Conditioning

Model Sequence Structure Function SASA Secondary Structure

Sequence

1.4B 2.31 1.71 2.28 1.81 2.02

7B 2.04 1.43 2.00 1.47 1.74

98 1.84 1.21 1.76 1.21 1.50

Structure

1.4B 4.09 4.98 4.93 4.39 4.42

7B 3.42 4.2 4.18 3.62 3.71

98 3.13 3.85 3.8 3.24 3.37

Function

1.4B 1.81 1.98 4.52 2.29 2.24

7B 1.22 1.47 3.75 1.67 1.70

98 0.93 1.20 3.63 1.41 1.40

SASA

1.4B 1.78 1.81 2.42 2.48 2.10

7B 1.57 1.66 2.26 2.31 1.92

98 1.46 1.56 2.15 2.23 1.82

Secondary

Structure

1.4B 0.42 0.24 0.70 0.50 0.83

7B 0.31 0.19 0.57 0.31 0.6

98 0.26 0.16 0.50 0.25 0.54

Table S9. Negative log-likelihood of each track conditioned on other tracks. Each row is a model size, generating a particular modality.

Each column is the conditioning. The diagonal, highlighted with italics, are the unconditional NLL of each track. We observe that indeed

adding conditioning improves NLL in all cases.
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Figure S11. Conditional and unconditional scaling behavior for each track. Loss is shown on CAMEO (Appendix A.3.2

Figure S12. Distribution of pTM and pLDDT. Measured on natural (left) and generated (right) sequences under ESM3 7B structure

prediction. Generated sequences show a clearly lower correlation (Pearson r 0.79 vs. 0.85) as well as a mode of sequences with high

pLDDT but low pTM. Natural sequences are from the test set (Appendix A.3.2), generations are unconditional generations from ESM3

98B.
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and pLDDT are shown in Fig. S13B. ESM3 generates more

high-quality structures than ESM2, which was trained using

a simple MLM objective over sequence only with a fixed

mask rate. Sequence similarity to the training set was com-

puted using mmseqs2 (73) with the following parameters:

--cov-mode 2 -c 0.8 -s 6.0. Proteins generated

unconditionally are similar—but not identical—to proteins

found in the training set (Fig. S15) and have high coverage

of the training set (Fig. 1E), demonstrating that the model

has properly fit the training distribution and does not exhibit

mode collapse. We observe a cluster of generations with

very high sequence identity to the training set; these corre-

spond to antibody sequences, with the framework regions

accounting for the high sequence identity.

We use pTM for evaluating structure predictions from ESM3

instead of pLDDT. This is because pLDDT can be miscal-

ibrated for generated structures and can overestimate the

confidence of a prediction. pLDDT is biased towards lo-

cal structural confidence, which can result in pathologies

such as very long alpha helices with high pLDDT at all

positions. pTM is a more global measure of structural con-

fidence, and is more robust to these pathologies. Fig. S12

shows that pTM and pLDDT correlation drops for generated

sequences (Pearson r: natural = 0.85, generation = 0.79),

and a clear pattern of high pLDDT (> 0.8) but low pTM

(< 0.6) emerges.

To visualize the distribution of unconditional generations,

we compute sequence embeddings by extracting the final

layer outputs produced by running ESM3 7B with sequence

inputs only. Protein-level embeddings are computed by

averaging over all positions in the sequence to produce a

2560-dim embedding. We then project these embeddings

into two dimensions using a UMAP projection (90) fit on

a background distribution of 50,000 randomly sampled se-

quences from UniProt with minimum distance 0.1 and num-

ber of neighbors 25. Examples are selected by computing

structural clusters with Foldseek-cluster (using default pa-

rameters) and sampling the example with highest ESM3

pTM from each cluster. A subset of these cluster representa-

tives are shown in Fig. 1E.

To assess whether ESM3 is biased towards particular sec-

ondary structures, we use DSSP to predict the three-class

secondary structure of the high-confidence (pTM > 0.8,

mean pLDDT > 0.8) generations and measure the percent-

age of residues that form alpha helices and beta sheets.

When compared to a background distribution computed

over the PDB, we find that ESM3 closely matches the sec-

ondary structure distribution of known proteins (Fig. S13D),

unlike other methods which preferentially generate helical

structures (14, 23, 25). Finally, to confirm that the structures

predicted with high confidence by ESM3 are designable, we

inverse folded and re-folded each using ESM3 7B. The ma-

jority of generations successfully re-folded with TM-score

of greater than 0.8 to the hallucinated structures, demon-

strating that ESM3 has high self-consistency for its own

high-confidence designs (Fig. S13C).

To explore alternative ways of generating proteins, we as-

sess the quality of proteins generated by a chain-of-thought

(CoT) procedure in which ESM3 7B generates the secondary

structure (SS8 tokens), then the 3-D backbone coordinates

(structure tokens), followed by the amino acid sequence

(sequence tokens) (Fig. S14). We compare the quality of

amino acid sequences generated from this CoT procedure

with the above method of unconditionally directly generat-

ing amino acid sequences. We find that the CoT procedure

generates sequences that have higher confidence ESM3-

predicted structures than the directly-generated sequences

as measured by pTM and mean pLDDT (Fig. S14A). Com-

pared to high-confidence (pTM > 0.8, mean pLDDT > 0.8)

directly-generated sequences, the high-confidence subset

of CoT-generated sequences are also more designable: the

CoT-generated sequences have predicted structures whose

inverse folded, then re-refolded structures have higher TM-

score to the originally predicted structure (Fig. S14C). The

CoT-generated sequences show a small bias towards higher

alpha and beta proportion compared to those generated di-

rectly (Fig. S14D).

A.3.7. Prompt-following Evaluations

To evaluate ESM’s ability to follow prompts, we use a set of

held-out proteins as described in Appendix A.3.2. The test

set is further filtered to remove proteins with length greater

than 1024, which removes 7 proteins from the test set. To

construct prompts for the structure coordinate, secondary

structure, and SASA tracks, we sample a random span of

length 15% of the original protein length. The model is then

shown the corresponding track for the randomly sampled

span, and is tasked with generating the sequence for the

entire protein. For example, for the structure track, for a

protein of length 100, we may sample a random span of 15

residues from residue 20-35. The model would then have

to generate a protein sequence of length 100 conditioned

on structure coordinate conditioning from residues 20-35

derived from the original test protein. This same procedure

is applied for the secondary structure and SASA tracks. For

the function track, we form the prompt by tokenizing the

keywords form the InterProScan annotations associated with

each sequence. The ESM3 7B model is used for all genera-

tions with a temperature of 0.7 and L decoding steps (where

L is the length of the sequence). The model generates 64

sequences per prompt, which we use to compute pass64.

To evaluate the generations, we use ESMFold to fold the

sequences generated by ESM3. For the structure coordinate,

secondary structure, and SASA tracks, the relevant align-
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Figure S13. Unconditional generation of high-quality and diverse proteins using ESM3. (A) Distribution of sequence length in the

unconditional generation dataset. (B) Mean pLDDT and pTM of unconditional generations from ESM3 compared to sequences designed

using the 3B-parameter ESM2 model. (C) Round-trip success rate of high-confidence generations using ESM3. Predicted structures were

inverse folded to predict a new sequence and then re-folded to produce a new structure. Success was measured by a TM-score of greater

than 0.8 between the original and refolded designs. (D) Secondary structure composition of unconditional generations relative to the

distribution of proteins in the PDB, which is shown in gray.
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Figure S14. Generation of sequences using chain-of-thought. SS8 tokens are generated first, followed by structure tokens, then amino

acid sequence with the ESM3 7B model. (A) Distribution of mean pLDDT and pTM of sequences generated by chain-of-thought

(“ss8 first”) compared to directly generating the sequence (“sequence only”). (B) Sample generations of SS8 tokens and the predicted

structure of its corresponding CoT sequence. (C) TM-score between predicted structures of high-confidence (pTM > 0.8, mean pLDDT

> 0.8) generated sequences and their corresponding inverse folded, then re-folded structures. (D) Comparison of the secondary structure

composition of high-confidence generated sequences to the distribution of proteins in the PDB.
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ment metrics (backbone cRMSD, 3-class secondary struc-

ture accuracy, and SASA Spearman ρ) can be calculated on

the relevant span in the ESMFold-predicted structure and

the original template protein. Continuing the previous ex-

ample for the structure track, we would compute the RMSD

between residues 20-35 in the ESMFold structure predicted

of the ESM3-generated sequence and residues 20-35 of the

original test protein. For the function annotation track, we

run InterProScan (38) on each generated sequence and ex-

tract function keywords from the emitted annotations. We

report function keyword recovery at the protein level, com-

puting the proportion of all function keywords in the prompt

which appear anywhere in the function keywords from the

InterProScan annotations of the generation.

A.3.8. Steerable Design

To test the ability of ESM3 to generalize beyond its training

distribution under prompting, we evaluate two prompting

scenarios. First, we identify proteins which were deposited

in the PDB after our training cutoff (December 2020) and

choose eight with TM < 0.7 to any structure in our training

dataset (PDB IDs: 2JVN chain A, 2KAF chain A, 2L8K

chain A, 2MJM chain A, 7ZUO chain A, 8EXF chain B). Us-

ing DSSP, we compute the residue-level SS8 and SASA for

each of these proteins to prompt ESM3, masking all other

tracks. We show in Fig. S15A that the generated proteins

are diverse, globular, and closely follow the SS8 and SASA

prompts while having no close sequence or structure neigh-

bors in the training set. Interestingly, these proteins are not

folded with high confidence or accuracy by ESMFold (mean

pTM 0.44, mean TM-score to reference 0.33), suggesting

that these are challenging proteins to fold. The ESM3-

generated sequences have a similar confidence (mean pTM

0.45) but much higher accuracy (mean TM-score 0.64).

