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Abstract 

Cancer, a collection of more than two hundred different diseases, remains a leading cause of morbidity and mortality worldwide. 
Usually detected at the advanced stages of disease, metastatic cancer accounts for 90% of cancer-associated deaths. Therefore, the 
early detection of cancer, combined with current therapies, would have a significant impact on survival and treatment of various 
cancer types. Epigenetic changes such as DNA methylation are some of the early events underlying carcinogenesis. Here, we report 
on an interpretable machine learning model that can classify 13 cancer types as well as non-cancer tissue samples using only DNA 
methylome data, with 98.2% accuracy. We utilize the features identified by this model to develop EMethylNET, a robust model con
sisting of an XGBoost model that provides information to a deep neural network that can generalize to independent data sets. We 
also demonstrate that the methylation-associated genomic loci detected by the classifier are associated with genes, pathways and 
networks involved in cancer, providing insights into the epigenomic regulation of carcinogenesis.

Introduction
Cancer remains one of the most challenging human diseases, 
with over 19 million cases and 10 million deaths reported annu
ally [1]. The increase of an ageing population worldwide, together 
with exposure to environmental carcinogens, and lifestyle 
choices such as poor diets, smoking and lack of physical activity 
contribute to the worldwide increase in cancer incidences. The 
evolutionary nature of cancer, complex interactions with the tis
sue micro-environment and host immune system, engender het
erogeneity and make the pursuit and development of 
interventions difficult. Therefore, early detection and diagnosis 
of cancer, leading to better interventions and increased survival, 
remain one of the more effective avenues in combating cancer.

Each of our somatic cells contains a single identical genome, 
incorporating the information necessary to specify and maintain 
our characteristics. In contrast, each cell will exhibit multiple 
epigenomes that change during different cellular states and over 
the passage of time. These epigenomes consist of a collection of 
reversible chromatin structures, interactions and modifications 
that do not change the DNA sequence and may be heritable 
across progeny cells. Histone variations, post translational modi
fications of the amino terminal tails of histone proteins, and co
valent modification of DNA are some of the factors that 
contribute to epigenomic change. Notably, covalent methylation 

of DNA is one such reversible chemical modification with many 
functional consequences, and evidence for its role in embryonic 
development, cell differentiation, genomic imprinting, X chromo
some inactivation, repression of regulatory elements, genome 
maintenance and the regulation of gene expression has accumu
lated in the last few decades [2].

Aberrant DNA methylation is observed in many cancers. CpG 
island promoter hypermethylation of tumour suppressor genes is 
an early neoplastic event in many tumours [3–6]. In addition, 
global DNA hypomethylation can lead to chromosomal instabil
ity, activation of oncogenes and latent retrotransposons that pro
mote carcinogenesis [7]. Hypomethylation is seen in many 
cancer types, including cervical, prostate, hepatocellular, breast, 
brain, and leukaemia [8–11]. These hyper- and hypo-methylation 
patterns can serve as cancer-associated signals and prognostic 
biomarkers. They are of particular use for early detection of can
cer, as epigenetic modifications are some of the earliest neoplas
tic events associated with carcinogenesis [12, 13]. Computational 
methods that detect these complex neoplastic methylation pat
terns can thus assist in cancer early detection, diagnosis, and 
screening. Here, we developed both binary and multiclass ma
chine learning models to identify multiple cancer types from 
non-cancerous tissue samples. An expanding corpus of literature 
supports the use of classification methods trained on DNA 
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methylation changes to identify carcinogenic signatures. Some of 
the more relevant works are reviewed in Table 1. Moreover, we 
previously demonstrated that machine learning models, leverag
ing DNA methylation data from 1228 tissue samples can accu
rately classify pathological subtypes of renal tumours [14]. In this 
study, we introduce a multiclass deep neural network, 
EMethylNET: Explainable Methylome Neural network for Evaluation of 
Tumours. EMethylNET is robust, generalizable, and interpretable 
and demonstrates high predictive accuracy.

Materials and methods
Microarray-based methylation analysis
Methylome microarray data were obtained from The Cancer 
Genome Atlas (TCGA) GDC data portal (https://www.cancer.gov/ 
ccg/research/genome-sequencing/tcga, RRID: SCR 003193). The 
data sets utilized were from the Illumina Infinium Human DNA 
Methylation 450 platform, and 13 human cancer types with at 
least fifteen normal samples were analysed. Metadata was also 
obtained from the TCGA data portal. Supplementary Table S12 
shows the number of cancer and normal samples for each can
cer type.

In addition to the TCGA data, a number of data sets from inde
pendent studies were also used in model evaluation. Eight of the 
independent data sets were from the Illumina Infinium Human 
DNA Methylation 450 platform, and one (ESCA 2) was from the 
Illumina Infinium Methylation EPIC array platform. The number 
of cancer and normal samples for each independent data set is 
shown in Supplementary Table S13. The sources of each data set 
are: breast cancer (BRCA): GSE52865, colon adenocarcinoma 
(COAD): GSE77955 (only samples from sites colon, left colon, right 
colon, and sigmoid are taken), esophageal carcinoma (ESCA): 
GSE72874, ESCA 2: EGAD00010001822 and EGAD00010001834, 
head and neck squamous cell carcinoma (HNSC): GSE38266 (note 
that half of these samples are HPVþ ), kidney renal clear cell car
cinoma (KIRC): GSE61441, liver hepatocellular carcinoma (LIHC): 
GSE75041, prostate adenocarcinoma (PRAD): project PRAD-CA 
from ICGC, thyroid carcinoma (THCA): GSE97466. For the COAD 
and THCA independent data sets, details regarding the adenoma 
samples were obtained from their metadata.

Data pre-processing
TCGA data were downloaded using TCGAbiolinks package 
(https://bioconductor.org/packages/TCGAbiolinks/, RRID: SCR 
017683) [15] in R (version 3.6.2) [16], with the following pre- 

processing steps applied separately for each cancer type. Probes 
listed as potentially noisy by Naeem et al. [17] were discarded, 
and only probes mapping to autosomal and sex chromosomes 
were kept. In addition, we discarded probes with > 5% of missing 
values. The remaining missing values were imputed using a k- 
nearest neighbours approach with the impute package in R 
(k¼ 10, rowmax¼ 0.25) [18]. This resulted in around 277,000 fea
tures (probes) per sample (this number varied between cancer 
types as processing was applied separately to each one). As M- 
values are more homoscedastic than beta-values [19], we trans
formed beta-values to M-values using the function shown in 
Equation (1). 

M ¼ log2
b

1 � b

� �

(1) 

For the multiclass data, features were obtained by taking the in
tersection of features of every cancer type, and the normal class 
was obtained by pooling all the normal samples from different 
tissue types together. When pre-processing non-TCGA data sets, 
where the non-normalized data were available, we computed the 
beta values from methylated and unmethylated counts (to avoid 
issues with different normalization methods) and selected the 
same features as the previously processed TCGA data. Many data 
sets contained NA values, and unlike before, where we relied on 
the whole data set to impute the values, we set them to a con
stant beta of 0.5. This simulated a real-world testing scenario, 
where you might test one sample at a time and not have access 
to the whole data set of samples. Lastly, these beta values were 
transformed to M-values.

Classification models and metrics
Throughout this study, we used both binary and multiclass mod
els. Each binary model compared one tissue type, distinguishing 
cancer from normal, and the multiclass models utilized all 13 tis
sue types and normal samples. Note that in the binary models, 
the normal class was only normal samples for that tissue, 
whereas in the multiclass models, the normal class was normal 
samples from all tissue types pooled together. For each model, 
the input data were split into training and test sets, with 25% of 
samples in the test sets.

