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Abstract
This article reviews two main approaches to human control of AI systems: supervisory human control and human–machine 
teaming. It explores how each approach defines and guides the operational interplay between human behaviour and system 
behaviour to ensure that AI systems are effective throughout their deployment. Specifically, the article looks at how the 
two approaches differ in their conceptual and practical adequacy regarding the control of AI systems based on foundation 
models––i.e., models trained on vast datasets, exhibiting general capabilities, and producing non-deterministic behaviour. 
The article focuses on examples from the defence and security domain to highlight practical challenges in terms of human 
control of automation in general, and AI in particular, and concludes by arguing that approaches to human control are better 
served by an understanding of control as the product of collaborative agency in a multi-agent system rather than of exclusive 
human supervision.

Keywords  Artificial intelligence · Foundation models · Human control · Human machine teaming · Cooperative AI · 
Supervisory control · Meaningful human control

1  Introduction

Understanding how humans should––and do––control arti-
ficial intelligence (AI) systems is central to many research 
areas, with applications ranging from self-driving vehicles to 
cybersecurity and national defence. In this article, we focus 
on literature addressing the human control of automation in 
general, and AI in particular, within the defence and security 
domain. We analyse two main approaches to human control 
of AI described in the relevant literature, supervisory human 
control (SHC) and human–machine teaming (HMT) and 
assess their compatibility with the capabilities and opera-
tionalisation of AI systems based on foundation models. In 
doing so, our goal is to lay the groundwork for an approach 
to human control of AI systems based on foundation models.

Foundation models mark a significant shift in their 
capabilities and limitations compared to other types of AI, 
including rule-based AI, which have been examined in the 

extant literature on human control. The field of AI research 
recognises this category of models as an emerging archi-
tecture of AI adaptable to many downstream tasks [1]. 
Indeed, because they are pre-trained on vast datasets, gen-
erally by using self-supervision at scale, foundation models 
are uniquely versatile and easy to interact with: they can 
take multiple modalities of inputs (e.g., text, image, videos, 
code), as well as generate them, interact with the digital 
world via APIs and interact conversationally with human 
operators through natural language [1]. However, their 
scale and complexity lead to serious ethical and security 
challenges, including a lack of predictability and interpret-
ability, model hallucinations (i.e., making up information), 
unwanted biases, and security vulnerabilities (e.g., prompt 
injections) [2]. These challenges create operational risks 
and can hamper our ability to use AI effectively in areas 
that would benefit from it. How to solve or at least mitigate 
them is the purpose of approaches to human control of AI 
systems.

In this article, we focus on the defence and security 
domain for two reasons. First, the relevant literature has 
debated issues of human control of AI for over a decade, 
especially since the 2012 US executive order on autonomy in 
weapon systems [3] and, before that, with extensive research 
on automation in air defence systems and unmanned vehicles 
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during the second half of the twentieth century [4]. Research 
in this area provides many examples of real-world deploy-
ments, which help assess the validity of approaches to 
human control and their robustness across contexts [4, 5]. 
Second, this is a high-risk domain where lack of control can 
lead to material damage and harm, so acceptable solutions 
for controlling AI systems in this domain may be at least 
equally acceptable in other domains, such as healthcare or 
transportation, that are at most as risky.

To help situate our work within the broader literature 
on human control of AI, we refer to Verdiesen et al.'s [6] 
Comprehensive Human Oversight Framework, illustrated 
in Fig. 1.

Figure 1 maps human control in terms of temporal phases 
(on the x-axis), namely before, during, and after deployment, 
and three environmental layers or perspectives, i.e. technical, 
socio-technical, and governance (on the y-axis). Our work 
focuses on the category of ongoing control (in box 5), which 
combines human and system control of AI systems during 
deployment. Ongoing control includes human behaviour, 
human decision-making, AI system behaviour, and their 
interplay during deployment. It focuses on the ability of 
the human operator to ensure that an AI system is effec-
tive during deployment and that human decision-making 
is applied in situations that require it. The need for human 
decision-making may be either pre-defined (e.g., a type of 
action by the AI that requires explicit human approval) or 
exceptionally required (e.g., an irregular environment or 

input for which the AI is not adapted, which leads to risks 
that call for a human operator’s intervention). To work, an 
approach to ongoing control should have a theoretical basis 
of control (i.e., an assessment of risks and how to address 
them) that matches with the operational reality of deploy-
ment (i.e., real-world data on the interplay of human and 
system behaviour across diverse contexts of deployment).1 
Thus, an approach to ongoing control should establish a 
correct understanding of the type of behaviours expected 
from the agents (i.e. human operators and AIs) during 
deployment and make them supplementary to each other 
to minimize risks. In the rest of this article, we shall refer 
to ongoing control as operational human control, to stress 
that we refer specifically to the deployment phase and to 
human–machine (as opposed to machine-machine) control 
dynamics. Henceforth, operational human control is defined 
as the decision-making process and set of actions of one or 
more human operators ensuring that one or more AI systems 
are effective during deployment––that is, they are perfor-
mant, safe, ethical, and legally compliant. SHC and HMT 
are two approaches to operational human control.

Fig. 1   Comprehensive Human Oversight Framework [6, p. 151]

1  It is also worth mentioning that the absence of a named category in 
Box 2. This highlights a gap in the governance of control at the time 
of the publication of Verdiesen et al. [6]. However, today, promising 
methodologies have emerged to address this gap––consider for exam-
ple continuous auditing of AI (CAAI) [7].
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SHC, and to a lesser degree HMT, face conceptual and 
practical challenges when considering their applications 
to foundation models-based AI systems. Indeed, the 
capabilities and operationalisation of these models assume 
a different dynamic between agents during deployment 
than what has traditionally been understood in the literature 
on these approaches. The operational reality of these 
models’ deployment blurs the lines between environmental 
perspectives––particularly between the technical and 
socio-technical ones––and the temporal phases of control 
described in Fig.  1. For example, the conversational 
capabilities of these models have made prompt-based 
instructions the primary means of interaction between 
human operators and AI systems, hence requiring regular 
human interventions during deployment and with wide 
variety of possible inputs. In addition, human interventions 
also occur indirectly throughout a faster rotation of temporal 
phases as models are regularly updated with new human 
input, either through continual learning in online models, 
or through model fine-tuning by users, or reinforcement 
learning from human feedback (RLHF) and other regular 
updates that the providers of an AI system may push to 
their model or the system it is part of. This shift requires 
us to reconsider the validity of both SHC and HMT and 
determine if and how they can be adapted to ensure human 
control AI systems based on foundation models. We argue 
that foundational models, with advancements in cognitive 
modelling and human–computer interactions, have created 
an opportunity to move from approaches to control that 
confine human operators to degrees of supervision of 
specific tools, to configurations whereby artificial and human 
agents are parts of a collaborative agency that produces the 
desired state of control.