Second, we classify the residue-level secondary structure

for a set of eight symmetric protein backbones using DSSP.

These proteins were previously designed using ESMFold

(5, 91) and have varying secondary structure (alpha and

beta) and varying symmetries (5-fold and 8-fold). Again,

ESM3 is able to design these proteins successfully with high

confidence (pTM > 0.8, pLDDT > 0.8) and low sequence

similarity to the training set Fig. S15B. The structural simi-

larity is moderate for these designs due to the high structural

conservation of the protomer units in each design. All de-

signs are generated using a constant temperature of 0.7 with

L/2 decoding steps, where L is the protein length. We sam-

ple 256 sequences for each prompt and filter generations by

pTM (> 0.8), pLDDT (> 0.8), and accuracy in satisfying

the SS8 prompts (> 0.8). Final examples were selected

from these filtered designs by visual inspection. Sequence

similarity to the training set was computed using the same

procedure as the unconditional generations, and structure

similarity was computed using Foldseek (39) in TM-score

mode (alignment-type 1) with sensitivity -s 7.5.

A.3.9. Composing Prompts

ESM3 is able to compose multimodal prompts across its

input tracks—sequence, structure, SS8, SASA, and function

keywords—to generate proteins with novel characteristics.

To demonstrate this, we augment the standard functional

motif scaffolding task (i.e., partial structure and sequence

prompts) with additional conditioning to specify the type of

scaffold for ESM3 to design. The functional sites comprise a

combination of ligand binding sites coordinated by residues

remote in sequence and those defined by short local motifs.

For each motif, the coordinates and amino acid identities

of all residues from the reference PDB structures are input

to the model, with random shuffling and augmentation of

the gaps between each active site. See Appendix A.4.5

for a description of this augmentation procedure and the

specifications of the ligand-binding sites chosen. In addition

to these sites, we also create a set of 12 partial sequence and

structure prompts derived from conserved functional motifs

(Table S10). These motifs are defined using a combination

of the benchmark dataset in Watson et al. (23) and conserved

sequence patterns from the Prosite database (92).

The scaffold conditioning is defined using either SS8 tokens

(to specify secondary structure composition) or function

keywords defined by InterPro accession numbers (to spec-

ify a particular fold). For each combination of functional

site and scaffold prompt, we sample between 256 and 2048

times to generate proteins with diverse and novel character-

istics. All designs were generated with the 7B-parameter

model, a constant temperature of 0.7, and L/2 decoding

steps for a protein of length L.

Secondary structure prompting. We generated proteins

under four main classes of secondary structure composition:

mostly alpha helices, mostly beta sheets, and mixed alpha-

beta proteins (split into alpha/beta, alpha/beta/alpha, and

beta/alpha/beta topologies). For each generation, we prompt

the model with a random set of SS8 spans up to a total length

L, with mask tokens in between. For example, an all-alpha

SS8 prompt for a protein of length L=20 might look like

__HHHH___HHHHH____HH and a beta-alpha-beta prompt

might look like __EEE___HHHHH____EE_, where H is

a residue within an alpha helix and E is a residue in a beta

strand. We then combine this with the augmented partial

structure and sequence tracks given by a functional site mo-

tif. To increase the diversity of the scaffolds and maximize

the probability of generating physically realizable prompt

combinations, we generate between 256 and 1024 designs

for each combination of SS8 and functional site motif. For

each generation, we uniformly sample a random length L
between 150 and 400. Then, we produce a set of secondary

structure spans with length 5-20 residues, each separated
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Figure S15. Prompting ESM3 to generalize beyond its training distribution. (A) Proteins designed using SS8 and SASA prompts derived

from recent structures in the PDB with low structural similarity to the training set. Prompts along the protein length are visualized above

each generation; secondary structure is shown using three-class (alpha = blue, beta = orange, coil = gray) and SASA is shown as a line

plot colored by residue index to match the cartoon below. (B) Symmetric proteins designed using SS8 prompting. Histograms show

the similarity to the nearest training set protein by structure (TM-score) and sequence (sequence identity) compared to unconditional

generation.

Motif PDB ID Chain ID PDB Residue Identifiers

ACE2 binding 6vw1 A 19-89, 319-366

Ferredoxin 6e6r A 1-44

Barstar binding 7mrx B 25-47

P53 binding 1ycr B 19-28

PD-1 binding 5ius A 63-83, 119-141

DNA-binding helix-turn-helix 1lcc A 1-52

P-loop 5ze9 A 229-243

Double EF-hand 1a2x A 103-115, 139-152

Lactate dehydrogenase 1ldb A 186-206

Renal dipeptidase 1itu A 124-147

Ubiquitin-activating enzyme E1C binding 1yov B 213-223

DNA topoisomerase 1a41 A 248-280

Table S10. Functional motif definitions for conserved regions.
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by a gap of 3-10 residues, such that the total length adds up

to L. Finally, to avoid incompatibility between the partial

structure and secondary structure constraints, we also mask

the SS8 tokens at positions where structure is specified by

the functional site prompt. Secondary structure–prompted

designs was assessed by running DSSP on the designed

sequence and measuring the fraction of prompted residues

which were assigned the correct secondary structure. Suc-

cess was determined by a pTM > 0.8, all-atom cRMSD <
1.5 for the functional site, and SS8 accuracy > 0.8.

Keyword prompting. To prompt the model to generate

proteins with a specific fold, we extracted the set of InterPro

tags associated with a set of proteins from the CAMEO test

set for which ESM3 achieved keyword recovery of greater

than 80% (Fig. 2A). These tags were then converted into

keywords and used to prompt the model in combination with

the partial sequence and structure constraints. The list of

prompts and function tags is given in Table S11. Keyword-

prompted designs were assessed using a self-consistency

evaluation, i.e. whether the model successfully predicts any

of the prompted InterPro accessions for the designed se-

quence. Success was determined by a pTM > 0.8, all-atom

cRMSD < 2.0, and number of InterPro accessions recovered

> 0.

We assess novelty of each motif-scaffold combinations by

measuring the TM-score between the generated scaffold and

the chain from which the motif is derived (Table S12). This

confirms that the model is not retrieving the original mo-

tif scaffold, particularly for secondary structure–prompted

scaffolds where we do not provide any explicit instructions

to produce diverse designs. For the motifs derived from

ligand binding residues (magnesium, serotonin, calcium,

zinc, protease inhibitor 017, and Mcl-1 inhibitor YLT), we

additionally use Foldseek to search the PDB for any other

proteins which share that motif (as defined by BioLiP (93)),

as a more stringent evaluation of novelty. For all but zinc-

binding and magnesium-binding motifs, Foldseek finds no

significant hits at an E-value threshold of 1.0. The hits

discovered for zinc and magnesium have only modest TM-

score (0.76 and 0.64), demonstrating that the model still

finds novel scaffolding solutions for these ligands. To assess

whether the generated scaffolds are likely to be designable,

we measure a self-consistency TM-score under orthogonal

computational models by inverse-folding the designed struc-

ture with ESM-IF (94) (using a temperature of 0.5) and

re-folding with ESMFold (5). We report the best scTM over

8 inverse folding designs in Table S12.

A.3.10. Multimodal Editing Examples

First, we describe the procedure for generating the protein

compression example shown in Fig. 2D. A series of prompts

of length 150 were constructed. The sequence and struc-

ture of the catalytic triad of trypsin (PDB 1Y3V) (H57,

D102, S195) were placed in the prompt using the follow-

ing procedure: three random residue numbers between 20

and 130 were sampled such that the minimum pairwise dif-

ference in position between each of the residues was no

less than 20. Then, H57 from the template trypsin was

placed at the lowest sampled number, D102 at the second

lowest, and S195 at the largest number, thus respecting the

left-to-right ordering of the catalytic triad in the template

trypsin. 128 prompts were generated by this procedure.

Each of these prompts was combined with a function key-

word prompt derived from the template protein, specifically

InterPro (38) tags IPR001254 (serine proteases, trypsin do-

main) and IPR009003 (peptidase S1, PA clan), to arrive at a

final set of 128 prompts. The base ESM 7B model was then

prompted to generate the sequence of the remaining 147

residues of the protein conditioned on the randomly placed

catalytic triad sequence and structure coordinates and func-

tion keywords. L = 150 decoding steps were used with a

temperature of 0.7, with 32 generations per prompt. Genera-

tions were then filtered by active site cRMSD, ESM3 pTM,

and InterPro Scan keyword outputs, with the generation

shown in Fig. 2D selected finally by visual inspection.

Generation quality was measured using ESMFold (5) pTM

of the generated sequence, in addition to self-consistency.

For self-consistency, we inverse fold the ESM3-predicted

structure of the generation with ESM-IF1 (94) 8 times and

re-fold with ESMFold, reporting the mean and std of the

TM-scores between the 8 ESMFold-predicted structures and

the ESM3-predicted structure. To perform a blast search of

the sequence, we use a standard Protein Blast search (51).

We set the max target sequences parameter to 5000 and sort

results by sequence length and sequence identity, selecting

the first sequence that is a serine protease. This yields the

reference WP 260327207 which is 164 residues long and

shares 33% sequence identity with the generation.