To begin with, we tested two simple classification models: lo
gistic regression and an SVM. Both models were created and 
tuned using the package sklearn [20] in Python (version 3.7.5). 
Hyperparameter tuning on the training set using 5-fold cross- 

Table 1. Summary of related studies, including EMethylNET, detailing the model type, number of train/test data sources (and total 
sample number), number of external validation data sources (and total sample number), number of CpGs input into the model and 
number of CpGs used by the model.

Work Model type Train/test data sources (n) External validation  
data sources (n)

CpGs input to  
the model

CpGs used by  
the model

Hao 2017 [18] LASSO 1 (2676) 1 (718)
Tang 2017 [19] Random forest 1 (5379) 7 (504) 9-998
Capper 2018 [20] Random forest 1 (3905) 5 (401) 10000
Peng 2018 [21] LASSO 1 (1478) 3 (267) 128
Ding 2019 [22] Logistic regression 1 (7605) 6 (742) 12 12
Zheng 2020 [23] DNN 1 (7339) 12 (972) 10360 10360
Koelsche 2021 [24] Random forest 1 (1077) 4 (428) 10000
Liu 2021 [25] XGBoost 1 (7224) 0 ≤ 294
Modhurkur 2021 [26] Random forest 9 (9303) 0 2978
Ibrahim 2022 [27] PLSDA 1 (6502) 10 (1595) 20 20
Kuschel 2022 [28] Random forest 3 (369) 0 50000
Zhang 2023 [29] Linear support vector classifier 1 (781) 1 (4702) 1588
EMethylNET XGBoost and DNN 1 (6224) 9 (940) 276016 3388

2 | Newsham et al.  

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

ethods/article/9/1/bpae028/7696058 by guest on 28 June 2024

https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpae028#supplementary-data
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpae028#supplementary-data
https://bioconductor.org/packages/TCGAbiolinks/


validation selected the default values in most cases, except for 

the binary logistic regression using the Newton solver and the 

multiclass SVM using gamma ¼ ‘auto’.
An XGBoost model based on gradient boosted decision trees 

was created, using the XGBoost (https://xgboost.ai/, RRID: SCR 

021361) Python package [21]. Hyperparameter tuning for the bi

nary models resulted in 450 estimators with a maximum depth 

of ten and a learning rate of 0.189. The multiclass model had 

eight hundred estimators with a max depth of three and the 

same learning rate. In this model, 50% of features were randomly 

sampled when constructing each tree and 50% of samples were 

taken in each iteration, which helped to prevent over-fitting.
Finally, a multiclass feed forward neural network, namely 

EMethylNET, which is based on the multiclass XGBoost model 

was produced. XGBoost models assign an importance to each of 

their input features, and an importance above zero indicates that 

this feature is helpful for classification. All input features with an 

importance greater than zero (3,388 features) were used as input 

for the neural network. Similar to all other models, we trained it 

on our TCGA training set. We conducted a hyperparameter 

search using the Python package Talos [22], using 30% of the 

training data as a validation set for each hyperparameter test. 

For training, we used the Adam optimizer [23] with cross-entropy 

loss. A variant of early stopping was used, where the model was 

trained for a full five hundred epochs, and the model at the ep

och with the highest validation set accuracy was taken as the fi

nal model. For evaluation, we used standard accuracy, precision 

and recall metrics. We also report the F1 score, which is the har

monic mean of precision and recall, as shown in Equation (2). 

F1 ¼ 2 �
precision � recall
� �

precision þ recall
� � (2) 

In addition, we report the Matthews correlation coefficient (MCC) 

measure (see Equation (3)), as it portrays a more comprehensive 

measure of performance, especially with imbalanced classes in 

the binary case [24]. 

MCC ¼
TP � TN � FP � FNð Þ

TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þ
(3) 

We also report the area under the curve (AUC) for both receiver 

operating characteristic (ROC) curves and precision–recall 

curves. For both metrics, one is a perfect score and 0.5 is the 

score from a random model (assuming classes are balanced). For 

the multiclass AUCs, an AUC was generated for each class using 

the one-vs-all strategy, which reflects the model’s ability to dis

tinguish each class from the rest of the classes.

Biological feature interpretability
Multiclass PCC importance analysis
Importances of the multiclass probes contributing to classifica

tion (PCCs) were obtained from the trained XGBoost model, 

which used the gain measure as the feature importance.

SHAP values
The shap package in Python was used for analysing SHAP values 

of the multiclass DNN [25]. A stratified sample of 10% of the 

training set was used as the background set and a stratified sam

ple of 10% of the whole data set (training and test) was used to 

calculate the SHAP values.

Probe annotation and mapping
Probes with an XGBoost importance score > 0 were mapped to 
genes that were overlapping or that had overlapping promoter 
regions (taken as the 1500 base pair window upstream of the tran
scription start site). Each probe was mapped to all genes that ful
filled this property. Then, we went through the multiclass probe list 
manually and refined probes that mapped to multiple genes, re
moving mapped genes where it was obvious that the gene was not 
being affected by the probe. This process removed 161 genes from 
the multiclass gene list. The gene annotation data were obtained 
from Ensembl (version 101) using the R package biomaRt (https:// 
bioconductor.org/packages/biomaRt/, RRID: SCR 019214) [26, 27], 
and the mapping functionality was implemented using the R pack
age, ChIPpeakAnno (http://www.bioconductor.org/packages/relea 
se/bioc/html/ChIPpeakAnno.html, RRID: SCR 012828) [28].

Differential methylation analysis
Differential methylation analysis was performed using the R 
package TCGAbiolinks [15], and the input data were M-values of 
the probes after filtering (see Data pre-processing). Differentially 
methylated probes were found by the Wilcoxon test using the 
Benjamini-Hochberg false discovery rate adjustment method. 
The probes with an adjusted P-value < .01 and an absolute mean 
difference of above 2 were selected.

Enrichment analysis
Gene ontology over-representation analysis

Functional enrichment analysis was carried out using the R pack
age gprofiler2 (https://biit.cs.ut.ee/gprofiler/page/r, RRID: SCR 
018190) [29] with the Bonferroni correction method. The back
ground set were the XGBoost input probes (ie, the microarray 
probe list after filtering) mapped to genes. This result was then 
visualized by REVIGO (http://revigo.irb.hr/, RRID: SCR 005825) 
[30] using the settings: small, Homo sapiens GO terms, SimRel 
similarity. The scatter plot in Fig. 5a was based on the R script 
provided by REVIGO, and the visible labels are the twenty most 
significant terms with four or more parents in the GO Biological 
Process hierarchy (to avoid very general terms).

Gene set over-representation analysis

Fisher’s exact tests were performed on two cancer gene sets: 
COSMIC Cancer Gene Census [31] (https://cancer.sanger.ac.uk/ 
census, RRID: SCR 002260), OncoKB (https://www.oncokb.org/, 
RRID: SCR 014782) Cancer Gene List [32], and the TF Checkpoint 
2.0 resource (https://www.tfcheckpoint.org,RRID: SCR 023880) to 
determine overlap with translational regulators to assess the 
overlap with the multiclass gene list. In these analyses, we only 
included genes present in our background gene set, i.e. the mi
croarray probe list (after filtering) mapped to genes.