In the rest of this article, Sect. 2 analyses SHC as the pre-
dominant approach to human control that has been applied 
thus far to automation and AI systems that do not exhibit 
the characteristics of foundation model-based AI systems 
(henceforth traditional AI systems). This analysis provides 
an overview of the well-recognised operational challenges 
relating to SHC, such as the loss of situational awareness. 
Section 3 analyses SHC considering the growing operation-
alisation of AI systems based on foundation models, high-
lighting the (in)compatibility of SHC as an approach with 

the operational reality of such systems. Section 4 introduces 
the HMT approach and outlines reasons it is better placed to 
adapt to the operational reality of foundation models-based 
AI systems and address associated risks. Section 5 highlights 
four of the most relevant hindrances that must be overcome 
to adapt and implement this approach. Section 6 concludes 
our analysis.

2 � Supervisory human control and its 
challenges

The SHC approach assumes at least two interacting 
agents––a human and an artificial agent, where the human 
supervises the artificial agent. The supervisor’s role is 
typically broken down into five, time-sequential steps, as 
described in Table 1.

The SHC approach focuses on allocating specific tasks 
between humans and artificial agents. The task allocation 
depends on the technical capabilities of the artificial agents. 
These are usually mapped with respect to its level of 
automation [9]. The Levels of Automation (LOA) taxonomy, 
introduced by Sheridan and Verplank [10], is a widely 
adopted and adapted classification to assess human control 
of artificial agents, and it continues to influence the way that 
organisations think about how advanced a given artificial 
agent is (Table 2) [10].

Sheridan and Verplank organise their taxonomy of 
automation into 10 (later reduced to eight) levels of 
automation. Finding and maintaining the adequate LOA is 
not trivial, since no proper guidance exists on how to apply 
and adapt the taxonomy to different contexts. Consequently, 
the relevance of this taxonomy––while still popular as a 
concept and despite its past use in defence organisations like 
the US Army––has waned even among its original authors 
[8, p. 743].2

However, the taxonomy helps consider an assumption 
underpinning the SHC approach, i.e., human–machine 

Table 1   Typical human roles presented as time-sequential steps, as described in [8, p. 740]

Step 1 Planning off-line what task to do and how to do it
Step 2 Teaching (or programming) the computer what was planned
Step 3 Monitoring the automatic action online to make sure that all is going as planned and to detect failures
Step 4 Intervening, which means the supervisor takes over control after the desired goal state has been 

reached satisfactorily or interrupts the automatic control in emergencies to specify a new goal state 
and reprogram a new procedure

Step 5 Learning from experience to do better in the future

2  By Sheridan’s own admission [8], this was a rudimentary, qualita-
tive idea that was not intended as a guideline, but was instead meant 
only to provide a way to think about machine behaviour and human 
roles. Nonetheless, SHC has been adopted and adapted in many areas 
since then, including home automation, self-driving cars, aviation, 



	 AI and Ethics

interactions are framed in analogy with how human super-
visors interact with their subordinates [11]. According to 
Sheridan [8, pp. 736–737], in its strictest definition, SHC 
indicates that:

“…one or more human operators are setting 
intermittent subgoals to a computer, and receiving 
information from a computer, that itself closes an inner 
control loop through electromechanical actuators, the 
task, and feedback sensors. […] The human gives 
intermittent (typically symbolic) commands to the 
computer and receives intermittent feedback from 
the computer. The computer acts on the intermittent 
commands from the supervisor to close a continuous 
automatic control loop through the actuator, task, and 
sensors, while the human monitors.”

In practice, applying SHC and associated LOA taxono-
mies to specific applications unveils crucial limitations [8, 
12]. The first one we identify refers to the loss of situational 
awareness of the human agent. Consider, for example, the 
US Patriot missile system, which has a history of commit-
ting so-called “friendly fire” and seeing “ghost targets”, 
which can be “partially attributed to a lack of understand-
ing of human limitations in supervisory control” as well as 
a lack of procedures and standards to operationalise human 
control in the US Army [8, p. 743], [13]. In this case, the 
US Army admitted after an investigation that Patriot train-
ing standards were missing, “autonomous operations pro-
cedures” were unclear, and “operators commonly lose situ-
ational awareness of air tracks” [8, p. 743]. SHC and LOA, 
as formulated here, do not solve the overarching problems 
of effective communication and complementarity between 
human behaviour and system behaviour, nor do they address 

the cognitive load that human monitoring and intervention 
can exert on human operators, among other issues [15].

It is worth mentioning that multiple attempts have been 
made to codify SHC using different scales in LOA and/
or changing the focus of the taxonomy from automation 
to the level of human input (e.g., Level of Human Control 
Abstraction) [16] or to the relationship between human and 
machine and the interpretability of their behaviours [17]. 
The LOA taxonomy has received extensive critiques in the 
process of being modified. For example, Endsley & Kaber 
[18] and Feigh and Pritchett [19] raise concerns about the 
lack of empirical validation and the overall utility of the 
taxonomy. Bradshaw et al. [20] raises questions about the 
exchange of roles between agents and the extent to which 
they can act as substitutes for each other. Kaber [21] 
points out that the taxonomy ignores the question of moral 
responsibility and changing LOA during operations [12, p. 
743].

We agree with these criticisms and suggest that four 
challenges are relevant to understanding the extent of 
the limitations of the SHC approach. These are: the loss 
of situational awareness and the vicious cycle that it can 
engender, contextual changes that disrupt the established 
allocation of tasks among agents, issues of trust vis-à-
vis a system, and bias towards controlling technical and 
performance aspects of the automated systems at the 
detriment of other dimensions of risk.