We showcase two further examples of protein editing. First,

ESM3 is prompted to bury an exposed helix in a protein

with an alternating alpha-beta sandwich fold. The prompt is

constructed as follows: the prompt is of the same length as

the template protein (PDB 1LBS). We identify a buried helix

(mean SASA 0.32 Å2) between residues 106-116 of the

template protein. Structure coordinates from this region are

placed in the prompt at the same residue indices, to prompt

ESM3 to generate the same helix. This is composed with

a SASA prompt of 40.0 for each of the 11 helix residues,

prompting ESM3 to place this helix on the surface of the

protein. Finally, we prompt with the secondary structure of

5 central beta strands surrounding the buried helix, residues

33-36, 62-65, 99-103, 125-130, and 179-182. ESM3 7B

is then used to generate 512 protein sequences conditioned

on this prompt using L
2 decoding steps and a temperature

of 0.7. Designs are filtered by ESM3 pTM and adherence
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Scaffold Reference InterPro tags Total Length

Beta propeller 8siuA

IPR001680 (1-350)

IPR036322 (1-350)

IPR015943 (1-350)

353

TIM barrel 7rpnA

IPR000652 (0-248)

IPR020861 (164-175)

IPR035990 (0-249)

IPR013785 (0-251)

IPR000652 (2-249)

IPR022896 (1-249)

252

MFS transporter 4ikvA

IPR011701 (1-380)

IPR020846 (1-380)

IPR036259 (1-380)

380

Immunoglobulin 7sbdH

IPR036179 (0-116; 124-199)

IPR013783 (0-206)

IPR003597 (124-202)

IPR007110 (0-115; 121-207)

IPR003599 (6-115)

IPR013106 (11-114)

209

Histidine kinase 8dvqA

IPR003594 (47-156)

IPR003594 (47-158)

IPR004358 (118-137)

IPR004358 (141-155)

IPR004358 (101-112)

IPR005467 (0-158)

IPR036890 (4-159)

IPR036890 (3-156)

166

Alpha/beta hydrolase 7yiiA
IPR029058 (0-274)

IPR000073 (26-265)
276

Table S11. InterPro tags extracted from CAMEO test set proteins for prompting with fold specification.

Site Scaffold Novelty (TM to original) Designability (scTM)

017 beta 0.264 0.967

ACE2 alpha 0.606 0.871

CA Immunoglobulin 0.441 0.781

Double-EF-hand ab-hydrolase 0.293 0.969

MG TIM-barrel 0.328 0.980

Renal-dipeptidase alpha-beta-alpha 0.644 0.933

SRO mfs-transporter 0.345 0.992

Topoisomerase histidine-kinase 0.269 0.948

YLT alpha-beta 0.229 0.899

ZN alpha 0.567 0.996

Table S12. Novelty and designability metrics. Metrics are shown for motif scaffolds shown in Fig. 2C. Novelty is measured by computing

the TM-score to the original scaffold from which the motif is derived. Designability is measured by self-consistency TM-score over

eight samples by inverse folding with ESM-IF and refolding with ESMFold. All designs are distinct from their original scaffolds while

retaining high designability.
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to the SASA prompt. The final generation is chosen by

visual inspection. The generation is evaluated as described

above (ESMFold pTM 0.71, scTM mean 0.82, std 0.045).

Examining the generation, ESM3 is able to satisfy the input

constraints: the generated protein maintains the structure of

the helix (cRMSD 0.18 Å) and the alternating alpha-beta

fold (both the generation and the template have 7 strands

alternating with helices), while exposing the helix motif

to the surface (mean SASA 28.35 Å2). Furthermore, the

generation is structurally distinct: a Foldseek search (39)

of AlphaFold-DB, ESMAtlas, and PDB in TM-align mode

reveals no hit with TM-score greater than .76.

We also use ESM3 to generate an idealized TIM Barrel with

11-fold symmetry. This generation is undertaken in two

steps. First, we derive a secondary structure and function

keyword prompt from a reference TIM Barrel (PDB 5EKY).

The secondary structure of the reference protein is computed

using DSSP and then idealized to construct a prompt for

ESM3. To construct the secondary structure prompt, the

length of each helix and strand is fixed at 7 residues. Each

helix and strand region is then separated by 3 mask tokens,

with a mask token appended to the N and C termini of the

prompt as well. This yields a secondary structure prompt

of total length 159, which is combined with a function key-

word prompt derived from the reference protein: keywords

are derived from IPR013785 (aldolase-type TIM barrel) and

IPR000887 (KDPG/KHG aldolase). ESM3 7B is then used

to generate 256 samples with L decoding steps and a tem-

perature of 0.7. The design shown is chosen by filtering by

ESM3 pTM and visual inspection. In the second step, the

secondary structure prompt from the first step is expanded

to contain 11 helix-strand subunits, for a total prompt length

of 225 residues (4 mask tokens are now appended to the N

and C termini, rather than just 1). ESM3 7B is then used to

generate 256 samples with L decoding steps and a temper-

ature of 0.7, with generations filtered by ESM3 pTM and

visual inspection. The generation is evaluated as described

above (ESMFold pTM 0.69, scTM mean 0.97, std 0.011).

The generation is structurally distinct: a Foldseek search

(39) of AlphaFold-DB, ESMAtlas, and PDB in TM-align

mode reveals no hit with TM-score greater than .61.

A.4. ALIGNMENT

A.4.1. Algorithm

Since the introduction of RLHF (40) there have been a num-

ber of algorithms developed to tune large models trained

via unsupervised learning to better follow instructions

and generally align their generations to user preferences

(41, 42, 95, 96). We use IRPO (Iterative Reasoning Prefer-

ence Optimization) due to its simplicity in implementation

and good performance. The IRPO loss combines supervised

finetuning with contrastive learning from preference pairs.

IRPO operates on a dataset D ∼ (yw, yl, x) consisting of

prompt x and a pair of completions yw (preferred) and yl
(not preferred). It also operates on two separate models: the

reference model πref and the current model πθ. The refer-

ence model πref is the fixed base model of the same scale,

and the current model πθ is the model being optimized.

LIRPO(πθ;πref) = LNLL + αLDPO =

− E(x,yw,yl)∼D

[

log πθ(yw|x)
|yw|+ |x| +

α log σ

(

β log
πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]

(2)

The IRPO loss contains two terms. The LNLL term maxi-

mizes the log likelihood of the preferred example normal-

ized by the length of the sequence, providing signal to rein-

force the good generations from the model. The LDPO term

is the contrastive preference tuning term, which increases

the difference in log likelihoods between the preferred and

not preferred examples while staying close to the reference

model (41). The use of the reference model serves as a

regularizer to prevent overfitting to the preference dataset,

which can often be small. There are two hyperparameters, α
and β. α weights the relative importance of the supervised

with the preference loss and the β parameter controls how

close we stay to the reference model: the higher the beta,

the closer we stay. We minimize this loss with respect to the

current model parameters θ.

ESM3 is a multi-modal model so the prompt can be any

combination of the input tracks of (partial) sequence, struc-

ture, and function and the generation y can be any of the

output tracks. In our experiments we always generate the

amino-acid sequence so this will be our running example

from now on. Since an amino-acid sequence y can be gen-

erated from prompt x in many multi-step ways computing

the full likelihood π(y|x) would involve integrating over all

possible multi-step decoding paths. Since this is intractable,

we use a surrogate that mirrors pre-training, shown in Eq. (3)

and described below.

log π(y|x) ≈ Em

[

∑

i∈m

log p(yi|y\m, x)

]

(3)

To approximate the likelihood of a generation y from prompt

x, we mask y with a mask sampled from a linear noise

schedule, prompt ESM3 with {y\m, x}, and compute the

cross-entropy of ESM3 logits with the masked positions of

y. During training, the same mask is used to compute the

likelihoods for the reference policy vs current policy, as well

as for the preferred sample vs non preferred sample.
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Figure S16. Multimodal protein editing with ESM3. (A) ESM3 exposes a buried helix in an protein while maintaining the alternating

alpha-beta sandwich fold of the protein. (B) ESM3 is used in a two-step iterative edit, where first secondary structure prompting and

function prompting are used to idealize a reference TIM barrel. Secondary structure prompting is then used to increase the number of

subunits in the TIM barrel from 8 to 11.

A.4.2. Preference Tuning Intuition

Rearranging the DPO term of the loss function gives some

insight into how it finetunes the model for the preference

pairs.

LDPO(πθ;πref) =

E(x,yw,yl)∼D [− log σ (−βzθ(x, yl, yw))] (4)

where

zθ(x, yl, yw) = log
πθ(yl|x)
πref(yl|x)

− log
πθ(yw|x)
πref(yw|x)

= log
πref(yw|x)
πref(yl|x)

− log
πθ(yw|x)
πθ(yl|x)

The function f(z) = − log σ(−βz) = log(1+ exp(βz)) is

the softplus function, and is an approximation of the hinge

function; in other words f(z) = βz when z >> 0 and

f(z) = 0 when z ≪ 0. Because of this property, there are

two cases. In the case where

log
πref(yw|x)
πref(yl|x)

>> log
πθ(yw|x)
πθ(yl|x)

(5)

f(z) is in the linear regime, so the loss function is simply

maximizing the likelihood ratio log πθ(yw|x)
πθ(yl|x) . In the case

where

log
πref(yw|x)
πref(yl|x)

≪ log
πθ(yw|x)
πθ(yl|x)

(6)

the loss has saturated. This ensures that we do not deviate

too far from the reference model.

These dynamics also hold true in the case of ESM3 fine-

tuning. Although we use a surrogate instead of the true

likelihood, the loss will increase the surrogate of the pre-

ferred pair over the non preferred pair until the current model

deviates too much from the reference model.

A.4.3. Evaluation Metrics

Possibly the most important part of preference tuning is

to decide how to bucket generations into preferences. The

desired objectives for a generation are quality and correct-

ness. Quality refers to the viability of the sequence to be a

stable protein. Correctness refers to the extent to which it

follows the given prompt; also called prompt consistency.