Text mining
The Pangaea package [33] was used for text mining of over four 
million cancer-related PubMed (https://pubmed.ncbi.nlm.nih. 
gov/, RRID: SCR 004846) abstracts (downloaded in 2020) that were 
associated with cancer. We analysed the abstracts that referred 
to at least one of our multiclass genes, which was a total of 
183,909 abstracts. The output of Pangaea is available as an excel 
spreadsheet in supplementary data (Supplementary File 1).

Pathway enrichment analysis and visualization
KEGGprofile [34] was used for gene set enrichment of KEGG path
ways for the multiclass gene list. Transformation of the Ensembl 
IDs to Entrez gene IDs was required (losing some unmappable 
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genes in the process), and the background set was the microarray 
probe list (after filtering) mapped to genes. For visualization, 
KEGG pathways were retrieved using the R package KEGGgraph 
(https://bioconductor.org/packages/KEGGgraph/, RRID: SCR 
023788) [35] and KEGG IDs were converted to Ensembl IDs using 
the R package biomaRt [26, 27]. Pathways were visualized with the 
NetworkX Python package (https://networkx.org/, RRID: SCR 
016864) [36], and only multiclass genes were shown. For each mul
ticlass gene, the difference in average methylation between cancer 
and normal is displayed as the node colour. More specifically, for 
each cancer type and each PCC, the mean M-value of the cancer 
samples minus the mean M-value of the normal samples for that 
cancer type was taken. Where multiple PCCs mapped to the same 
gene, the PCC with the maximum absolute difference was taken.

For the visualization of the pathway network, sixty cancer- 
related KEGG pathways were collected. Only pathways with more 
than three multiclass genes were kept (resulting in fifty-six path
ways). Interaction data were collected for all multiclass genes, 
from STRING (http://string.embl.de/, RRID: SCR 005223) [37] (using 
all interactions from the default 0.4 confidence), GeneMania 
(http://genemania.org/, RRID: SCR 005709) [38] (with all data sour
ces selected) and GeneWalk (https://github.com/churchmanlab/ 
genewalk, RRID: SCR 023787) [39]. These pathways and interaction 
data were visualized as a network with Cytoscape software (http:// 
cytoscape.org, RRID: SCR 003032). Each node represented a path
way, and the multiclass genes in that pathway were visualized as 
smaller shapes around the nodes. The interaction data was sum
marized into pathway interactions—if a gene in one pathway inter
acted with another gene in a different pathway, an edge was 
drawn between those two pathways. In addition, data from the 
COSMIC Cancer Gene Census, version 93 [31], were integrated.

Pan-cancer methylome network model

A model of the pan-cancer methylome network incorporating 
Molecular Mechanisms of Cancer pathway from the Ingenuity 
Pathway Analysis (IPA) resource (http://www.ingenuity.com/, 
RRID: SCR 008653) [40] and the Pathways in Cancer (Human) path
way from the KEGG pathway database (https://www.kegg.jp/ 
kegg/pathway.html, RRID: SCR 012773) [41, 42] was produced us
ing PathVisio software (https://pathvisio.org/, RRID: SCR 023789) 
[43]. Multiclass methylation features mapped to genes were dis
played as blue nodes (non-coding genes highlighted in yellow), or 
purple if they were also known cancer genes from Cosmic Cancer 
Gene Census or OncoKB. Interaction between nodes is derived 
from the literature, pathway databases (including IPA and KEGG) 
and protein-protein interaction data sets (STRING). The model 
was produced as a gpml object, adhering to the Systems Biology 
Graphical Notation (SBGN) standard. Direct interactions are 
shown as complete black lines and indirect interactions as bro
ken black lines, respectively. Catalytic interactions are shown as 
red edges, inhibitory interactions as blue edges, and protein–pro
tein interactions as orange edges between nodes.

Long non-coding RNA analysis
The gene type annotation data were obtained from Ensembl (ver
sion 101). Literature evidence was obtained using the Pangaea tool 
[33], where cancer hallmark keywords were extracted from the 
abstracts that mentioned at least one of the multiclass lncRNAs. 
Additionally, we used two cancer lncRNA databases, Lnc2Cancer 
3.0 (http://bio-bigdata.hrbmu.edu.cn/lnc2cancer/, RRID: SCR 
023781) [44] and CRlncRNA [45]. For Lnc2Cancer, we searched for 
cancer hallmark keywords in the description column, and for 
CRlncRNA, these cancer hallmark keywords were included 

explicitly. LncRNAs found in one or more of these two sources 
were plotted in a heatmap showing the average methylation (beta 
value) for all BRCA samples. The differential expression (log2 fold 
change) was obtained using the DESeq2 package (https://bioconduc 
tor.org/packages/release/bioc/html/DESeq2.html, RRID: SCR 
015687) [46].

Comparison with cancer lncRNAs

We compared our lncRNAs to the Cancer LncRNA Census (CLC) 
[47], using a Fisher’s exact test. We then carried out a pared- 
down version of their CLC features analysis, following a method 
as similar as possible. In each of these tests, a Fisher’s exact test 
was used when not otherwise specified. Gene location and length 
data were obtained from Ensembl (version 101) using the R pack
age biomaRt [26, 27].

Close to cancer-associated and non-cancer-associated germline SNPs. 
Data were obtained from the GWAS Catalog (NHGRI-EBI’s catalog 
of published genome-wide association studies (http://www.ebi. 
ac.uk/gwas, RRID: SCR 012745) [48]. Cancer SNPs were found us
ing keywords ‘cancer,’ ‘tumor,’ ‘tumour,’ and non-cancer SNPs 
were all other SNPs. We tested whether the closest cancer/non- 
cancer SNPs to the lncRNAs were within a distance threshold 
(1 kb, 10 kb, and 100 kb were tested).

Within 1 kb of the COSMIC cancer gene census genes. For each 
background and multiclass lncRNA, the distance to the closest 
COSMIC cancer gene [31] was computed, and we tested whether 
that distance was under 1 kb more (or less) frequently for the 
multiclass lncRNAs.

Epigenetically silenced in tumours. The multiclass lncRNAs were 
tested against a list of cancer-associated epigenetically silenced 
lncRNA genes (CAESLGs) [49].

Differentially expressed. The multiclass lncRNAs were tested 
against a list of dysregulated lncRNAs in a range of cancer types 
(BRCA, COAD, HNSC, KIRC, lung adenocarcinoma (LUAD), lung 
squamous cell carcinoma (LUSC), and PRAD) [49].

Gene and exon lengths. To test the difference in lengths, a 
Wilcoxon rank sum test was performed over the logged lengths 
(to ensure equal variance). For the exon length, the longest tran
script for each gene was taken.

Higher expression levels. TCGA expression data were used, nor
malized by the TMM method [50] using the edgeR package 
(http://bioconductor.org/packages/edgeR/, RRID: SCR 012802) 
[51], and averaged across samples. A Wilcoxon rank sum test 
over the logged expression values was used to test expression 
differences.

Conservation. Phast 100-way conservation scores were down
loaded [52, 53] and all conservation scores that overlap with 
background, or multiclass lncRNA gene bodies were taken. The 
mean conservation score per gene was computed, and then the 
difference in conservation between multiclass and background 
lncRNAs was tested using a Wilcoxon rank sum test.