Loss of situational awareness is a recurring issue in the 
implementation of SHC [22]. Consider, for example, the 
Out-Of-The-Loop (OOTL) performance problem [9]. OOTL 
describes a situation where the human operator has low or no 
situational awareness and is slow in identifying a problem, 
or incapable of appropriately responding to it. OOTL has 
resulted in severe accidents in nuclear energy production 
and aviation, among other domains [21]. Most notably, the 
Three Miles Island nuclear incident [23] and the Flight Rio-
Paris 447 crash [24], illustrate how human control factors 
contributed to catastrophic failures. In these cases, human 
operators were powerless to act when their systems failed 
as they could neither assess the cause of the failure nor 

Table 2   Levels of Automation 
as described in [10, pp. 
168–169]

Level 1 Human does the whole job up to the point of turning it over to the computer to implement
Level 2 Computer helps by determining the options
Level 3 Computer helps to determine options and suggests one, which human need not follow
Level 4 Computer selects an action, and human may or may not do it
Level 5 Computer selects an action and implements it if human approves
Level 6 Computer selects an action, informs human in plenty of time to stop it
Level 7 Computer does the whole job and informs human what it did
Level 8 Computer does the whole job and informs human what it did only if human explicitly asks
Level 9 Computer does the whole job and decides what the human should be told
Level 10 Computer does the whole job if it decides it should be done, and if so, informs human, if 

it decides that the human should be told

Footnote 2 (continued)
space exploration, manufacturing, hospital operating rooms, and for 
all kinds of robots used in different types of activities [8, p. 736], 
[14].
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understand how to resolve the situation in the absence of 
a working system or to fix the given systems [23, 24]. The 
complexity of the tasks that AI systems can undertake makes 
the problem of OOTL even more urgent. Bainbridge [25] 
calls this a classic challenge of automation or “ironies of 
automation”, whereby increased capabilities also increase 
the challenges faced by human operators [25]. The wider the 
capabilities of a system and its application surface, the lower 
the situational awareness of human operators and the less 
likely they are to be able to control the system effectively 
[9, p. 121].

The loss of situational awareness stems from a lack of 
systematic engagement by a human operator in each task or 
mission. This creates a vicious cycle whereby: operators’ 
skills deteriorate, they have reduced sensitivity to essential 
signals, and they develop complacent behaviours, which 
then lead to more cases of loss of situational awareness 
and the deterioration of trust vis-à-vis the system [9, 26]. 
This cycle is often exacerbated when because automated 
systems can be brittle in unforeseen contexts of deployment, 
creating challenges such as “automation surprise” for the 
human operator, who may have to intervene without having 
information about the state of the system and where it fell 
short operationally [21, p. 2].

At an organisational level, this vicious cycle culminates 
in higher levels of automation or more integrations of 
automated systems being considered as solutions to the 
human operator not being able to intervene effectively 
and efficiently enough [15, 27]. This cycle is a recurrent 
problem in human control of automated systems as new, 
unforeseen circumstances are always bound to happen 
during deployment phases and can undermine intervention 
processes prepared in advance for human operators [21, 28, 
29]. However, it is also important to note that the likelihood 
of unforeseen circumstances occurring can be reduced by 
lowering the complexity of the deployment environment 
(e.g., limiting the environmental variables interacting with 
the system) and/or of the system itself. We return to this 
point in Sect. 3 as it highlights the difference in the technical 
complexity of traditional automation and foundation models.

The second limitation of SHC approaches appears when 
considering changes in the deployment environment. A 
minor change in the environment can lead to an inadequate 
context of operation for the system, in which case the 
human operator would need to understand (or be notified) 
that timely intervention is needed to prevent risks from 
being realised. This requires a more comprehensive 
understanding of human–machine interactions [30] than 
what is captured in the LOA taxonomy, which give way 
to system design and control interventions based on fixed 
task allocations among agents. To address this issue, 
Siebert et  al. [31] propose to structure human control 
around a more extensive design space called the “moral 

operational design domain”, which builds on the concept 
of the operational design domain from the automotive 
industry. The purpose of this approach is to specify the 
contextual conditions that a given system ought to be 
operating in, and outside of which human intervention 
should be triggered, along with the moral responsibility 
of the involved operator. However, this approach is limited 
by our ability to specify contextual conditions in complex 
environments, as complex environments consist of many 
unknowns and evolving states. The complexity of both 
the automated system and the context of deployment (i.e. 
environment plus task at hand) will muddy the flow of 
information to the human operator with respect to the 
state of the system, environmental factors, the nature 
of the problems that have emerged and thus, the type of 
action that is required from the operator [32, 33]. When 
unforeseen situations develop, SHC lacks the flexibility 
required to dynamically re-allocate tasks or create a new 
set of interactions between the human operator and the 
AI system.

There is a tension in the relevant literature originating 
from the difficulty in defining the degree of human 
involvement across distinct types of automated systems or 
even the same systems in an evolving context. This tension 
is made more apparent by the advent of AI systems, which 
increases the complexity of automation and can imbue 
automated systems with capabilities pertaining to autonomy, 
such as self-governance, learning, and adaptability. Because 
of these changes, it is crucial to reconsider assumptions 
about human operators' role in supervisory control and the 
type of human–AI interactions that the literature should be 
designing for and optimising towards.

The third limitation concerns the level of trust that a 
human operator has vis-à-vis the AI systems, and it can stem 
directly from the vicious cycle that the loss of situational 
awareness can trigger. Human operators tend to over-trust 
and accept uncritically the outputs of AI systems, which 
induces operational complacency that is counterproductive 
to the SHC rationale [34, 35]. The longer a given AI system 
has performed well, the more likely a human operator is to 
trust it and perceive some kind of “mechanistic objectivity” 
associated with computer-generated analytics, for example 
[2, p. 212], [36]. This can lead to over-trust dynamics, 
whereby the human agents ignore their experienced 
assessments—so-called automation bias [37]—or even 
“shirking part of their responsibility for decisions”, when 
this would contradict the behaviour of the AI system.

The fourth limitation becomes evident when considering 
the specific types of risks that SHC aims to mitigate. These 
can be divided into performance and socio-legal control [12, 
30]. They can be described as follows:
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Human control to mitigate and manage performance risks 
(aka performance control): human operators are consid-
ered capable of rectifying or replacing a given system if 
it malfunctions and/or becomes unreliable due to unex-
pected circumstances;
Human control to mitigate and manage socio-legal risks 
(aka socio-legal control): the epistemic standing of human 
operators allows them to determine whether the context in 
which a system operates requires socio-legally-informed 
decisions, which the system is incapable of making. A 
related point is that such decisions require a morally 
accountable party, which cannot be the system itself.

Both categories need to be considered for an effective 
approach to human control of AI, albeit one may be 
prioritised in a specific context or when one category of 
risk is more likely or impactful than the other. However, 
existing approaches tend to focus on one at the detriment of 
the other [30]. This could be because, operationally, it can 
be problematic for human operators to mitigate both types of 
risks when intervening in a specific context. For example, an 
intervention of a socio-legal nature may require the human 
operator to stop the system's activity altogether to review 
the situation and address potential problems, in which case 
performance concerns are deliberately set aside. This has 
led to the framing of human–machine interactions and 
suggestions for human interventions that are biased towards 
performance considerations at the detriment of socio-legal 
ones, which are difficult to define practically (more on this 
presently) [30]. A specific type of SHC–meaningful human 
control (MHC)–emerged to address this bias in recent years. 
We delve into MHC in the next section.