This section only deals with structure coordinate prompts,

so prompt consistency can be measured via constrained site

RMSD (cRMSD), which is the RMSD between the prompt

coordinates and the corresponding coordinates in the pre-

dicted structure of the generated sequence. Sequence quality

can be measured via predicted-TM (pTM) of a structure

predictor on the generated sequence.

As with any metric, especially one which is really a sur-

rogate such as a structure predictor, there is a risk of over

optimizing: the model keeps improving the specific metric

e.g. in our case pTM but the actual property of interest,

the viability of the sequence to be a stable protein, stops

correlating with the metric (97). Using orthogonal models

to rank our training dataset vs to perform evaluation helps

mitigate this.

To create the training datasets, generations are evaluated

according to cRMSD and pTM of ESM3 7B to maintain

a consistent structure predictor across all datasets. After

the preference tuning phase, the generations from the tuned

models are evaluated with ESMFold cRMSD and pTM as
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an orthogonal model. Training on ESM3 derived metrics

while evaluating on ESMFold derived metrics should reduce

the risk of over optimization for adversarial generations.

A.4.4. Training Dataset

All ESM3 model scales are trained with the IRPO loss

(Eq. (2)) on their respective preconstructed training datasets

consisting of structure coordinate prompts and generations

of various difficulty. The datasets have 16 generations each

for 30,000 prompts from the respective ESM3 model. Pref-

erence selection is determined via a threshold of metrics. A

sample is considered “good” if it has ESM3 7B pTM > 0.8
and backbone cRMSD to its structure prompt < 1.5Å.

Each “good” sample is paired with a “bad” sample to create

a preference pair. We found that enforcing a gap between

metrics of paired generations improves results, so to qual-

ify as a “bad” sample the generation must have a delta

pTM = pTMgood − pTMbad >= 0.2 and delta backbone

cRMSD = cRMSDgood − cRMSDbad < −2Å. Each

prompt can have multiple preference pairs, and prompts

with no valid preference pair are discarded.

The structure prompts are composed of a variety of proteins

adapted from our pre-training pipeline. 50% of the prompts

are synthetic active sites, while the other 50% are structure

coordinates randomly masked with a noise schedule. All of

the structure prompts are derived from PDB structures with

a temporal cutoff of before May 1st, 2020.

The synthetic active sites are derived by finding sequences

from PDB with coordinating residues. For these structures,

the amino acid identities are included in the prompt.

The remaining structure track prompts are masked according

to a cosine noise schedule. 50% of the noise scheduled

prompts are masked in completely random positions, and

the other 50% are masked according to an autocorrelation

mechanism that prefers sequentially masked positions.

Each model’s training dataset consists of generations of

its own reference model. For each prompt, we generate

samples from the corresponding ESM3 model scale using

iterative decoding with L/4 steps, where L is the length of

the prompt. We anneal the temperature from 1.0 to 0.5 over

the decoding steps.

A.4.5. Evaluation Dataset: Atomic

Coordination

Atomic coordination tasks require the generation of proteins

which satisfy challenging tertiary interaction constraints.

The model is prompted with the sequence and coordinates

of a set of residues which are near in 3D space, but distant

in sequence. To evaluate performance on these tasks, we

curate a dataset of 46 proteins with ligand binding sites from

the Biolip dataset (93). All selected proteins were deposited

in the PDB after the training set cutoff date (2020-12-01).

The coordinating residues shown to the model are given

by the ligand binding sites defined in the Biolip dataset

(Table S13).

ESM3 is prompted with the sequence and coordinates of the

residues for a particular ligand binding site. We ask ESM3

to generate novel structures by applying multiple transfor-

mations to the prompt. The total sequence length is sampled

evenly to be 150, 250, or 350 residues (regardless of the

original sequence length). Next, we define a contiguous

span of coordinating residues to be prompt residues with

fewer than 5 sequence positions between them. The order

and the distance between contiguous spans of residues is

shuffled. Together, this ensures that, for example, the origi-

nal protein will no longer satisfy the prompt. We consider

a generation a success if backbone cRMSD < 1.5Å and

pTM > 0.8.

We construct a total of 1024 prompts for each ligand and

generate a completion for each prompt with the model we

are evaluating. We report Pass@128, which is an estimate

for the fraction of ligands with at least one successful com-

pletion after 128 prompts per ligand. We estimate this using

an unbiased estimator (Chen et al. (98), Page 3) using the

success rate over 1024 prompts. We visualize randomly

selected successful generations for both the base model and

finetuned model in Fig. S18.

A.4.6. Supervised Finetuning

To judge the value of preference tuning, we also train a

supervised finetuning (SFT) baseline where we finetune the

model to increase likelihood of the high quality samples

without the preference tuning loss. The 1.4B, 7B, and 98B

models solve 14.2%, 33.7%, and 44.6% of atomic coordina-

tion tasks at 128 generations, respectively, which improves

upon the base models but is much lower than their corre-

sponding preference tuned versions.

A.4.7. Training Hyperparameters

Each IRPO model is trained for 1000 steps using RMSProp.

The learning rates are 1e-5, 1e-5, and 5e-6 for the 1.4B,

7B, and 98B, respectively, annealed using a cosine schedule

after a 150 step warmup. Gradient norms are clipped to 1.0.

For all IRPO runs β = 0.05 and α = 0.8. The SFT base-

line uses the same hyperparameters, but with α = 0.0 to

disregard the preference tuning term.

A.5. GFP

ESM3 generates a dim distant GFP B8 and a bright dis-

tant protein esmGFP. Details are provided below on com-
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PDB ID Coordinating Residues Ligand ID

7map D25 G27 A28 D29 D30 G48 G49 V50 017

7n3u I305 F310 V313 A326 K328 N376 C379 G382 D386 F433 05J

7exd D103 I104 C107 T108 I174 H176 T182 W306 F309 E313 Y337 05X

8gxp W317 C320 A321 H323 V376 F377 L396 I400 H479 Y502 06L

7n4z M66 C67 R124 L130 C134 Y135 D152 F155 08N

7vrd A40 S41 H161 Q169 E170 E213 D248 D324 K349 H377 R378 S379 K400 2PG

7zyk V53 V66 V116 H160 N161 I174 D175 ADP

6yj7 K23 V24 A25 Y45 T46 A47 F115 I128 AMP

8ppb H185 F198 K209 Q249 D250 L251 D262 K336 I415 D416 ATP

7knv E33 F94 E95 D125 CA

7xer Y466 L505 T525 CLR

7tj6 F366 G367 T378 R418 CMP

6xm7 H167 H218 H284 H476 CO

7bfr Q62 X126 H248 CO3

6xlr X272 Y495 H496 H581 CU

6tnh N40 A41 S127 T128 Q187 L191 C201 T202 V236 DGP

7ndr F73 S101 F102 D103 R106 EDO

8axy H68 H109 E144 FE

7o6c E62 E107 Q141 FE2

8aul P31 M32 T33 Q106 H185 R237 S319 G320 G321 G342 R343 F369 Y370 FMN

7vcp N37 D38 Q54 F97 S98 R159 D160 E214 Y276 W297 FRU

7b7f G167 T168 G189 W195 FUC

8d0w F73 L136 E137 F329 GAL

7yua T13 T14 I15 D40 H85 S86 D87 D110 N290 GDP

7w1a L44 Y88 L91 I212 GMP

7ljn G71 S72 D91 K236 S253 V254 D309 R310 GTP

6s4f Y84 N87 K88 V131 Q132 L133 D155 F157 I276 P309 G310 G313 P314 V317 KUN

7mg7 Y12 G98 L99 Y100 A207 D208 G227 R228 MAN

7qow D12 T118 E268 MG

7dmm E181 E217 D245 D287 MN

7qoz G11 G12 I13 Y34 D35 V36 A86 G87 V126 T127 N128 H185 M235 NAD

7v2r G89 F93 K98 F101 E121 Y204 E209 F229 NAI

7a7b F51 Y128 K165 N166 S167 Y186 R187 I248 G249 A299 NAP

7pae M20 L22 L38 V49 I53 C56 K57 R61 Q78 V80 W90 I109 M117 I129 L147 Y149 O7T

8egy H82 K83 S186 G230 S231 N232 E345 S368 G369 PLP

7qow S65 R129 D273 H465 PO4

7wmk E77 L124 R129 S174 T189 Q191 W241 D304 E306 K349 D410 W411 Y486 PQQ

7pl9 D607 A608 Y637 M638 Y705 G706 M735 K736 RET

7yf2 G153 E174 L175 L209 N210 L211 Y295 SAH

7v6j G207 D230 L231 D250 M251 K264 SAM

7ys6 D106 C110 N288 SRO

6w8m A22 A23 G70 S110 T111 G112 V113 Y114 TJY

8g27 S258 D294 K435 R717 UDP

7xyk R24 C170 R190 S191 D193 N201 H231 Y233 UMP

8g3s H224 F228 V249 M250 V253 R263 T266 L267 F270 YLT

8it9 T92 P93 R96 Y108 L109 K216 V228 S229 H231 H232 ZL6

Table S13. Atomic coordination dataset. Selected PDBs and coordinating residues (along with binding ligand) for each protein sample in

the atomic coordination dataset.
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Figure S17. Alignment improves model generations. pTM, cRMSD distributions of generations from the 98B base model and aligned

model for all ligands in the atomic coordination dataset. Each ligand/model pair has 1024 generations.
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Figure S18. Randomly selected successful generations from the base model and finetuned model. A random sample of ligands is selected

and visualized with the ground truth PDB chain from which the ligand was taken. Solutions produced by ESM3 are diverse, and the

finetuned model gives significantly more successes (out of 1024 total samples).
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putational methods, experimental protocols, results, and

post-experiment analyses.