Survival analysis
To determine whether the gene sets could differentiate survival, 
the following was executed for each gene list from the binary 
XGBoost models. TCGA expression data were normalized (using 
the variance-stabilizing transformation in the DESeq2 package 
[46]), and matched TCGA survival data were obtained. A Cox pro
portional hazards regression model (using the R package survival 
(https://CRAN.R-project.org/package=survival, RRID: SCR 021137) 
[54], version 3.1.8) was fitted on each gene separately along with 
the age, stage, and gender as covariates (excluding gender for 
BRCA, PRAD and UCEC). The genes that had a significant effect 
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on survival (using the Wald statistic P-value with a .05 cutoff) 

were selected and a Cox proportional hazards regression model 

was fitted over all these selected genes. Kaplan–Meier curves 

were computed (using the survival package) by splitting the sam

ples into a high and low hazard, split by the median hazard.
Then a similar analysis that splits the samples up into a train 

and test set was run, to show whether the gene lists could predict 

survival. This was repeated thirty times to get a distribution over 

the test set performance. After gene normalization, samples 

were split into stratified train (75%) and test (25%) sets. Using 

only the train set, a Cox proportional hazards regression model 

was fitted on each gene separately and selected genes as before. 

Then three Cox proportional hazards regression models were fit

ted to the train set—one using just the selected genes, one using 

just the covariates, and one using the selected genes and covari

ates. We then used these models to predict the hazard on the 

test set, and plotted time dependent ROC curves (using the R 

package timeROC [55], version 0.4) on these predicted hazards.

Results
Overview
We utilized machine learning approaches to identify cancer- 

specific changes from normal tissue-specific methylation. DNA 

methylation microarray data from 13 cancer types and corre

sponding normal tissues were utilized. Illumina Infinium array- 

based methylome data were used in this study and data were 

extracted, cleaned, and processed as described in the Methods. 

Analysis of this methylation microarray data identifies the ratio 

of the methylated probe intensity over the overall intensity, 

known as the beta value, at given CpG locations using a pair of 

methylated and unmethylated probes.
In this study, we trained and evaluated four different 

model types: logistic regression, support vector machines (SVM), 

gradient boosted decision trees (XGBoost), and a deep neural 

network (DNN). See Fig. 1 for a visual overview. For the first three 

model types, both binary and multiclass classification models 
were created.

Cancer types can be accurately classified using 
both binary and multiclass methods
Here, we present the results from the XGBoost and DNN models. 
We also trained and tested SVM and logistic regression models. 
In addition to measures of accuracy such as ROC AUC and F1 

score, we also provide the MCC measure. MCC is used to portray 
performance of the binary classification models and is especially 
useful when class imbalances are present. The SVM models did 
not outperform the XGBoost or DNN models: the SVM binary 
models reached an average MCC of 0.894 and the SVM multiclass 
model reached an MCC of 0.956. The binary logistic regression 
models had an average MCC of 0.960, outperforming the binary 
XGBoost models on average (average MCC of 0.919); however, 
their performance varies across cancer types: logistic regression 
models perform better for 5 cancer types, XGBoost models per
form better for 4 cancer types, and both achieve the same MCC 
for four cancer types. The multiclass logistic regression model 
(MCC score of 0.973) did not outperform the multiclass XGBoost 
or DNN (MCC scores of 0.980 and 0.976). Since the binary logistic 
regression models did not substantially outperform the binary 
XGBoost models and the multiclass logistic regression achieved a 
lower MCC score than the multiclass XGBoost and DNN, we focus 
our analysis on the XGBoost and DNN. For detailed performance 
metrics of the SVM and logistic regression models, see 
Supplementary Tables S1 and S2.

Detection of the cancer states through binary classification 
of DNA methylation from individual tumour and 
normal tissues
XGBoost, a type of gradient boosted tree model, is an iterative en
semble machine learning approach [21]. We trained 13 binary 
XGBoost models, one for each cancer type. DNA methylome data 
from TCGA were used in training and testing the models, with a 
total of 6224 samples. Each model learns to classify between 

Methylation 
microarray

DNA methylation samples 
from 13 cancer types

Simple models

XGBoost

Simple models

XGBoost

Deep Neural 
Network

Selected CpG 
features

DNA methylation data 
from 9 independent 

datasets

Independent data evaluation Feature analysis

Enrichment 
and pathway 

analysis

Non-coding 
RNA analysis

Survival 
analysis

Selected CpG 
features

DNA methylation data

Preprocessing

EMethylNet

Figure 1. Overview of method. DNA methylation microarray data from 13 cancer types and corresponding normal tissues were collected from TCGA 
and preprocessed. For binary and multiclass classification tasks, three types of models were trained: Simple models (logistic regression and support 
vector machines), XGBoost, and EMethylNET, a model consisting of XGBoost combined with a Deep Neural Network. Then the models were evaluated 
on independent data sets and an analysis of their features used in classification was performed
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cancer and normal samples (adjacent matched normal tissue) 
for its tissue type. Overall, there was good performance on the 
test set, with five out of 13 models achieving a perfect test set 
performance (COAD, KIRC, LUAD, LUSC, and uterine corpus en
dometrial carcinoma [UCEC]). Across all models, the average ac
curacy was 0.987 and the average MCC (a performance measure 
unaffected by severe class imbalance) was 0.919, demonstrating 
that the models can accurately classify cancer and normal sam
ples. Figure 2a–e shows the confusion matrices for the best and 
worst performing models, AUC of ROC curves and precision- 
recall curves, and the MCC scores for all models. Performance 
metrics for all binary models can be found in Supplementary 
Tables S3.1. A key issue with these binary models is the major 
class imbalance. The average fraction of normal samples is 0.135 
(see Supplementary Table S12 for the numbers of normal and 
cancer samples for each tissue type), which reveals why the aver
age MCC is considerably lower than the average accuracy. In ad
dition, the lowest performing model, ESCA, with an accuracy of 
0.961 and MCC of 0.693, is the tissue type with the lowest number 
of normal samples, of which there were only sixteen. This spar
sity of data contributed to its worse performance.

The multiclass classification of 13 cancer and normal 
tissues is more robust
Here, we trained a single multiclass XGBoost model on the whole 
of the training data. There were classes for each of the 13 cancer 
types and a single normal class, which contained normal sam
ples from every cancer type. The model was now required to 
learn the differences between 13 tissue types in addition to the 
differences between cancer and normal tissue samples, making 
it a more challenging task than the previous binary classification. 
However, there was no longer a large class imbalance due to 
pooling of the normal samples together. As shown in Fig. 2f–h, 
the performance of the test set was very good for all classes. The 
model can discriminate each of the 13 cancer types and normal 
samples with a high degree of accuracy. The overall accuracy 
was 0.982 and the overall MCC was 0.980, see Supplementary 
Table S3.2 for the detailed metrics.

Models achieve high accuracy on independent 
heterogeneous data sets
To determine the robustness of our models, we evaluated our 
XGBoost models on several independent data sets representing 
different cancer types, amounting to a total of 940 samples. 
These were more heterogeneous than the TCGA data used for 
training. Two data sets included some adenoma samples (COAD 
and THCA), one data set consisted of samples from early-stage 
tumours, some of which were later shown to recur (LIHC), and 
one data set included some Human papillomavirus (HPV) positive 
samples (HNSC). The data sets also came from seven different 
countries, viz., Iceland (BRCA), USA (COAD), Australia (ESCA), UK 
(HNSC and ESCA), China (LIHC and KIRC), Canada (PRAD), and 
Brazil (THCA).

Binary models show good performance on independent 
data sets
When these independent data sets were tested, most of the bi
nary XGBoost models (trained on TCGA data) performed well, il
lustrated by Fig. 3. Confusion matrices of the best and worst 
performing binary XGBoost models are shown in Fig. 3a and b. In 
terms of ROC AUC (Fig. 3d), the highest performing model was 
the BRCA model, with a perfect ROC AUC of 1.0, and the lowest 
performing was the COAD model, with a ROC AUC of 0.758. The 

precision–recall AUC results show similar trends (Fig. 3e). In 
terms of MCC (Fig. 3f), the lowest performing model was the 
ESCA model, which is expected given the major class imbalance 
in the ESCA training data set.