2.1 � Meaningful human control

MHC has become a central topic of debate as it informs 
several policies and legal approaches concerning the 
control and deployment of autonomous weapon systems 
and lethal autonomous weapon systems. It focuses on 
moral responsibility, the conditions of meaningful control, 
and establishing an appropriate chain of accountability 
[38]. Despite being so central to the debate on the control 
of AI systems, a shared definition of MHC and research on 
operationalising it are still lacking [39]. Indeed, a standard 
categorisation used in association with MHC includes the 
three degrees of human control of autonomous weapon 
systems and lethal autonomous weapon systems [39, 40]:

	 (i)	 Human-in-the-Loop Weapons: “Robots that can 
select targets and deliver force only with a human 
command;

	 (ii)	 Human-on-the-Loop Weapons: Robots that can 
select targets and deliver force under the oversight 

of a human operator who can override the robots’ 
actions; and

	 (iii)	 Human-out-of-the-Loop Weapons: Robots that can 
select targets and deliver force without any human 
input or interaction” [39, p. 2].

These categories have been adopted widely, but it is 
worth stressing that they have yet to be paired with a 
comprehensive operational framework that details the 
practical aspects they each involve in different contexts of 
deployment.3

Recalling Fig.  1, MHC, ranges across the three 
deployment phases and in both the governance and socio-
technical layers of the framework. Indeed, some of the 
literature on MHC advocates for the non-deployment (i.e., 
ex-ante control/oversight) of specific systems (i.e., lethal 
autonomous weapon systems) and the establishment of 
human-in-the-loop protocols (i.e., ongoing control) with 
a specific focus on chains of accountability following 
international humanitarian law (i.e., ex-post control/review). 
This spreads the focus of the MHC literature and makes it 
harder to derive regulations and practical guidelines from 
it––both for organisations deploying AI systems and human 
operators [41].

A key issue when considering MHC is determining 
appropriate levels of authority and moral responsibility. 
This is because protocols based on the MHC approach 
allocate tasks and authority without first defining a baseline 
for the conditions of deployment and how the change of 
conditions affects it. For example, they do not set thresholds 
for the abilities of the human operator (e.g. what level of 
technical understanding and training is necessary for 
MHC? What level of understanding about a specific system 
behaviour is sufficient to have MHC?) or for the level of 
robustness and predictability of the AI systems [31, 42]. 
In the human-factors literature [31, 43, 44], psychological 
and physiological principles have been applied to “support 
the identification of a realistic baseline on human ability” 
and the associated challenges that may emerge throughout 
human–machine interactions [31, p. 9]. However, existing 
approaches are limited when it comes to systems that 

3  These three degrees of control are also used beyond MHC research, 
such as in machine learning (ML) research, but describe processes 
that are operationally different from the above descriptions. For 
example, Human-in-the-Loop has been used in ML research in 
recent years to describe a process whereby human feedback is used 
to improve the quality of a particular prediction model [41]. Human-
in-the-Loop is used in the “Safety Best Practice” of the AI assistants 
ChatGPT, defined as the process of having human review model out-
puts, especially in “high-stakes domains”[42]. This contributes to the 
fragmentation of the discussion on control as different disciplines and 
application domains adopt similar terminology to describe operation-
ally disparate control processes.
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regularly exhibit new and often unexpected capabilities and 
behaviours during deployment, as in the case of AI systems.

When considering automated systems, and especially 
AI systems, assessments are too often confined to 
benchmarks that measure system-specific metrics, like 
accuracy (e.g., in computer vision), which come at the 
detriment of assessing the entire systems’ behaviour and 
its relational capabilities vis-à-vis human operators [44, 
45]. Designing appropriate human control approaches 
requires us to move beyond an atomic understanding of 
each agent’s capabilities to determine their appropriate 
level of authority and responsibility. This requires that the 
AI research community moves from benchmarking progress 
on whether AI systems can outperform humans in given 
tasks to assessing the performance of human–AI systems 
as a whole, including their interactive, organisational, and 
collaborative capabilities as agents of a more extensive 
system [46, 47]. For example, training programs that 
focus on testing human–machine interactions in realistic 
settings––either through high-fidelity simulations or 
deployment in contained environments––can reveal insights 
about agents’ capabilities and the corresponding levels of 
authority they should be given. Indeed, this is a growing 
trend among organisations spearheading the development 
of AI systems for complex socio-technical environments, 
such as the Defense Advanced Research Projects Agency 
(DARPA). The agency has launched several programs, 
including ASIST [48], SAIL-ON [49], and CAML [50] and 
associated software for assessing and improving human–AI 
systems’ performance during deployment or in computer-
simulated environments, as well as to test AI systems in 
complex socio-technical environments (more on this in the 
next section).

Section 2 and the present one focused on autonomous 
artificial agents not endowed with capabilities exhibited by 
foundation models-based AI. We shall now analyse what 
specific challenges AI-enabled autonomy poses to the SHC 
approach.

3 � Challenges in applying SHC to foundation 
model‑based AI systems

The limitations of the SHC approach described in the 
previous section indicate that this approach is not the best 
suited when considering more complex AI systems that 
can be prompted by human operators. One may argue that 
operational solutions could be implemented to overcome 
such limitations, such as, extensive training programs to 
pace the level of trust of the human agent in the artificial 
agents would mitigate issues emerging from the over-trust 
dynamics described in Sect. 2. However, solutions have 
yet to be established and SHC must be now considered for 

foundation model-based AI systems, which exacerbate some 
of the shortcomings of the approach with regards to human 
operators’ agency.

Technical factors challenge the use of the SHC approach 
to control foundation models-based AI systems effectively. 
Here, we analyse five of the most salient challenges and 
argue that effectively controlling these systems requires an 
alternative approach The first challenge emerges because 
foundation model-based AI systems are based on the scaling 
of “general purpose methods with increased computation 
and availability of large amounts of unstructured data” 
[2, p. 10], [51]. This means that the data processing 
done by AI systems occurs at a growing speed and scale 
that is cognitively prohibitive for human operators to 
supervise effectively, i.e. monitor, interpret, intervene on, 
and correct in a timely fashion. The second concerns the 
inability of foundation model-based AI systems to identify 
their limitations––that is, the capability to represent and 
communicate about tasks they cannot achieve [52]. Thus 
far, research has focused on a lower-level goal, namely, 
developing the ability of a system to identify when it cannot 
handle a situation and communicate it effectively. Note 
that this capability is also captured by the performance 
metrics that developers set for the AI systems, which can 
become too constraining for real-world environments or too 
permissive––meaning that constant re-evaluation is crucial 
to the successful implementation of these capabilities. This 
is essential to helping human operators correctly identify 
when and where their intervention may be required and how 
to reallocate tasks. The DARPA CAML program is a good 
example of ongoing research efforts to address this problem, 
as it is designed to improve AI systems’ capabilities to

“communicate their task strategies, the completeness 
of their training relative to a given task, the factors 
that may influence their actions, or their likelihood to 
succeed under specific conditions” [50, p. 1].