A.5.1. Generation and Selection

The base ESM3 7B model generates candidate GFP designs

for laboratory testing using a single prompt and a chain of

thought over sequence and structure tokens. Candidates are

filtered and ranked by metrics at several steps in the process.

Experiment 1 tests candidates across a range of sequence

identity to a template, yielding multiple GFPs including

dim hit B8. Experiment 2 consists of designs starting a

chain of thought from the sequence of B8, yielding numer-

ous bright GFPs including C10 which we term esmGFP.

This section details the computational protocol that gener-

ated and selected candidate GFP designs for Experiments 1

and 2, shown in Fig. 4B. Protocols, metrics, and selection

conventions are separately introduced and then synthesized

in descriptions of the two experiments, at the end of the

section.

A.5.1.1. MODEL

All candidate GFP designs were created using the base

ESM3 7B model with no finetuning. Throughout generation,

the model is prevented from decoding cysteine residues.

A.5.1.2. PROMPT

All candidate GFP designs in Experiment 1 are produced

with a chain of thought beginning from a single prompt. The

goal of the prompt is to capture essential residue identities

and structural features needed for chromophore formation

and fluorescence, leaving other degrees of freedom open for

the model to generate diverse designs.

Template To this end, we prompt ESM3 with a minimal

set of sequence and structure information from 16 residues

near the chromophore formation site from a template pro-

tein. We select a pre-cyclized intermediate crystal structure

from (50), PDB ID 1QY3, as our template. We reverse the

chromophore maturation slowing mutation R96A in 1QY3

so the prompt contains Arg96. We subsequently refer to the

full sequence and structure of 1QY3 with mutation A96R

as 1QY3 A96R or the template.

Sequence prompt The sequence portion of our prompt con-

sists of 7 template residues: Met1, Thr62, Thr65, Tyr66,

Gly67, Arg96, and Glu222. Residues 65-67 form the

chromophore. Met1 ensures proper start codon placement.

Residues 62, 96, and 222 are described in (50) and other

works to have key catalytic roles in chromophore formation.

Structure prompt The structure portion of our prompt con-

sists of structure tokens and backbone atomic coordinates

taken from 16 template residues at positions 96, 222, and

58-71 (inclusive) which roughly captures the central alpha

helix. The unique geometry of the central alpha helix is

known to be crucial for chromophore formation (50).

All other positions and tracks in the prompt are masked. The

overall prompt length is 229, matching that of the template.

Residue indices are contiguous and begin from 1.

A.5.1.3. JOINT SEQUENCE STRUCTURE OPTIMIZATION

We employ the following procedure to jointly optimize the

sequence and structure of designs throughout our experi-

ments: While annealing temperature linearly from 1 to 0, we

perform multiple iterations of first predicting the structure

of a designed sequence and subsequently Gibbs sampling

each position in the sequence for that predicted structure. In

algorithmic form:

Algorithm 15 gibbs_seq_given_struct

Input: ESM3 f , sequence x ∈: {0..20}L, structure y, tem-

perature t
1: for i = shuffle({1, ..., L}) do

2: xi ∼ exp
(

log f(xi | x\i, y)/t
)

3: end for

4: return x

Algorithm 16 joint_optimize

Input: ESM3 f , initial sequence x1, iterations I , initial

temperature t1, final temperature tf
1: for i = 1, . . . , I do

2: ti = (tf − t1) · (i/(I − 1)) + t1
3: yi = generate

struct
(f, xi, len(xi), T = 0)

4: xi+1 = gibbs_seq_given_struct (f, xi, yi, ti)
5: end for

6: return xI+1

Three variants of gibbs_seq_given_struct in

joint_optimize were employed for Experiments 1

and 2. Joint optimization occasionally produces repetitive

spans of amino acids when temperature is annealed to low

values. Variant 1 and 2 are intended to address this, in dif-

fering ways. Variant 3 is an experiment in biasing the logits

with a PSSM of known natural GFPs. Half of the candidates

in Experiment 2 were produced using Variant 3. This half

did not include esmGFP.

1. Variant 1: Negative Local Sequence Guidance We

bias the logits of the model away from those produced

just from a highly local span of the sequence. Specifi-

cally, we use classifier free guidance (99):

logits′ = weight∗(logitscond−logitsuncond)+logitsuncond
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but push away from the logits produced by inputting

just 7 residues centered on the position being sampled,

with weight 2 and nothing else. All other sequence

positions and all other model inputs are left blank.

logits′ = 2 ∗ (logitscond − logitslocal seq) + logitslocal seq

2. Variant 2: Max Decoding Entropy Threshold We

optionally skip resampling of sequence during Gibbs

sampling at positions whose entropy over sequence

tokens exceeds a user specified threshold.

3. Variant 3: PSSM Bias In Experiment 2 only, we ex-

periment with both including and excluding a PSSM-

based bias during Gibbs sequence sampling. Specif-

ically, we add a PSSM constructed from 71 natural

GFPs (see Appendix A.5.1.4 for details) directly to

the sequence output logits of the model, with a user-

specific weight. esmGFP did not use this option; it was

produced with weight 0.

A.5.1.4. METRICS

GFP designs are produced and scored by a number of ESM3-

derived and independent metrics. Unless otherwise noted,

designed structures are predicted using ESM3 with only se-

quence as input, using iterative decoding of structure tokens

with temperature 0 and subsequent decoding of backbone

coordinates with an older version of the structure token

decoder.

The following is an exhaustive list of metrics used. An exact

break down of where and how specific metrics are used

can be found in Appendix A.5.1.5, Appendix A.5.1.6 and

Appendix A.5.1.7.

Template Chromophore Site RMSD is calculated via an

optimal alignment (100) of N, C, CA, and inferred

CB atoms at positions 62, 65, 66, 67, 96, and 222 in

the predicted structure of a design and the template

(crystal) structure.

Template Helix RMSD is calculated in the same way, but

for N, C, CA atoms only, at design and template posi-

tions 58-71 (inclusive).

1EMA Helix RMSD is a metric proposed in (101). An

RMSD is calculated between alpha helix residues in

the predicted designed structure and a specific crystal

structure of avGFP, PDB ID 1EMA. Our calculation

differs slightly from (101). We calculate RMSD for

N, C, CA and inferred O atoms, and consider only

positions 60-64 and 68-74 (both ranges inclusive) to

exclude chromophore positions 65-67.

Sequence Pseudo-perplexity is calculated as defined in

(102). Given a protein sequence, positions are masked

one at a time, negative log-likelihoods of input tokens

at masked positions are averaged across all positions

in the sequence, and the result is exponentiated.

Round-trip Perplexity is calculated for a designed se-

quence via predicting its structure with ESM3, and

then evaluating the perplexity of the sequence given

that predicted structure under a single forward pass of

ESM3.

N-gram Score is calculated as the Engram term defined in

(10). This score assesses the divergence between the N-

gram frequencies of residues in the designed sequence

and those found in a background distribution, derived

from UniRef50 2018 03. Specifically, for a function

ngrami that takes in a sequence x and an N-gram order

i, and a precomputed distribuion of background N-

gram frequencies ngrami,bg , the score is calculated as:

Engram =
∑

i∈{1,2,3}
DKL(ngrami(x), ngrami,bg) (7)

PSSM A position-specific scoring matrix (PSSM) is con-

structed from a MSA of 71 natural GFPs (103). Specif-

ically, at positions aligned to our template, frequencies

for the 20 canonical amino acids (excluding gaps) are

transformed to log odds via dividing by the uniform

background (p(aa) = 0.05), adding an epsilon of 1e-9,

and applying log base 2. This produces a matrix of

scores of size 229 x 20.

PSSM score We extract from the PSSM values at (posi-

tion, amino acid) pairs occurring in an input sequence.

These are averaged to produce a score.

N-terminus Coil Count is metric intended to measure

structural disorder at the N-terminus of a design. We

observed that predicted structures have various levels

of disorder in this region. To quantify it for possible

filtering, we apply mkdssp (76) to the ESM3-predicted

structure of a design, and record how many of the

first 12 positions are reported as having SS8 labels in

{S,T,C}.

A.5.1.5. SELECTION CRITERIA

Among Experiment 1 and 2, designs are selected for testing

by first applying a set of filters, and then selecting the top-

N designs according to a score-based ranking. Scores are

calculated by summing the values of several metrics, which

are each normalized across designs to have zero mean and

unit variance and which are negated when appropriate so

that lower values are always better.

Common Filters: The following filters are applied in both

Experiments 1 and 2.
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• Template Chromophore Site RMSD <1.5Å

• Template Helix RMSD <1.5Å

• N-gram Score <5

Common Score Terms: The following score terms are

used in both Experiments 1 and 2.

• Sequence Pseudo-perplexity

• Round-trip Perplexity

• ESM3 pTM

A.5.1.6. GENERATION AND SELECTION OF DESIGNS

FOR EXPERIMENT 1

In this experiment, we generate a set of GFP designs for

experimental testing with a range of sequence identities to

our template. Designs are generated by a chain of thought:

From the prompt, ESM3 decodes all masked structure to-

kens, then all masked sequence tokens. Lastly, sequence

and structure tokens are jointly optimized.

Initial Generation: Starting from the prompt, we first gen-

erate 38k structures by decoding masked structure to-

kens one at a time using a fixed temperature sampled

uniformly from the range (0, 1.25) for each generation.

To focus compute on the most promising structures, we

filter according to Template Chromophore Site RMSD

<1Å, yielding 24k selected structures. We next gener-

ate ≈ 4 sequences for each structure with a temperature

uniformly sampled from the range (0, 0.6), yielding

92k total sequences.