Regarding the COAD model, its confusion matrix in Fig. 3b 
shows that it predicted 12 normal samples as cancer. Nine out of 
these twelve samples are in fact adenomas; benign tumours of 
glandular origin (see Supplementary Table S4 for the number of 
normal, adenoma and cancer samples in the COAD independent 
data set). A confusion matrix that also shows whether the sam
ples are Normal (N), Adenomas (A), or Carcinomas (C) is shown 
in Fig. 3c, illustrating that all adenomas are classified as cancer. 
This was unexpected, as there were no adenomas in the training 
data set, and instead of randomly classifying them, the model 
found some cancer-associated signal in adenoma samples in the 
independent data set.

A similar trend was identified in the other independent data 
set with adenomas. In the THCA model, eleven out of 17 adeno
mas were predicted to be cancer (see Supplementary Table S4 for 
the number of normal, adenoma and cancer samples in the 
THCA independent data set). In detail, all occurrences of 
‘follicular adenoma’, and ‘follicular adenoma/H€urthle cell’ were 
classified as cancer (n¼8), all ‘lymphocytic thyroiditis’ were clas
sified as normal (n¼3), and ‘nodular goitre’ was split evenly be
tween the two classes (n¼6).

EMethylNET, a model consisting of a DNN model trained on 
features learnt from multiclass XGBoost, improves 
performance
The results for the multiclass XGBoost model on the independent 
data, which had an accuracy of 0.68 and MCC of 0.661, can be 
found in Supplementary Table S6. With the aim of creating a 
more robust model and improving these results, we designed 
EMethylNET, a feed-forward neural network based on our 
XGBoost model, as shown in Fig. 4a. The input features of 
EMethylNET were the features the multiclass XGBoost model 
learnt to utilize for classification, referred to as the probes con
tributing to classification, see below. See Supplementary Table 
S5 for EMethylNET’s results on the TCGA test set. The results on 
the independent data sets, which had an accuracy of 0.867 and 
MCC of 0.844, are shown as a confusion matrix (Figure 4b), AUC 
of ROC (Figure 4c) and AUC of PR (Figure 4d) and in 
Supplementary Table S7. The only data set that did not reach a 
F1 score of at least 0.8 (excluding COAD, as it contains adenomas, 
see above) was HNSC.

Comparison of EMethylNET with related cancer 
classification studies
The detection and classification of cancer using methylation- 
based approaches is a large and growing body of literature. A di
verse range of approaches and objectives have been investigated, 
from binary classification of cancer using tissue data [56], to mul
ticlass classification using data from liquid biopsies [57]. Here, 
we conduct a comparative analysis of EMethylNET with other re
lated works that utilize machine learning for pan-cancer multi
class classification of DNA methylation data from tissue 
samples. These related works [58–69] are listed in Table 1. 
Various machine learning approaches have been used, from lo
gistic regression to DNNs, with tree-based methods (random for
est and XGBoost) being a popular approach (6/12 works).

First, we provide a performance comparison of EMethylNET to 
these related works. We only compare works that provide test set 
scores on TCGA (we do not attempt to run their models). This 

6 | Newsham et al.  

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

ethods/article/9/1/bpae028/7696058 by guest on 28 June 2024

https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpae028#supplementary-data
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpae028#supplementary-data
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpae028#supplementary-data
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpae028#supplementary-data
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpae028#supplementary-data
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpae028#supplementary-data
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpae028#supplementary-data
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpae028#supplementary-data
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpae028#supplementary-data
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpae028#supplementary-data
https://academic.oup.com/biomethods/article-lookup/doi/10.1093/biomethods/bpae028#supplementary-data


(a) (c)

(d)

(e)

(f) (g)

(h)

(b)

Figure 2. Performance of the binary and multiclass XGBoost models on the TCGA test set. a and b Confusion matrices of the best (KIRC) and worst 
(ESCA) performing binary XGBoost models. c AUC of the ROC curves for all binary XGBoost models. d AUC of the Precision Recall (PR) curves for both 
cancer and normal classes of all binary XGBoost models. Note that the scales of c and d start from 0.7. e MCC scores for all binary XGBoost models. 
f shows the confusion matrix, g shows the AUC of the ROC curves for each class, and h shows the AUC of the Precision Recall (PR) curves for each class 
of the multiclass XGBoost model. Note that the scales of g and h start from 0.9
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comparison is not exact, and it is important to note the following 
shortcomings: the test sets contain different samples and have 
different sizes, the related works have slightly different classifi
cation tasks (for example, some only consider cancer samples, 
some define a normal class for each tissue type and some have 
separate classes for metastatic samples) and some classes in re
lated works are not comparable with our classes (for example, 
some works combine cancer types found in the same tissue 
type). In addition, we can only compare with the metrics reported 
in the publication, and so different metrics are compared for dif
ferent works.

First, we compare with Hao 2017 [58]. They classify four can
cer types and four normal tissues, and so we can only compare 
with the four cancer types (as our normal samples are pooled). 
Supplementary Table S8 shows the precision and recall metrics, 
indicating that EMethylNET achieves comparable performance 
for these cancer types (higher precision for COAD, LIHC and 

LUAD, and higher recall for LUAD). Next, we compared with 
Ibrahim 2022 [67]. They perform a slightly different task, as they 
do not include a normal class, and they combine colon and rectal 
tumour data sets, so we cannot compare performance on COAD. 
Supplementary Table S9 shows the ROC AUC scores, showing 
that EMethylNET achieves the same ROC AUC or higher in all 
classes (when rounding to three decimal places). Ibrahim 2022 
also externally validate their model on the independent BRCA 
(GSE52865) and THCA (GSE97466) data sets. Again, this is not a 
direct comparison because the rest of their independent external 
validation data set differs from ours (which affects the one-vs-all 
approach to calculating AUC scores). For the BRCA data set, they 
report a ROC AUC of 0.928, and we achieve a ROC AUC of 0.99997. 
For the THCA data set, they report a ROC AUC of 0.990, and we 
achieve 0.99463. Next, we compare with Zheng 2020 [63]. They do 
not include normal samples, and they classify the cancer origin 
site, which again is a slightly different task to ours. We cannot 

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3. Performance of the binary XGBoost models on independent data sets. a and b Confusion matrices of the best (BRCA) and worst (COAD) 
performing binary XGBoost models (according to the ROC AUC scores) on the independent data sets. c Detailed confusion matrix for COAD showing the 
predictions of Normal (N), Adenoma (A), and Cancer (C) samples. d AUC of the ROC curves for binary XGBoost models where the independent data set 
included normal samples. e AUC of the Precision Recall (PR) curves for both cancer and normal (where available) classes of binary XGBoost models on 
the independent data sets. f MCC scores for binary XGBoost models where the independent data set included normal samples. For d, e and f, ESCA is 
the average of the two ESCA independent data sets
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compare KIRC, kidney renal papillary cell carcinoma (KIRP), 
LUAD and LUSC classes as they combine them into generic kid
ney and lung classes. The ROC AUC, precision and recall metrics 
are shown in Supplementary Table S10, indicating that we 
achieve comparable performance. EMethylNET’s ROC AUCs are 
the same or higher in all classes (when rounding to two decimal 
places), precision is higher in 4/8 classes and recall is the same 
or higher in 5/8 classes. Lastly, we compared with Modhurkur 
2021 [66]. As they have distinct classes for each metastatic can
cer and each normal tissue type, they address a more challeng
ing task. Supplementary Table S11 shows the precision, recall 
and F1 metrics, which shows that we achieve comparable 

performance. EMethylNET’s precision is the same or higher in 6/ 
13 classes, recall is the same or higher in 10/13 classes, and F1 is 
higher in 8/13 classes. In summary, we have shown that 
EMethylNET achieves competitive test set performance 
amongst comparable works.