The third challenge stems from the non-deterministic 
behaviour of foundation model-based AI systems, making 
it challenging for human operators to know what behaviour 
to expect from the AI system and, thus, what anomalous 
behaviour would look like [2, 53]. Approximations and 
general expectations can be set by evaluating the AI 
system’s sensitivity to data, re-evaluating when new data is 
introduced and predicting the potential changes they would 
have on the system’s behaviour. However, the problem of 
predictability of AI systems remains and will often grow 
in parallel to the complexity of the environment and task at 
hand [2]. Foundation models have a quasi-boundless space 
of outputs and behaviour due to them being trained on web-
scale datasets and the models comprising tens of billions 
of parameters; hence, the space of possible behaviours is 
also multiplied by the number of variables in the context of 
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deployment. A related issue is that foundation models make 
it difficult to determine their actual capabilities as opposed to 
what capabilities they appear to exhibit in well-defined tasks. 
This lack of certainty over AI systems’ capabilities and, by 
extension, their range of behaviours, makes it difficult to 
pre-define a set of human interventions and establish when 
human intervention is required. Without symbolic reasoning 
or a model of causal relations to understand, for example, 
language, this architecture has led to models exhibiting 
unexpected and occasionally unwanted behaviour, such 
as presenting fictitious information as facts [13] or being 
sensitive to adversarial examples [2]. This is crucial from 
the point of view of human control because it is unclear how 
to address these limitations. From a technical perspective, 
developers have sought to align their models with human 
values to solve this unexpected, unwanted behaviour issue 
through a fine-tuning process based on targeted human 
feedback and labelling called RLHF. This process involves 
creating new data based on the human evaluation of a 
model’s output to train a reward model favouring outputs 
aligned with human preferences. However, this approach 
has yet to be proven scalable. It assumes that reward 
model generalisation will always occur and be sufficient 
for downstream applications, yet the process is costly 
and slow as it relies on outsourced human labour sifting 
through ever-growing swaths of data [54]. From a socio-
technical or operational level, the capabilities of foundation 
models-based AI rest heavily on human operators’ ability 
to prompt, verify, and correct outputs [55]. Autoregressive 
large language models––such as ChatGPT––especially, 
have enabled numerous new applications where the 
exhibited model capabilities depend often on an external 
system or an agent’s presence and ability to verify outputs 
and try new inputs to extract a desired output and mitigate 
hallucinations.4 In other words, it is challenging to use 
SHC to reconcile the fact that the level of automation has 
increased in terms of AI system capabilities and general 
applicability, while the system has also become much more 
dependent on human input at all levels (e.g., from regular 
prompting and the need for verification of each output, to 
alignment efforts via RLHF).

The fourth challenge follows from the growing complexity 
of these systems and the tasks they fulfil, which makes 
it challenging to create human–machine interfaces that 
reveal enough relevant information about the AI systems’ 
operations, state, and problems encountered without 
overwhelming the operator with information and options to 
act. Indeed, both humans and AI agents within a human–AI 
configuration ought to have some form of “representations 

of the involved tasks, role distributions, desired outcomes 
[…] mutual capabilities” [31, p. 6]. This fosters effective 
collaboration, adaptability to new situations, and trust. 
However, the more complex the foundation models-based 
AI system’s behaviour and the wider its application surface 
is, the harder it is to design interfaces that capture the state 
of the model, levels of uncertainty for each output, and other 
context-specific information needed for human operators to 
construct an accurate mental representation of the AI and 
assess the need for intervention [14, 56]. The appropriate 
interface is difficult to design as the path from input to 
output depends on a prohibitive scale of parameters.

SHC implies putting human operators in a crucial role 
with the agency over every tool or agent contributing to 
fulfilling a task. However, when considering foundation 
model-based AI systems, human operators are stripped of 
their operational agency in ways that contradict the purpose 
of human control. Moretto et al. showed that task motivation 
is increased when the participant can establish control over 
an effect, whereas the “loss of agency has been also proved 
to disturb the attribution of [moral] responsibility” [57, 
p. 5]. This leads to the fifth challenge, which refers to the 
impact of the increased autonomy of foundation models-
based AI systems and the (loss of) sense agency among 
human operators, which, in turn, has induced a moral 
disengagement regarding the actions and decisions taken 
[58]. This is a dangerous consequence that is detrimental to 
human control for socio-legal purposes.

If the abilities of human operators diminish due to the 
plethora of tasks fulfilled by foundation model-based AI 
systems, both the authority they retain over a system and 
the responsibility they ought to bear for its behaviour 
should reflect that. Indeed, research has found a “decrease 
in agency concomitant with the increase in automation” [9,  
p. 121]. The introduction of foundation model-based AI 
systems removes human operators from action outcomes and 
“decreases their sense of control” and overall performance 
[9, p. 121]. Research on error-related potentials, or 
“cerebral activity associated with the monitoring of the 
consequences of an action” has shown a “degradation of 
monitoring associated with a reduction in the sense of 
agency” [6, p. 120]. The SHC approach does not capture 
this change even in its reviewed formulations. While it is 
still too early to tell, the issue of loss of sense of control 
can be expected to grow due to the versatility exhibited 
by foundation models on a range of tasks and the lack of 
measure of information accuracy or confidence intervals 
available to human operators [22, 59]. This creates a risk of 
exacerbating operators’ dependence on the system’s outputs 
and encourages epistemic vices, like the automation bias 
mentioned above [2], voiding any expectation of effective 
control of foundation model-based AI systems.4  Note that a majority of mitigations to hallucinations have been 

dependent on rule-based verifiers and retrieval augmentation [56]
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The limitations and the challenges to the SHC approach 
described in Sect. 2 and the present section highlight that 
the more the capabilities of AI systems grow, the less 
the supervisory role of the human agents is adequate to 
control such capabilities effectively. This is not just because 
technical aspects of AI systems hinder the implementation 
of the SHC approach, but also because the SHC approach 
focuses only on interventions to correct the system when 
something goes wrong; we refer to it as negative control. 
This is sufficient when considering lower levels of autonomy 
or even traditional AI systems. However, foundation model-
based AI systems exhibit new capabilities, and leveraging 
these capabilities requires a different form of control. This 
enables a deeper integration between human behaviour 
and system behaviour and allows the human agents to 
contribute more consistently to the behaviour of the system, 
and leverage its capabilities to perform tasks but also ensure 
control. We refer to this as positive control. This has led 
us to consider the literature on HMT and cooperative AI 
to capture the collaborative dynamic of human–AI systems 
or teams and think about the operationalisation of human 
control. In the next section, we delve into the HTM approach 
and its implications for controlling foundation model-based 
AI.