Selection: We select a subset of promising initial gener-

ations for further optimization by applying Common

Filters with N-gram score’s threshold modified to <5.5,

ranking designs according to {Common Score Terms,

mean ESM3 pLDDT, mean ESMFold pLDDT, and

ESMFold pTM}, and selecting the best 40 designs in

each interval of 0.1 sequence identity to the template

sequence in [0.2, 1.0], 320 in total.

Joint Sequence Structure Optimization: We then jointly

optimize the sequence and structure of designs. Using

30 iterations in each case, we run 5 seeds of optimiza-

tion with max decoding entropy threshold = 1.5 and

2 seeds of optimization with negative local sequence

guidance = 2.0, yielding 67k total designs. Designs

from every iteration are included in this pool.

Selection To select a set of designs for laboratory test-

ing, we apply {Common Filters, N-terminus Coil

Count <6}, rank designs according to {Common Score

Terms, ESMFold pTM, 15 * PSSM Score}, and select

the best 88 designs across 8 buckets of sequence iden-

tity to our template among intervals of width 0.1 in

range [0.2, 1].

A.5.1.7. GENERATION AND SELECTION OF DESIGNS

FOR EXPERIMENT 2

In this experiment, we perform further refinement of the

dim, distant GFP found in Experiment 1, B10. To produce

a diversity of designs, we sweep over a number of settings:

two variations of refinement are performed, and 2 selection

protocols are used.

Local Joint Optimization: Starting from our dim GFP de-

sign, B10, we perform joint_optimize using a

full grid sweep of the following sets of settings: Ini-

tial temperatures {0.001, 0.01, 0.05, 0.1, 0.5}, PSSM

bias weights {0, 0.01, 0.05, 0.1, 0.5}, Max decoding

entropy thresholds {0.8, 1, 1.25, 1.5, 2.0}. For each

unique settings combination, we use 20 iterations of

optimization with 3 seeds, continuing the final step

of Gibbs sampling until convergence. After account-

ing for some distributed system machine failures, this

yields 6.3k total candidate designs.

Selection: We select two sets of 45 designs for laboratory

testing via two filters and a shared set of ranking crite-

ria.

1. Set 1: We filter according to {PSSM Bias ̸= 0,

Common Filters, RMSD to starting structure

<1Å, Identity to starting sequence in (0.7, 1.0)}.

2. Set 2: We filter according to {PSSM Bias = 0 (no

bias), Common Filters, RMSD to starting struc-

ture <1Å, Identity to starting sequence in (0.9,

1.0)}. esmGFP comes from this pool.

For each set, we rank according to {Common Score

Terms, 8 * PSSM Score, 15 * 1EMA Helix RMSD}
and select 45 designs each for testing.

A.5.2. Experimental Methods and Data

Analysis

A.5.2.1. STRAINS AND PLASMIDS

We designed a custom bacterial expression vector contain-

ing an Ampicillin-resistance gene, the BBa R0040 TetR

promoter, the BBa B0015 terminator, and a Bsa-I golden

gate site between the promoter and terminator. GFP designs

were codon optimized for E. coli expression and ordered

from IDT (Integrated Device Technology Inc.) containing

compatible golden gate overhangs. They were then cloned

by golden gate assembly into the vector. We evaluated our

GFP designs in the E. coli host Mach1.

A.5.2.2. FLUORESCENCE ASSAYS OF GFP DESIGNS

To evaluate the fluorescence of our GFP designs, we trans-

formed our designs into Mach1 cells. For each of two
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replicates of a design, a colony was seeded into a 1 mL TB

culture containing 50 µg/mL carbenicillin. Cultures were

grown in 96 deep well blocks at 37 °C in an Infors HT

Multitron Shaker with a shaking speed of 1000 RPM for 24

hours. After 24 hours, 1 µL of the cultures were diluted in

200 µl of 0.2 µm filtered DPBS.

Fluorescence intensity of the samples was then quantified

at the single cell level using a NovoCyte Quanteon Flow

Cytometer (Fig. S19).

The remaining cultures were spun down at 4000 g for 10

minutes, resuspended and lysed with 300 µL lysis buffer (1x

bugbuster, 500 mM NaCl, 20 mM Tris-HCl pH 8, 10% glyc-

erol, cOmplete™ , EDTA-free Protease Inhibitor Cocktail),

incubated at room temperature on a Belly Dancer Orbital

Shaker for 10 minutes, and lysate clarified by centrifugation

at 4000 g for 20 minutes. 100-120 µl lysate was transferred

to a 96 well black clear-bottom plate, and GFP fluorescence

was measured using a Tecan Spark Reader. Fluorescence

emission was captured at 515 nm with a 10 nm bandwidth

and excited with 485 nm with a 10 nm bandwidth. Ab-

sorbance was captured at 280 nm with a 3.5 nm bandwidth

to assess total protein content per well. For longer time

points, plates containing lysate were sealed and incubated

at 37°C for up to 7 days prior to measuring fluorescence.

GFP fluorescence values were first ratio normalized within

a well by their absorbance at 280 nm, and then further ratio

normalized across wells using the measured values from a

negative control E. coli containing vector without GFP. Data

from two replicates was then averaged for (Fig. 4B bottom)

and (Fig. 4C).

Overview photos of the plates (Fig. 4B top) were taken with

an iPhone 12 mini under blue light illumination from an

Invitrogen Safe Imager 2.0 Blue Light Transilluminator.

For excitation spectra, emission was captured at 570 nm

with a 50 nm bandwidth, while the excitation wavelength

was varied from 350 to 520 nm with a 10 nm bandwidth.

For emission spectra, an excitation wavelength of 430 nm

was used with a 50 nm bandwidth, while emission was

captured at varying wavelengths from 480 to 650 nm with

a 10 nm bandwidth. Excitation and emission spectra were

normalized by their maximum values (Fig. 4C).

A.5.2.3. ADDITIONAL GFP EXPERIMENTS

Plate overview photographs (Fig. 4B top) were taken over

two weeks since the initial lysate was created and over one

week after the final plate reader quantification was done,

and so possibly show additional brightness from slow chro-

mophore maturing designs. We observed some low level

contamination of wells H11 (vector with no GFP or designs)

and H12 (lysis buffer only) in the photograph of Experi-

ment 1 (Fig. 4B top left). Some of this contamination is

already visible in well H12 during the initial plate reader

quantification (Fig. 4B bottom left). To address potential

contamination concerns we performed an additional repli-

cation of B8 and observed a similar level of brightness to

Experiment 1 (50x less bright than natural GFPs) (Fig. S20).

Chromophore knockout versions of 1QY3 A96R and es-

mGFP were created through additional T65G and Y66G mu-

tations. These variants, along with 1QY3 and esmGFP, were

synthesized and measured as part of an independent repli-

cate performed by Genscript following the E. Coli based

fluorescent plate reader assay described above. Normaliza-

tion was performed with an OD600 measurement of the cells

prior to lysis. Analysis otherwise proceeded as above. Two

replicates were performed for each design and results were

averaged. Chromophore knockout reduced fluorescence to

background levels (Fig. S21).

A.5.3. Sequence searches and comparisons

A.5.3.1. DATABASE SEARCHES

BLAST nr search: esmGFP’s sequence was searched

with BLAST’s online server using the non-redundant se-

quences database nr with all default settings. tagRFP’s

sequence was taken from the top hit. The ex-

act top hit found was TagRFP [Cloning vector

pLX-B2-TagRFP-T, Sequence ID ASG92118.1 and is

shown in its entirety in Table S14.

Train set search: MMseqs2 (73), version 15.6f452, was

used to search all datasets that ESM3 was trained on at

the maximum available expansion level; for cluster resam-

pling datasets all cluster members are searched, not just

cluster centers. The goal is to search against every possible

sequence that ESM3 may have seen during pre-training. Set-

tings are selected for conducting a high sensitivity search:

-s 6 -a --max-seqs 10000.

A.5.3.2. SEQUENCE IDENTITY CALCULATIONS

To calculate sequence identities involving the two high-

lighted GFP designs (B8, esmGFP) and select reference

proteins, the following procedure is used. MAFFT (104)

v7.525 is applied with all default settings to the sequences

of B8, esmGFP, the top tagRFP sequence found by BLAST,

eqFP578 (from FPBase (105)), the template (PDB ID 1QY3,

with mutation A96R), and avGFP (from FPBase). Identi-

ties between two sequences are calculated as the number

of matching non-gap residues at aligned positions divided

by the minimum non-gapped length of the query and target

protein. This is the same sequence identity formula used

in Appendix A.5.4. Aligned sequences and identities and

mutation counts to esmGFP are provided in Table S14.
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Figure S19. Flow cytometry data confirms cells expressing esmGFP can be detected at the single cell level. Forward Scatter-Area (FSC-A),

a measure of cell size vs Fluorescein Isothiocyanate-Area (FITC-A), a measure of GFP-like fluorescent signal, for expressing 1QY3

A96R, esmGFP, and a negative control that does not express any GFP. A gate was set at the 99.9% quantile for the negative control data,

and the fraction of cells passing the gate were quantified for each sample.

Figure S20. Replication of design B8 and select controls. Results

are averages of eight wells across two plates.

A.5.3.3. INNER-BARREL MUTATION COUNT

Positions in esmGFP are described as internal if they have

SASA < 5 in their predicted structure. SASA is calcu-

lated as in Appendix A.2.1.6) from the all-atom structure of

esmGFP, predicted with ESM3 7B.