Biological feature interpretability
A key advantage of using an interpretable method such as 
XGBoost is that the features utilized for classification can be 
identified. In our case, these were the CpG probes with a feature 
importance of above zero, which we refer to as PCCs. 
Surprisingly, most PCCs from the binary models were found not 

Dense, 256 units

3388 input features

ReLU

Batch normalisation

Dropout, rate = 0.5

Dense, 14
Softmax

Normal BLCA BRCA COAD ...

Input dropout, rate = 0.2

Dense, 256 units

ReLU

Batch normalisation

Dropout, rate = 0.5

Dense, 128 units

ReLU
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Dropout, rate = 0.5
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Figure 4. Architecture of the feed forward neural network (a) and its performance on all independent data sets. b shows the confusion matrix, c shows 
the AUC of the ROC curves for each class, and d shows the AUC of the Precision Recall (PR) curves for each class. The two ESCA data sets are combined 
into one ESCA class. The colour orange denotes normal and purple denotes cancer. Note that we do not have independent data sets for every cancer 
type (the independent data sets used lacked BLCA, KIRP, LUAD, LUSC and UCEC samples). Nevertheless, for the confusion matrix in b all 14 classes are 
retained in the rows to maintain a square configuration, enhancing readability
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to be differentially methylated in each respective cancer type. 
Only 65/221, 56/318 and 29/179 PCCs from the BRCA, PRAD, and 
THCA binary models, respectively, were found to be differentially 
methylated, as shown in Supplementary Fig. S1.

We explored the PCCs from the multiclass XGBoost model (ex
actly the input features to EMethylNET). The importance scores 
of the most important PCCs are shown in Supplementary Fig. 
S2a, which shows that most of the importance is captured by the 

(a)

(b)

(d)

(c)

Figure 5 Cancer processes, genes, and pathways in the multiclass gene list. a A REVIGO visualization showing the significant Gene Ontology terms, 
restricted to the biological process domain. Only a small selection of terms is labelled. b The 20 multiclass genes found most often in abstracts about 
cancer. Colour indicates the number of abstracts also specifying a tissue. c A visualization of the significant KEGG pathways, where the size of the node 
(pathway) is the amount of overlap between the multiclass gene list and the pathway, and the width of the edge indicates the amount of overlap 
between the two pathways. d The Pathways in cancer KEGG pathway, showing only multiclass genes. Each multiclass gene is coloured by the 
difference in average methylation between cancer and normal for two cancer types: BLCA and PRAD
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top one hundred PCCs. The most important PCC, cg16508600, is 
at position chr1:204562255 and does not map to any gene. The 
closest gene is RNA5SP74, which is �200bp away, and the loca
tion of this PCC coincides with a C>T SNV (rs567580996). The 
second most important, cg14789818, is �200bp upstream of 
RNA5SP77 on chromosome 1. The third most important, 
cg03988778, is near the promoter of SVIP and AC006299.1. 
Supplementary Fig. S2b shows the distribution of methylation of 
the top ten important probes, indicating that they commonly dif
ferentiate one class from the rest. For example, the most impor
tant PCC differentiates BRCA from all other classes, and the third 
most important differentiates a sizable proportion of HNSC class.

An interpretation of the multiclass DNN model can be achieved 
by analysing its SHAP (SHapley Additive exPlanation) values [25]. 
The feature with the highest average impact on model output (the 
highest average absolute SHAP value) is cg15267232, which is 
within GATA3, and the feature with the second-highest average im
pact is cg22455450, which is within ZNF808. The feature with the 
third-highest average impact is cg22541735, which is within HOXD9 
and HOXD-AS2. Interestingly, the feature with the 10th highest av
erage impact (cg14789818) is also the second most important fea
ture for the multiclass XGBoost model. Supplementary Fig. S3 
visualizes the features with the highest average absolute 
SHAP values.

The proximal genes of the multiclass model’s features are 
enriched in genes contributing to hallmarks of cancer, 
carcinogenesis, and transcriptional regulation
The PCCs can be mapped to the proximal genes—genes where 
the gene body or promoter region (taken as the 1500 base pair 
window upstream of the transcription start site) overlap the 
PCCs. We will refer to the genes obtained by mapping the multi
class PCCs to proximal genes as ‘multiclass genes’.

We performed functional enrichment analysis on the multi
class genes. A visualization of the significant Gene Ontology 
terms, restricted to the Biological Process ontology, is shown in  
Fig. 5a. This shows that our multiclass gene list is enriched in de
velopment, regulation of signaling, processes involved in gene ex
pression changes, and the regulation of a wide variety of 
metabolic processes. Over-representation analysis revealed that 
there is significant overlap between the multiclass genes and the 
COSMIC Cancer Gene Census [31], with an overlap of 140 genes 
(19.0% of COSMIC genes) (Fisher’s exact test, p¼ 8.7e − 17). We 
also found significant overlap between the multiclass genes and 
the OncoKB Cancer Gene List [32], namely 217 genes (19.7% of 
OncoKB cancer genes) (Fisher’s exact test, p¼4.5e − 27). 
Furthermore, analysis of multiclass features using the TF check
point 2.0 database indicated that 17.2% (546 genes) (Fisher’s ex
act test, p¼ 2.4e − 39) are also transcriptional regulators.

We also looked at the overlap with established DNA methyla
tion biomarkers in cancer, by comparing with the genes used by 
commercially available DNA methylation-based biomarker 
assays [70]. Out of the 13 genes measured by these assays, four 
overlap with our multiclass genes (RASSF1, SEPTIN9, SHOX2, 
MGMT). During normal expression, RASSF1A represses cell cycle 
proteins cyclin A2 and cyclin D1, leading to cell cycle arrest and 
plays a significant role in microtubule stability and modulates 
apoptosis. Furthermore, RASSF1 inactivation is one of the most 
common epigenetic changes in cancer [71]. Similarly, SEPTIN9 
participates in cytokinesis during the cell cycle [72], while SHOX2 
is a transcription factor involved in proliferation, migration and 
colony formation [73] and MGMT inhibits tumour formation [74]. 
All these genes are well-known prognostic biomarkers in cancer. 

There are also several multiclass genes in the same family as 
these 13 genes (such as NDRG3, BMP8A, OTX2, ONECUT1).

Text mining a corpus of 183,909 PubMed cancer-related 
abstracts that mention at least one multiclass gene revealed that 
the cancer literature provides evidence for the multiclass genes. 
65.6% (2083) of our multiclass genes are found in at least one 
cancer-related article abstract from PubMed. See Fig. 5b for the 
genes most supported by the literature. These include well- 
studied oncogenes such as STAT3, BRCA1, AR, MYC, CXCR4, 
NOTCH1, SMAD4, TERT, ZEB1, JUN, amongst others. This analy
ses also demonstrated that just under 40% of these abstracts are 
additionally associated with at least one of the 13 tissue types in
cluded in the multiclass model. BRCA, PRAD and COAD are most 
commonly found, due to their high prevalence. Supplementary 
File 1 details the evidence for the multiclass genes in these 
PubMed cancer-related abstracts.