4 � The human–machine teaming approach 
to foundation model‑based AI systems

Research on HMT looks at integrating artificial agents into 
teams not as tools but as agents with autonomy, adaptability, 
and collaborative capabilities to create a larger, multi-agent 
system more capable than individual agents or agents 
interacting without a guiding framework [60]. However, 
human control is not a central element of research on HMT, 
which focuses more on performance-driven considerations––
i.e., how a task can be achieved better through combining 
human abilities and system capabilities [60].

HMT has been described differently across the extant 
literature. O’Neil and McNeese [60, p. 2] explain that HMT 
involves:

“at least one human working cooperatively with at 
least one autonomous agent, where an autonomous 
agent is a computer entity with a partial or high degree 
of self-governance with respect to decision-making, 
adaptation, and communication”.

Wynne and Lyons have focused on the notion of teaming 
or partnering with a system, and on describing what makes 
the agent ascend to the status of an autonomous agent 
instead of simply a tool [61]. That is an important focus; 
sometimes, HMT is misused to describe human interactions 
with machines lacking the ability to self-govern, learn, or 

adapt [62]. Madni and Madni [32, p. 2] described HMT as 
being inherently adaptive and requiring:

“transparency in machine operations, bi-directional 
human–machine interaction, contextual awareness 
to understand changes in priorities and performance 
conditions, the ability for the human to intervene 
at different levels in ongoing machine processes to 
redirect resources, revise goals, and add or delete 
constraints.”

To avoid a common confusion in the extant literature, 
whereby kinds of human–machine interactions–even a 
simple one–might be referred to as HMT, in the rest of this 
article, we will use HMT only to describe configurations 
of collaborative agency in which task allocation and 
role assignment is dynamic and adaptive to the self-
governance of the agents, rather than deterministic and 
pre-conditioned, and in which the output of the team stems 
from the collaboration among the agents. This requires 
that the artificial agent in HMT reaches a certain degree of 
autonomy that distinguishes it from automated systems as 
they are traditionally understood.5 Foundation model-based 
AI systems exhibit such autonomy.

The framing provided by the HMT approach comes with 
four requirements for establishing human control of AI 
systems. We base this list on a modified version of Dafoe 
et al.’s [46] work on cooperative AI, informed by common 
factors and challenges reported in the HMT literature. First, 
HMT research has focused on resolving the lack of shared 
representations or mental models (i.e. shared knowledge 
and understanding) between agents of a team on the tasks 
they share, the roles of each agent, their known capabilities 
and limitations, the influence of the environment in which 
they operate and the boundaries within which they should 
predictably operate [63, 64]. This is because shared 
representation of the system at large and of the operational 
environment allows agents to establish an action space 
with higher certainty and reduced risks as they can expect 
behaviours within this space, and, more importantly, 
understand when a given behaviour has wholly deviated 
from it. In high-stakes environments where changes are 
constant, and adaptivity is crucial, shared representation can 
help maintain a common ground around which agents can 
re-organise [65, 66]. Shared representation and alignment 
among agents are achieved through a combination of factors, 
including the quality of human–machine interfaces [67, 
68]; convention building among teammates [2, 69]; and 

5  Note that we refer to a higher degree of autonomy here in a general 
sense and do not imply that autonomy ought to or even can be meas-
ured on a one-dimensional scale as it is context dependent and can 
fluctuate, among other reasons.
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repeated team training exercises [65]. This is arguably the 
most complicated requirement when it comes to foundation 
models due to their limitations, including, (un)interpretable 
internal world models, lack of reasoning and planning 
capabilities and (un)predictability [17, 70, 71].

The second requirement is effective communication 
channels and feedback loops between agents [72]. The 
changes in internal states for the artificial agents (e.g., 
data sensitivity or malfunction) and human agents (e.g., 
cognitive, or emotional) need to be communicated 
adequately during operations to enable agents to change 
their expectations about their teammates and/or step-in 
when needed [72]. Communication in collaborative tasks 
can also indicate degrees of confidence or preference when 
faced with multiple options, expressing intended actions, 
or providing notice for imminent action concerning a given 
task [73]. Communication is also crucial in sharing newly 
discovered information and propagating it to the rest of the 
system so other agents can learn. For example, discovering 
environmental affordances in complex environments is a 
continual process that agents can share. Communication 
of malfunction or context-specific limitations or attacks 
are also key features of communication in HMT that would 
allow agents to update their understanding of one another’s 
capabilities and thus modify levels of authority accordingly.

The third requirement refers to commitment––in the sense 
of locking in an action or behaviour––is important in HMT 
as far as it increases the predictability of teammates’ actions 
where needed and can be requested by agents in cases of 
concerted, focused efforts where too many behavioural 
changes would be detrimental. This is advantageous 
for human control and risk management as it can aid in 
identifying deviance from committed behaviour, revealing 
potential malfunction or attack against an agent [74]. 
Commitment problems are ubiquitous in human teams and 
well documented as being detrimental to team composition 
and integrity [46, 75, 76].

The fourth requirement refers to building conventions 
and norms. This is key for well-functioning teams, 
whether HMT or fully human teams [77, 78]. Shared 
beliefs and understanding are built through pre-established 
parameters or can emerge naturally as the agents have 
recurrent interactions over a long time. Conventions lead 
to developing team-specific expectations, unspoken rules 
and even language [62, 73]. Conventions and norms 
building are derived from, and improve, understanding, 
communication, and commitment [64]. Regarding human 
control, conventions and norm building enabled by HMT 
create more familiar and predictable behaviours. This can 
lead to shorter communication times and more timely 
interventions [64]. It can also help specify Siebert et al.’s 
[31] moral operational design domain of artificial agents, 
such that after many different deployments, the team will 

have identified a set of recurrent contextual conditions that 
should automatically constrain specific agents' behaviour. 
It is also worth emphasising here that conventions and 
norms building also breeds trust in HMT [61, 69, 79]. 
A well-established team with internal conventions and 
experience being deployed as a unit would be less likely to 
fall into the trap of over-trust and complacent attitudes or 
develop distrustful interactions due to the absence of shared 
expectations [2].