A.5.4. Phylogenetic Analysis

Sequences and metadata of natural and designed fluorescent

proteins were obtained from FPBase (105). An initial set

of 1000 proteins was filtered to protein which contained the

following metadata: a specified parent organism, an amino

acid sequence between 200 and 300 residues long, a speci-

fied emission maximum, and no cofactors. NCBI taxonomy

database was used to obtain taxonomic information about

each species. These sequences were further filtered accord-

Figure S21. Chromophore knockout mutations T65G and Y66G

reduces fluorescence of both 1QY3 A96R and esmGFP to back-

ground levels.
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Figure S22. Sequence identity of esmGFP with natural and de-

signed GFPs from the four major classes found in nature.

ing to keep those that had species found by NCBI and were

Eukaryotic but not from Chlorophyta (to exclude Channel-

rhodopsin like proteins). The 648 sequences that passed

these criteria, along with the sequence for esmGFP, were

aligned to a multiple sequence alignement using MAFFT

and sequence idenity was computed between each pair of

sequences as described above. All pairs within and across

taxa were considered for (Fig. 4F). All designed sequences

were considered to belong to the species annotated as their

parent organism.

All 648 used sequences belonged to the Leptocardii (e.g.

laGFP), Hexanauplia (e.g. ppluGFP), Hydrozoa (e.g.

avGFP), or Anthrozoa (e.g. efasGFP) classes. The sequence

identity of esmGFP was computed to each protein in these

classes Fig. S22. esmGFP was found to be closest to An-

throzoan GFPs (average sequence identity 51.4%) but also

shares some sequence identity to Hydrozoan GFPs (average

sequence identity 33.4%).

To estimate the millions of years of evolutionary distance

by time between esmGFP and known fluorescent proteins

we built an estimator to go from sequence identity between

pairs of GFPs to millions of years (MY) apart. We used

the following six Anthozoan species Acropora millepora,

Ricordea florida, Montastraea cavernosa, Porites porites,

Discosoma sp., Eusmilia fastigiata along with the six GFPs

amilGFP, rfloGFP, mcavGFP, pporGFP, dis3GFP, efasGFP

respectively. These species and GFPs were chosen because

they were annotated in both a recent time calibrated phylo-

genetic analysis of the Anthozoans (53) and a recent study

of GFPs (44). Each of these species contains multiple GFP

like sequences including red and cyan FPs. These particular

GFPs were chosen as they were annotated to be the main

GFP in each species. The millions of years between each

species was estimated as twice the millions of years to the

last common ancestor annotated in the time calibrated phy-

logenetic analysis. Using statsmodels (106), a line of best

fit was fit between MY and sequence identity. The line was

required to pass through a sequence identity of 1.0 and 0

MY. The MY to esmGFP was then estimated using this line

and the sequence identity of esmGFP to the nearest known

protein.

A.6. OPEN MODEL

We are releasing the ESM3 source code and model weights

of an open model, ESM3-open. ESM3-open is a 1.4B-

parameter model we trained without OAS antibody se-

quences and with precautionary risk mitigations for release

to the academic research community.

As part of this release, we follow guidance from the Prin-

ciples for the Responsible Development of AI for Biolog-

ical Design (107). We adopted precautionary risk mitiga-

tions, described in Appendix A.6.1, and performed risk

evaluations, detailed in Appendix A.6.2. Additionally we

conducted a review of the risks and benefits of releasing

ESM3-open with experts from the scientific community. We

provided reviewers access to ESM3-open, along with a de-

tailed technical report on our risk evaluations. We received

unanimous feedback from our reviewers that the benefits of

releasing the model greatly outweigh any potential risks.

We see this release as a first step and plan to work with

the scientific community to continue to improve processes

around responsible development. Open models enable the

scientific community to better understand and reduce any

potential risks of biological design tools. As our understand-

ing develops alongside the capabilities of future models, we

plan to continuously improve our evaluation frameworks,

safeguards, and mitigation strategies.

A.6.1. ESM3-open Mitigations

As a precaution, we filtered the training data of ESM3-open

to minimize model performance on sequences of potential

concern while otherwise maintaining performance. We also

removed the capability for the model to follow prompts

related to viruses and toxins.

Filtering sequences of potential concern. Previous work

has shown that the performance of protein language models

is closely related to the number of similar sequences present

in the training data (5). We therefore removed sequences

aligned to potentially-concerning proteins from the training

data in order to reduce the capability of ESM3-open on

these sequences.

We identified and removed sequences unique to viruses,

as well as viral and non-viral sequences from the Select

Agents and Toxins List (108) maintained by the CDC and

USDA. The U.S. Department of Health & Human Services

recommends filtering based on the Select Agents list as part

of their Screening Framework Guidance for Providers and

Users of Synthetic Nucleic Acids (109).
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Protein Sequence

Identity to

esmGFP

Mutations

to esmGFP

Aligned Sequence

B8 0.93 15 -MSKVEELIKPEMKMKLEMEGEVNGHKFSIEAEGEGKPYEGKQTIKAWSTT-GKLPFAW
DILSTSLTYGFRMFTKYPEGLEEHDYFKQSFPEGYSWERTITYEDGATVKVTSDISLED
GVLINKIKFKGTNFPSDGPVM-QKKTTGWEPSTELITPDPATGGLKGEVKMRLKLEGGG
HLLADFKTTYRSKKKEK-LPLPGVHYVDHTIRNEKAPHPEGKEYVVQYETAVARLA---
--------

esmGFP 1.0 0 -MSKVEELIKPDMKMKLEMEGEVNGHKFSIEAEGEGKPYEGKQTIKAWSTT-GKLPFAW
DILSTSLTYGNRAFTKYPEGLEQHDFFKQSFPEGYSWERTITYEDGATVKVTADISLED
GVLINKVKFKGENFPSDGPVM-QKKTTGWEASTELITPDPATGGLKGEVKMRLKLEGGG
HLLADFKTTYRSKKKEK-LPLPGVHYVDHRIVNEKATHPEGKEYMIQYEHAVARLA---
--------

tagRFP 0.58 96 MVSKGEELIKENMHMKLYMEGTVNNHHFKCTSEGEGKPYEGTQTMRIKVVEGGPLPFAF
DILATSFMYGSRTFINHTQGIP--DFFKQSFPEGFTWERVTTYEDGGVLTATQDTSLQD
GCLIYNVKIRGVNFPSNGPVM-QKKTLGWEANTEMLY--PADGGLEGRTDMALKLVGGG
HLICNFKTTYRSKKPAKNLKMPGVYYVDHRL--ERIKEADKETYVEQHEVAVARYCDLP
SKLGHKLN

eqFP578 0.53 107 ----MSELIKENMHMKLYMEGTVNNHHFKCTSEGERKPYEGTQTMKIKVVEGGPLPFAF
DILATSFMYGSKTFINHTQGIP--DLFKQSFPEGFTWERITTYEDGGVLTATQDTSLQN
GCIIYNVKINGVNFPSNGSVM-QKKTLGWEANTEMLY--PADGGLRGHSQMALKLVGGG
YLHCSFKTTYRSKKPAKNLKMPGFHFVDHRL--ERIKEADKETYVEQHEMAVAKYCDLP
SKLGHR--

template 0.38 143 -MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTT-GKLPVPW
PTLVTTLTYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTISFKDDGNYKTRAEVKFEG
DTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYITADKQKNGIKANFKIRHNIEDGS
VQLADHYQQNTPIGDGP-VLLPDNHYLSTQSALSKDPN-EKRDHMVLLEFVTAAGI---
--------

avGFP 0.36 146 -MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTT-GKLPVPW
PTLVTTFSYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEG
DTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGS
VQLADHYQQNTPIGDGP-VLLPDNHYLSTQSALSKDPN-EKRDHMVLLEFVTAAGITHG
MDELYK--

Table S14. Multiple sequence alignment of select GFP designs (B8, esmGFP) and reference proteins. Template is the full sequence of

our template structure (PDB ID 1QY3), with chromophore slowing mutation A96R removed. tagRFP is the full sequence of the top hit

returned by BLAST search of the nonredundant database nr, avGFP and eqFP578 are from FPBase. Sequence identities for GFP designs

are in general calculated as the number of non-gap matches at aligned positions, divided by the minimum length of the query and target

ungapped sequences. Here, only sequence identities to esmGFP are shown. Similarly, the number of mutations to esmGFP are calculated

as the number of mismatches at aligned positions where esmGFP does not have a gap.
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Figure S23. ESM3-open is a powerful predictor of structure and function trained for open release. A: Structure Prediction ESM3-

open (blue) is competitive with ESMFold (orange) on structure prediction as measured by LDDT on CAMEO and CASP14/15. See

Appendix A.3.4 for details on this evaluation. B: Representation Learning ESM3-open (blue) is competitive with ESM2-3B (orange) on

representation learning as measured by contact prediction P@L for finetuned representations. See Appendix A.3.3 for details on this

evaluation. C: Function Keyword Prediction. ESM3-open function prediction performance, as measured by Mean Average Precision

across function keywords. ESM3-open achieves 0.81 precision across all keywords, and 0.89 for the top 1K most prevalent keywords in

the validation set (CAMEO). We use the same evaluation framework as in Appendix A.1.8.2.2. We report both the macro and micro

averages as in Fig. S8. In each of the preceding evaluations, the data mitigation minimally impacted performance, as compared to a

compute-matched model without data mitigations (hatched blue). D: Zero-shot Fitness Prediction. Fitness prediction performance as

measured by correlation (Spearman ρ) across 217 Deep Mutational Scanning datasets collated in ProteinGym. Left and right subplots

indicate viral (left) and non-viral (right) DMS datasets. The four columns per group indicate different models. ESM3-open performs

substantially worse than EVMutation (purple) on viral fitness prediction, while being competitive with ESM2 (orange) on non-viral fitness

prediction. Viral fitness prediction was substantially impacted by the data mitigation, while non-viral fitness prediction was not (hatched

blue).

To filter data, we create two denylists: the Viral Denylist and

the Select Agent Denylist. We then remove all sequences

from the training set that are detected to align to those in the

denylists by MMseqs2 at or above a given sequence identity

threshold.