The multiclass genes are enriched in cancer-related 
pathways and networks
Pathway enrichment analysis using the KEGG pathway database 
revealed enrichment of pathways related to general cancer hall
marks, such as Pathways in cancer (adjusted P-value¼ 4.3e − 4), 
Metabolic pathways (adjusted P-value¼ .0214), and signal transduction 
pathways such as the Wnt signalling pathway (adjusted P-val
ue¼8.2e − 3), TGF beta signalling, Hippo signalling, Axonal guidance 
pathway involved in invasion and metastasis, and many metabolic path
ways. See Fig. 5c for a visualization of these enriched pathways.

The multiclass genes in these pathways displayed different 
methylation patterns for different cancer types. A visualization of 
the Pathways in cancer network from KEGG is shown in Fig. 5d for 
both bladder urothelial carcinoma (BLCA) and PRAD, and in 
Supplementary Fig. S4 for all other cancer types. This shows that 
BLCA, KIRC, KIRP, LIHC, THCA and UCEC are mostly hypomethy
lated whilst BRCA, COAD, LUAD, LUSC and PRAD are mostly hyper
methylated. Supplementary Fig. S5a shows a heatmap of PCCs at 
least 2-fold differentially methylated and their recurrent mutation 
status (from COSMIC cancer gene census and TCGA significantly 
mutated list) is indicated. Similarly, the differential methylation of 
all PCCs is shown in Supplementary Fig. S5b. In addition to muta
tions and copy number aberrations, the PCC features identified by 
our analysis contribute to carcinogenesis in multiple cancers via 
methylation changes of regulatory elements.

Furthermore, multiclass genes were found to be present in a 
broad range of cancer-related pathways, as shown in Fig. 6. 
These pathways covered a wide range of categories: Individual 
cancer types, Cell Death and Survival, Tissue Microenvironment, 
Signalling, Metabolism, and Immune System. This pathway 
model also shows that many multiclass genes in these pathways 
are present in the COSMIC Cancer Gene Census [31]. To visualize 
the multiclass genes in one unified cancer network, we curated a 
general cancer network, based on two general cancer pathways: 
KEGG’s Pathways in cancer and Ingenuity Pathway Analysis (IPA) 
Molecular Mechanisms of Cancer (both of which our multiclass 
genes are enriched in, Fisher’s exact test respective adjusted P- 
values¼ 4.206e − 10 and 1.065e − 05). This network model is 
shown in Supplementary Fig. S6 and demonstrates that the mul
ticlass genes span all areas of cellular networks underlying car
cinogenesis.

Multiclass long non-coding RNAs are associated with 
oncogenic properties
Additionally, we investigated the proportion of protein-coding 
versus non-coding genes in our gene lists. This is visualized in  
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Fig. 7a for all individual cancer gene lists and the multiclass 
genes. It shows that, as expected, most genes are protein-coding 
(around 65% to 85%). However, the proportion of long non-coding 
RNA (lncRNA) is surprisingly high for all gene lists (around 14% 
to 26%), which motivated further analysis. We validated some of 
the multiclass lncRNAs with literature evidence using Pangaea 
[33] and two cancer lncRNA databases (Lnc2Cancer 3.0) [44] and 
CRlncRNA [45]. We found evidence for 142 multiclass lncRNAs 
(out of a total 596 multiclass lncRNAs). See the heatmap in  
Fig. 7b (and Supplementary Fig. S7a for a larger version), which 
shows that there is a wide range of methylation values for these 
lncRNAs, and a range of cancer hallmarks associated with them. 
The most common hallmarks are proliferation, invasion, and mi
gration. The lncRNAs with the most evidence include HOTAIR, 
NEAT1, and HOTTIP, as seen in Fig. 7c.

We also compared the multiclass lncRNAs to a set of validated 
cancer lncRNAs and found that they share some of the same 
properties. Carlevaro-Fita et al. introduced [47] and Vancura 
et al. updated the Cancer LncRNA Census 2 (CLC2), which is a list 
of 492 lncRNAs that have been causally associated with cancer 
[75]. Our multiclass lncRNAs do have a significant overlap with 
the CLC2 (Fisher’s exact test, P-value¼ 3.0e − 18); however, this 

is only 74 overlapping lncRNAs. Carlevaro-Fita et al. also uncov
ered the properties of genes in the CLC, such as smaller distances 
to cancer SNPs, higher conservation, and longer gene lengths. By 
carrying out the same tests on our multiclass lncRNAs, we found 
that the multiclass lncRNAs share some of these CLC properties. 
We tested the distances to cancer-associated and non-cancer 
SNPs, distances to cancer associated genes, epigenetic silencing 
in tumours, differential expression, gene and transcript lengths, 
gene expression levels, and conservation. The P-values for each 
of these tests are shown in Fig. 7d. We found that our multiclass 
lncRNAs did not share any of the same proximity properties (dis
tances to SNPs and cancer genes) but did share all five remaining 
properties. See Fig. 7e for a boxplot showing that the multiclass 
lncRNAs have longer gene lengths, and Supplementary Fig. S7b–g 
for boxplots of the other relevant tests.

Models for some of the cancer types can predict 5-year  
survival
We used the gene lists from the binary XGBoost models to deter
mine whether they could firstly differentiate, and then predict, 
survival. Survival was computed for each cancer type, using just 
the expression of the genes from the binary model as input. For 

Figure 6 A network of cancer pathways and the multiclass genes. Each circle of nodes is a cancer pathway, and each node represents a multiclass 
gene. The node colour represents the number of times each multiclass gene is displayed (as they can be in multiple pathways), the edge thickness 
represents the number of interactions between pathways, and a black outline indicates that the multiclass gene is found in the Cancer Gene Census. 
The colour of the pathway name represents the pathway category
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every cancer type, the cox proportional hazard model signifi
cantly differentiated survival. Figure 8a shows the Kaplan–Meier 
curves for the most significantly differentiated cancer types, 
HNSC (P-value¼ 3.15e − 16) and KIRC (P-value¼3.06e − 15).

Next, we explored whether the gene lists could predict sur
vival on a held-out test-set. The performance differed between 
cancer types, as shown in Fig. 8b (here we use age, stage, and 
gender as covariates). This shows that there is a broad distribu
tion for some cancer types (such as KIRP), which could be due to 
low sample numbers (KIRP has the second-lowest number of 
samples). Three cancer types did not have enough data to con
verge—PRAD and THCA both had less than 15 positive samples 
(events), and ESCA had the least number of samples. However, 
models for some cancer types could predict 5-year survival con
sistently well using only genes as input, such as KIRC, COAD, 
BLCA, HNSC, and UCEC. Figure 8c shows the best ROC curves 
from the two cancer types with the highest average ROC AUC, 
KIRC and COAD. This shows their best ROC AUCs are 0.817 and 
0.895, respectively.

Discussion
The early detection of cancer is vital for enabling treatment 
options that lead to better prognosis. A fundamental require
ment for this is to distinguish cancerous from non-cancerous tis
sue samples accurately. Here, we have utilized epigenetic 
changes in the DNA methylome and present binary and multi
class machine learning models to classify 13 cancer types and 
corresponding normal tissues. Our approach achieved good test 
set performance for all XGBoost models, namely an average ac
curacy of 0.987 and 0.982 for the binary and multiclass models, 
respectively. We were then able to show that the PCCs selected 
by XGBoost can robustly classify cancer when fed into a multi
class deep neural network, namely EMethylNET (accuracy 0.976).