5 � HMT for real‑world deployment 
of foundation models‑based multi‑agent 
systems

These four requirements in HMT highlight important factors 
concerning human–AI interactions that can contribute to 
formulating a novel approach for controlling foundation 
model-based AI systems. However, understanding the 
extent to which these requirements should be met to create 
a robust human–AI configuration for control requires 
extensive testing. Testing HMT in real-world settings, 
evaluating different approaches to the operationalisation 
of HMT, and obtaining enough empirical data to deploy 
such systems with assurance has proven difficult [65, 77]. 
This acknowledgement of the need for more testing and for 
“exploring the uncertainty” inherent in HMT in complex 
environments without assuming high levels of risks has 
been a familiar rallying cry among defence and security 
organisations across the world [65, 79–81] and in other 
domains of application such as in healthcare [82]. In a recent 
systematic review, O’Neill et  al. analysed 76 empirical 
studies of HMT. They found a severe lack of testing and 
evaluation in real-world settings, reporting that the current 
research on HMTs has been primarily

“conducted in laboratory environments involving 
simulation-based command and control, emergency 
rescue, and other computer games that require 
cooperation and communication among team members 
to complete tasks (e.g., B4WT [blocks for world 
teams])” [77, p. 6].

Indeed, examples of such confined testing environments 
abound. The USARSims is a search-and-rescue game 
in which a multi-agent team explores an unknown 
environment and identifies as many positions of “victims” 
as possible [78]. Another example is the Cognitive 
Engineering Research on Team Tasks–Unmanned Aerial 
System–Synthetic Task Environment (CERTT- UAS-STE) 
that is based on the US Air Force Predator UAS ground 
control station and requires “three interdependent teammates 
in distinct roles (pilot, navigator, and photographer) to 
take photographs of waypoints” [83, 84]. Moreover, most 
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empirical studies of HMTs focus on simulated team tasks 
over a short time [60, 84]. This leads to a paucity of real-
world data and longitudinal studies investigating long-term 
team development in real-world contexts and the utility of 
HMT factors in improving human control of AI systems. 
Thus, this gap must be closed to develop and use an HMT-
based approach to control foundational models in high-risk 
domains, like the defence and security domain.

As Madni and Madni [32] suggest, the testing of joint 
human–AI performance in various operational contexts can 
also be simulated to accelerate HMT experimentations and 
inform practical guidelines for a generalisable approach 
to human control that moves beyond the constraints of 
supervisory human control of AI. However, evaluating 
HMT configurations requires holistic experiments, which 
are cost-intensive in the case of non-deterministic systems 
that generate consistently new and unexpected outputs. Both 
the pre-training and fine-tuning of foundation models, as 
well as the high-fidelity simulation of HMT scenarios, will 
require high levels of compute in many cases, making HMT 
research inaccessible to many researchers [67].

The spread of autoregressive large language models 
across consumer applications and the establishment 
of foundation models across domains also create an 
opportunity to contribute to closing the testing gap, to the 
extent that researchers can observe and test the performance 
of human–AI configurations in new contexts and under 
different levels of risk and benefit. Research focused on 
translating the general gain in AI systems' capabilities 
to improve human operators' ability to interact with and 
leverage AI will be critical to unlocking the potential of 
HMT-based approaches to human control. As foundation 
models seem poised to become an essential, long-term, and 
potentially problematic addition to humanity’s technological 
arsenal, making early research investments into developing a 
generalisable approach to human control of AI is essential.

Another gap to close concerns the absence of clear 
variables that can help us identify and assess socio-legally 
compliant behaviour, as reported by O’Neil et al. This is an 
obstacle to the HMT approach, which serves as the primary 
guiding approach for human control. However, rather than 
an obstacle caused by a fundamental incompatibility of 
HMT with socio-legal compliance, this reflects a research 
gap and an opportunity for further study. Indeed, rather 
than just seeking to combine human abilities and AI 
capabilities to complete a task more efficiently, the HMT 
literature can benefit from expanding its research into how 
this combination also creates a more robust entity vis-à-vis 
unforeseen risks of all types, including unprecedented socio-
legal risks.

Preliminary to the development of any approach to 
control AI systems, whether based on foundation models 
or not, is the identification of acceptable risk thresholds. To 

this end, it is crucial to conduct a systematic risk analysis of 
the deployment context and consider the extent to which AI 
can cause damage and harm and the risk appetite linked to 
specific uses of AI technologies. Indeed, it may be that our 
risk tolerance for a particular task or environment is too low 
and incompatible with the unpredictable behaviour that is 
inherent in AI systems (thus far) and that even with human 
control, the integration of AI would not become a net benefit 
from an operational perspective. The reverse is also true: an 
AI system can be unreliable but still considered controlled 
insofar as its specific context of deployment may value the 
operator’s ability to leverage, for example, hallucinations 
for creative tasks, more than predictability. The decision-
makers will assess risk appetite from time to time. However, 
standards must be developed to assess the type and level of 
risks that specific technologies may pose.

6 � Conclusion

This review has shown that the SHC approach to AI 
systems suffers from a series of limitations accentuated by 
the development and adoption of AI systems that rely, in 
whole or in part, on foundation models. This is because the 
autonomy that AI confers to artificial agents is directly at 
odds with the assumptions of supervisory human control. 
Having reviewed the literature on HMT, we argue that HMT 
offers a better framework to develop an alternative approach 
to human control of foundation model-based AI systems that 
focuses on bi-directional interactions and can be generalised 
to different areas of AI application.

The hypothesis that HMT can offer a productive path 
forward for the human control of AI systems rests on the 
assumption that the pace of innovation in AI research 
remains centred on foundation models instead of data 
and compute-efficient architectures that produce more 
explainable and predictable AI systems (e.g., neuro-
symbolic AI). In the event of a departure from the non-
deterministic and inscrutable models, we described in this 
analysis, supervisory human control may re-emerge as the 
primary approach to controlling AI systems. Nevertheless, as 
our analysis contends, the benefit of exploring HMT remains 
useful and transferrable to future human–AI configurations 
as it explores AI systems' cooperative and collaborative 
capabilities, the expectations of human operators, and the 
characteristics of an effective multi-agent system. Research 
investment into HMT and collaborative agency can be 
beneficial in the long term, irrespective of a change in AI 
capabilities, as it focuses on approaches that improve the 
quality of human–AI interactions and co-action.

Acknowledgements  We would like to thank David Sutcliffe for his 
valuable feedback on this paper.