To create the Viral Denylist, we identify ∼4M sequences

that are annotated as viral in UniProt and align almost ex-

clusively to other viral sequences in UniProt. This gives

us a procedure that removes viral proteins with both high

sensitivity and specificity (as measured by UniProt taxo-

nomic annotations). To create the Select Agents Denylist

we identify all sequences in UniProt belonging to organisms

on the Select Agents and Toxins List (108). This process

gives us 147K non-viral sequences and 40K additional viral

sequences.

For each denylist, MMseqs was used to query against the full

set of training databases, (including PDB, UniRef, MGnify,

and JGI) and all hits were removed from the training set.

This filter removes a total of 10.6M sequences across all

training sets.

Removal of keywords of concern. There are a number of

keyword prompts associated with viruses and toxins that we

aim to remove. We first identify a list of harmful keywords

with the following steps:

1. We curate a list of filter terms associated with viruses

and toxins. The full filter term list is available upon

request.

2. We then identify all InterPro tags whose free-text term

names contain at least one of the filter terms.

3. We identify keywords that are associated with flagged

InterPro tags but that are not associated with non-

flagged InterPro tags. We remove those keywords.

Keywords which are associated with both flagged and

non-flagged InterPro tags (e.g. “extracellular region”)

are not removed.

4. We additionally remove all keywords that themselves

directly contain one of the filter terms

Of the original 68,103 keywords that ESM3 is trained with,

this filter removes a total of 9,462 (14%), creating a new

vocabulary of 58,641 keywords.

The function vocabulary is defined via vectors representing

Term Frequency Inverse Document Frequency (TF-IDF)

which are then tokenized using Locality Sensitive Hashing

(LSH), as previously described in Appendix A.1.8. To

remove flagged keywords, they are first removed from the

TF-IDF vocabulary by removing the entries corresponding

to flagged keywords. This reduces the TF-IDF vector size

to 58,641. The LSH tokenization is defined by 64 hyper-

planes, each defined in the TF-IDF space, i.e. a Euclidean

space with one dimension per keyword. We redefine the

hyperplanes to be in the reduced space by removing the di-

mensions corresponding to the flagged keywords. This per-
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manently removes the information required for tokenization

of the flagged keywords. This mitigation is highly selective

and does not change the tokenization for any non-flagged

keywords.

A.6.2. ESM3-open Evaluations

In the section below, we outline our evaluations of ESM3-

open performance. When appropriate, we compare ESM3-

open to either existing open models, (e.g. ESM2 or ESM-

Fold), or to a compute-matched version of ESM3-open,

trained without any data mitigations.

Structure Prediction In Fig. S23A, we show that ESM3-

open achieves competitive performance on structure predic-

tion as measured by LDDT on CASP14, 15 and CAMEO,

showing very slight degradation from our compute-matched

1.4B model without data filtering. The evaluation framework

is described in Appendix A.3.4.

We also measure the ability of ESM3 to predict the structure

of a subset of viral proteins. In Fig. S23A we evaluate struc-

ture prediction on a set of structures derived from viruses

that were purged from the PDB training set. For the chains

in PDB that were > 70% sequence identity hits to the Viral

Denylist, we cluster at 40% sequence identity and then select

the longest chain (with length ≤ 1024) from each cluster.

ESMfold and ESM3-open achieved an average LDDT of

0.66 and 0.63, respectively, on the viral structures. With-

out the data mitigation, a compute-matched ESM3-open

would have achieved an average LDDT of 0.66. This is

substantially worse than the performance on generic struc-

ture prediction on CAMEO, and CASP14, where ESMFold

achieved an average LDDT of 0.86 and 0.73, and ESM3-

open achieved an average of LDDT of 0.83 and 0.70.

Representation Learning. ESM3-open achieves strong per-

formance on representation learning, slightly outperforming

ESM2 (3B) on contact prediction as measured by preci-

sion at L (P@L) on structures derived from CASP14/15,

and CAMEO, see Fig. S23B. The evaluation framework is

described in Appendix A.3.3.

Function Keyword Prediction. ESM3-open is able to

predict function keywords for proteins in a validation set

derived from UniRef and annotated with InterProScan, see

Fig. S23C. ESM3-open achieves a Mean Average Precision

for all keywords of 0.81 (macro average), and a precision of

0.89 (micro average) for the top 1000 keywords, discarding

common terms such as ”the”. The evaluation framework is

the same as that described in Appendix A.1.8.2.2.

Zero-shot Viral Fitness Prediction. We measure the ability

of ESM3 to identify viable sequences and understand the

effects of mutations on viral proteins. The evaluation con-

sists of the single mutant variants from 217 Deep Mutational

Scanning (DMS) datasets collected in ProteinGym (110).

This includes 28 DMS landscapes from viral proteins and

189 from other proteins. We evaluate the correlation (Spear-

man ρ) between the predicted variant effect and measured

variant effect. The predicted variant effect is measured as

the difference between the logit value for the variant allele

and the logit value of the wildtype allele at a given masked

position (16).

First, we compare the performance of ESM3-open to a

compute-matched version of ESM3-open which did not

undergo any data filtering. Applying data filtering as a

mitigation reduces average Spearman ρ performance on

viral fitness prediction from 0.28 (ESM3-small) to 0.17

(ESM3-open), while performance on non-viral proteins is

not adversely affected, changing from 0.46 (ESM3-small)

to 0.45 (ESM3-open). We also compare the performance of

ESM3-open to existing open model baselines. Fig. S23D

assesses performance relative to the EVMutation (111) base-

line. EVMutation is a Markov Random Field model (not

deep learning-based) trained on a multiple sequence align-

ment of the target protein. BLOSUM62 is a baseline based

on amino acid substitution frequencies. After mitigations,

ESM3-open performance on viral landscapes is low com-

pared to EVMutation and on-par with BLOSUM62.

67



PR
EV

IE
W

List of Figures

S1 The ESM3 architecture . . . . . . . . . . . 22

S2 Geometric Attention . . . . . . . . . . . . 25

S3 Structure tokenizer reconstruction quality . 32

S4 Visualization of structure tokenizer recon-

structions . . . . . . . . . . . . . . . . . . 33

S5 Visualization of local neighborhoods which

map to the same learned structure token . . 34

S6 pTM and pLDDT calibration . . . . . . . . 35

S7 Schematic of function tokenization . . . . . 35

S8 Function prediction benchmarking results . 36

S9 Visualization of noise schedules used . . . . 41

S10 Scaling curves for structure prediction . . . 43

S11 Conditional and unconditional Scaling be-

havior for each track . . . . . . . . . . . . 45

S12 Distribution of pTM and pLDDT . . . . . . 45

S13 Unconditional generation of high-quality

and diverse proteins using ESM3 . . . . . . 47

S14 Generation of sequences using chain-of-

thought . . . . . . . . . . . . . . . . . . . 48

S15 Prompting ESM3 to generalize beyond its

training distribution . . . . . . . . . . . . . 50

S16 Multimodal protein editing with ESM3 . . . 54

S17 Alignment improves model generations . . 57

S18 Randomly selected successful generations

from the base model and finetuned model . 58

S19 Flow cytometry data confirms cells express-

ing esmGFP can be detected at the single

cell level . . . . . . . . . . . . . . . . . . . 63

S20 B8 Replication . . . . . . . . . . . . . . . 63

S21 Chromophore knockout mutations . . . . . 63

S22 Sequence identity of esmGFP . . . . . . . . 64

S23 ESM3-open is a powerful predictor of struc-

ture and function trained for open release . 66

List of Tables

S1 Parameter details for different model con-

figurations . . . . . . . . . . . . . . . . . . 24

S2 Training details for stage 2 training of an

all-atom structure token decoder . . . . . . 31

S3 Pre-training dataset statistics . . . . . . . . 40

S4 Pre-training unique token statistics . . . . . 40

S5 Data augmentation and conditioning infor-

mation applied to each dataset . . . . . . . 40

S6 Noise Schedules and Dropout Probabilities 41

S7 Precision @ L . . . . . . . . . . . . . . . . 44

S8 Protein structure prediction results . . . . . 44

S9 Negative log-likelihood of each track condi-

tioned on other tracks . . . . . . . . . . . . 44

S10 Functional motif definitions for conserved

region . . . . . . . . . . . . . . . . . . . . 50

S11 InterPro tags extracted from CAMEO test

set proteins for prompting with fold specifi-

cation . . . . . . . . . . . . . . . . . . . . 52

S12 Novelty and designability metrics. . . . . . 52

S13 Atomic coordination dataset . . . . . . . . 56

S14 Multiple sequence alignment of select GFP

designs (B8, esmGFP) and reference proteins 65

68


	Materials and Methods
	Architecture
	Notation
	Overview
	Tokenization
	ESM3 Inputs and Forward Pass
	Transformer
	Geometric Attention
	Structure Tokenizer
	Function Tokenization
	Other Tracks
	ESM3 Inference

	Training ESM3
	Pre-training Data
	Pre-training Tasks
	Training Details

	Model evaluations
	Models
	Data
	Representation Learning
	Structure Prediction
	Conditional Likelihood
	Unconditional Generation
	Prompt-following Evaluations
	Steerable Design
	Composing Prompts
	Multimodal Editing Examples

	Alignment
	Algorithm
	Preference Tuning Intuition
	Evaluation Metrics
	Training Dataset
	Evaluation Dataset: Atomic Coordination
	Supervised Finetuning
	Training Hyperparameters

	GFP
	Generation and Selection
	Experimental Methods and Data Analysis
	Sequence searches and comparisons
	Phylogenetic Analysis

	Open model
	ESM3-open Mitigations
	ESM3-open Evaluations