The performance on most independent (non-TCGA) data sets 
was above a F1 score of 0.8, and half of the independent data sets 
achieved an F1 score of over 0.9. These independent data sets 

were more heterogeneous and reflected more realistic situations. 
Lastly, we demonstrated that multiclass PCCs do have biologi
cally meaningful significance in cancer. Over-representation 
analysis revealed that the multiclass genes were enriched in pro
cesses which are linked to cancer hallmarks, and other cancer 
and methylation studies report similar Gene Ontology enrich
ment results [76, 77]. Furthermore, a comprehensive text mining 
analysis of the literature demonstrates that cancer-associated 
methylation changes in 892 of our multiclass genes are sup
ported by 7831 publications. We also showed that the multiclass 
genes set consists of 229 known tumour suppressors and onco
genes, 546 transcriptional regulators and are involved in a wide 
range of cancer-related pathways and processes. Additionally, 
we showed that our gene lists contain many non-coding RNA 
genes, primarily consisting of lncRNAs. This is consistent with a 
growing body of research showing that lncRNAs and other non- 
coding RNAs play a key role in carcinogenesis [78–80].

There were two exceptions to the performance of our models, 
one of them being the independent COAD data set. As indicated 
in the Results, this low performance can be explained by all ade
nomas, labelled as normal, being predicted as cancer. Adenomas 
are dysplastic polyps which can progress via the adenoma–carci
noma sequence to invasive cancer. Therefore, it is common to re
move colon adenomas when they are found to stop the possible 
progression into carcinomas [81, 82] and so this behaviour was 
inadvertently useful. However, a larger sample size of adenomas 
would be needed to validate this. The other exception is the 
HNSC independent data set, which has the lowest performance. 
HNSC is very heterogeneous, in that it can arise from multiple 
different tissue sites, and the TCGA HNSC data reflects this. 
However, the independent HNSC data set only stems from one 
tissue of origin, the oropharynx, and only 1.55% of the TCGA data 
stems from the oropharynx. In addition, half of the independent 
HNSC data set is Human papillomavirus positive (HPVþ ), which 
is known to display different methylation patterns [83, 84]. Thus, 
we were testing on HNSC cancer types with very little TCGA 
training data, which could explain the poor performance. In 

Epigenetically-silenced in tumours
Gene length

Normal breast expression
Breast cancer expression

Head and neck cancer expression
Transcript length

Differentially expressed in tumours
Thyroid cancer expression

Genes are more conserved
Within 1kb of Cancer Gene Census genes

Within 10kb of cancer SNPs
Within 1kb of cancer SNPs

Within 100kb of non cancer SNPs
Within 1kb of non cancer SNPs

Within 10kb of non cancer SNPs
Within 100kb of cancer SNPs

0 5 10 15
-log10(p-value)

Te
st

(a) (c) (d) (e)

(b)

Figure 7 Analysis of the lncRNAs found in the gene lists. a The fractions of different gene types in all cancer gene lists, including the multiclass gene 
list. b A heatmap of BRCA data showing the average beta value of the multiclass lncRNAs with literature evidence, and the cancer hallmarks they are 
associated with. The row annotation indicates the log fold change from differential expression analysis, where non-significant fold change (adjusted P- 
value > 0.05) is in grey. c The top 10 multiclass lncRNAs that had the most literature evidence. d The significance levels resulting from testing the 
multiclass lncRNAs for previously observed cancer lncRNA features [41]. The dashed red line indicates the P-value¼ .05 level of significance. e Boxplot 
of the loge gene length of non-multiclass lncRNAs and multiclass lncRNAs. ‘���’ indicates P-value < .001
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addition, the independent HNSC data were often misclassified as 
LUAD. The uniform manifold approximation and projection visu
alization in Supplementary Fig. S8 illustrates that out of all TCGA 
classes, the independent HNSC data were the closest to LUAD. 
This could be due to a biological reason, such as the independent 
HNSC data are in fact metastases which originated in the lung, or 
this could be due to specific data generation or process
ing artefacts.

We compared EMethylNET with related cancer classification 
studies and demonstrated similar or better performance against 
test set data. We also compare these related works with respect 
to the features selected by the models. The related works all uti
lized feature selection methods, such as the moderated t-statistic 
or differential methylation analysis, with multiple works using 
redundancy filters, for example the Maximum Relevance– 
Maximum Distance technique [59], and many utilizing multiple 
feature selection methods in parallel [59, 63, 67, 69, 85]. Thus, 
most of these approaches start from a highly filtered probe list, 
and some only use tens of probes in the final classification model 
(as detailed in Table 1), consequently the models could poten
tially be biased by the feature selection methods used. In our ap
proach, we did not perform a prior feature selection, but instead 
let the XGBoost classification model perform the feature selec
tion itself, from an input set of around 277,000 features. For the 
multiclass case, this resulted in a large set of PCCs, of size 3388, 
that provided us with an interpretable model and an explainable 
list of genomic loci for further analysis. Only a handful of the re
lated works have performed feature analysis of the CpGs selected 
by the model. Ding et al. [62] performed functional analysis of its 
7 CpGs and Liu et al. [85] found cancer-related genes near three 
out of its 12 CpGs. We provide an extensive analysis of our PCCs, 
encompassing over-representation analyses, extensive literature 

mining, and pathway enrichment visualizations. Exploring the 
pan-cancer methylome as a network (Fig. 6 and supplementary 
Fig. S6) enabled the identification of genes associated with sev
eral well-studied cancer-associated pathways, including well- 
known tumour suppressor and oncogenes present in the collec
tion of our PCCs. These include those genes involved in cancer- 
associated pathways such as TP53, WNT, Notch, TGF beta/BMP, 
RAS, MAPK, PI3K-AKT and Hedgehog signalling as well as path
ways impacting proliferation, survival and cell death including 
cell cycle regulators, mitotic checkpoint genes, mitochondrial 
metabolism, DNA damage responses and apoptosis. In addition, 
pathways involved in invasion and metastasis-associated pro
cesses such as the epithelial mesenchymal transition (EMT)-re
lated genes, axonal guidance pathway, and those involved in 
adherence junctions and extracellular matrix interactions, 
Integrin signalling and angiogenesis were present. Furthermore, 
immune response regulators such as cytokine (IFN, interleukin, 
chemokine), TLR signalling, and interferon stimulated genes 
were also present. Finally, genes and pathways affecting global 
gene expression such as developmental regulators, chromatin 
remodellers, epigenetic regulators and transcription factors were 
detected. Investigating these genes in a cancer network context 
enabled their interactions and relationships to be identified. The 
pan-cancer methylome also demonstrates that in addition to 
mutations and genetic aberrations, epigenetic changes have 
wide-ranging impacts on carcinogenesis. To summarize, in com
parison with related studies, we are the first to provide an in- 
depth feature analysis where the CpGs were selected freely by 
the model, with no prior feature selection adding potential bias 
to the feature analysis results.

In conclusion, we demonstrated that XGBoost models are suit
able for classifying a multitude of cancer types using only DNA 
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methylation data as input. We additionally designed EMethylNET, a 
robust deep neural network that was able to generalize to most in
dependent data sets. In addition, we find that mapping the PCCs to 
genes identifies genes that are enriched in functional properties 
and pathways linked to carcinogenesis. Depending on the availabil
ity of training data, this method can be extended to detect hun
dreds of cancer types. Future applications include extending this 
approach to DNA methylation data of cell-free DNA, with the even
tual aim being early detection of multiple types of cancer from liq
uid biopsy approaches. Furthermore, a clear clinical application of 
this method is screening for specific cancer types or cancers of un
known origin, although the current models are not optimized for 
this purpose.
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