	 AI and Ethics

Funding  AT acknowledges the receipt of an ESRC [Grant no. R-DST-
HCE / D034] Grand Union Doctoral Training Partnership in collabora-
tion with the Dstl.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Bommasani, R., et al.: On the opportunities and risks of founda-
tion models. arXiv https://​doi.​org/​10.​48550/​arXiv.​2108.​07258 
(2022)

	 2.	 Blind
	 3.	 Department of Defence.: DOD Directive 3000.09 autonomy in 

weapon systems. (2012). [Online]. Available: https://​www.​esd.​
whs.​mil/​porta​ls/​54/​docum​ents/​dd/​issua​nces/​dodd/​30000​9p.​pdf

	 4.	 Watts, T.F., Bode, I.: Automation and autonomy in air defence sys-
tems catalogue (v.1). (2021). https://​doi.​org/​10.​5281/​ZENODO.​
44856​95

	 5.	 McCue, B.: The Practice of Military Experimentation. Defense 
Technical Information Center, Fort Belvoir (2003). https://​doi.​org/​
10.​21236/​ADA59​6829

	 6.	 Verdiesen, I., Santoni de Sio, F., Dignum, V.: Accountability and 
control over autonomous weapon systems: a framework for com-
prehensive human oversight. Minds Mach. 31(1), 137–163 (2021). 
https://​doi.​org/​10.​1007/​s11023-​020-​09532-9

	 7.	 Minkkinen, M., Laine, J., Mäntymäki, M.: Continuous auditing of 
artificial intelligence: a conceptualization and assessment of tools 
and frameworks. Digit. Soc. 1(3), 21 (2022). https://​doi.​org/​10.​
1007/​s44206-​022-​00022-2

	 8.	 Sheridan, T.B.: Human supervisory control of automation. In: 
Salvendy, G., Karwowski, W. (eds.) Handbook of Human Factors 
and Ergonomics, 1st edn., pp. 736–760. Wiley, New York (2021). 
https://​doi.​org/​10.​1002/​97811​19636​113.​ch28

	 9.	 Kaber, D.B.: Issues in human–automation interaction modeling: 
presumptive aspects of frameworks of types and levels of automa-
tion. J. Cogn. Eng. Decis. Mak. 12(1), 7–24 (2018). https://​doi.​
org/​10.​1177/​15553​43417​737203

	10.	 Sheridan, T., Verplank, W.: Human and computer control of 
undersea teleoperators, NASA. Ames Res. Center The 14th Ann. 
Conf. on Manual. Control (1978)

	11.	 Ferrell, W.R., Sheridan, T.B.: Supervisory control of remote 
manipulation. IEEE Spectr.Spectr. 4(10), 81–88 (1967). https://​
doi.​org/​10.​1109/​MSPEC.​1967.​52171​26

	12.	 Sharkey, N.: Staying in the loop: Human supervisory control of 
weapons. In: Bhuta et al. (eds) Autonomous Weapons Systems 
23–38 (2016)

	13.	 Cummings, M.L.: Human supervisory control challenges in net-
work centric operations. In: Proceedings of the Unmanned Vehicle 
Systems Canada Conference, Banff (2005)

	14.	 Miller, C.A., Parasuraman, R.: Designing for flexible interaction 
between humans and automation: delegation interfaces for super-
visory control. Hum. Factors 49(1), 57–75 (2007). https://​doi.​org/​
10.​1518/​00187​20077​79598​037

	15.	 Lee, J.: Review of a pivotal human factors article: “humans and 
automation: use, misuse, disuse, abuse”. (2008). https://​journ​als.​
sagep​ub.​com/​doi.​org/​10.​1518/​00187​2008X​288547. Accessed 17 
Oct 2022

	16.	 Johnson, C.D., Miller, M.E., Rusnock, C.F., Jacques, D.R.: Apply-
ing control abstraction to the design of human-agent teams. Sys-
tems 8(2), 10 (2020). https://​doi.​org/​10.​3390/​syste​ms802​0010

	17.	 Dekker, S.W.A., Woods, D.D.: MABA-MABA or abracadabra? 
Progress on human-automation co-ordination. Cogn. Technol. 
Work. Technol. Work 4(4), 240–244 (2002). https://​doi.​org/​10.​
1007/​s1011​10200​022

	18.	 Endsley, M.R., Kaber, D.B.: Level of automation effects on 
performance, situation awareness and workload in a dynamic 
control task. Ergonomics 42(3), 462–492 (1999). https://​doi.​
org/​10.​1080/​00140​13991​85595

	19.	 Feigh, K.M., Pritchett, A.R.: Requirements for an effective func-
tion allocation: a critical review. J. Cogn. Eng. Decis. Mak. 
(2014)

	20.	 Bradshaw, J.M., Hoffman, R.R., Johnson, M., Woods, D.D.: 
The seven deadly myths of “Autonomous Systems.” IEEE Intell. 
Syst.Intell. Syst. 28(3), 54–61 (2013). https://​doi.​org/​10.​1109/​
MIS.​2013.​70

	21.	 Xu, W.: From automation to autonomy and autonomous vehi-
cles: challenges and opportunities for human–computer interac-
tion. Interactions 28(1), 48–53 (2021). https://​doi.​org/​10.​1145/​
34345​80

	22.	 Greenhouse, S.: US experts warn AI likely to kill off jobs—and 
widen wealth inequality. The Guardian (2023). [Online]. Avail-
able: https://​www.​thegu​ardian.​com/​techn​ology/​2023/​feb/​08/​ai-​
chatg​pt-​jobs-​econo​my-​inequ​ality. Accessed: 09 May 2023

	23.	 Malone, T., Kirkpatrick, M., Mallory, K., Eik, D., Johnson, J., 
Walker, R.: Human factors EVclluation of Control Room Design 
and Operator performance at Three Mile Island-2. (1980). 
[Online]. Available: https://​www.​osti.​gov/​servl​ets/​purl/​56036​80

	24.	 BEA.: Safety investigation following the accident on 1ST June 
2009 to the Airbus A300-203, Flight AF 447 summary, p. 5. 
(2012). [Online]. Available: https://​human​facto​rs101.​files.​wordp​
ress.​com/​2020/​12/​summa​ry-​report-​bea-5-​july-​2012.​pdf

	25.	 Bainbridge, L.: Ironies of automation. Automatica 19(6), 775–779 
(1983). https://​doi.​org/​10.​1016/​0005-​1098(83)​90046-8

	26.	 Donmez, B., Pina, P.E., Cummings, M.L.: Evaluation criteria for 
human-automation performance metrics. In: Proceedings of the 
8th Workshop on Performance Metrics for Intelligent Systems-
PerMIS ’08, p. 77. ACM Press, Gaithersburg (2008). https://​doi.​
org/​10.​1145/​17746​74.​17746​87

	27.	 Parasuraman, R., Riley, V.: Humans and automation: use, misuse, 
disuse, abuse. Hum. Factors J. Hum. Factors Ergon. Soc. 39(2), 
230–253 (1997). https://​doi.​org/​10.​1518/​00187​20977​78543​886

	28.	 Endsley, M.: Automation and situational awarness. (1996). 
[Online]. Available: http://​www.​aeroh​abitat.​eu/​uploa​ds/​media/​
Autom​ation_​and_​Situa​tion_​Aware​ness_-_​Endsl​ey.​pdf

	29.	 Strabala, K.W., et al.: Towards seamless human–robot handovers. 
J. Hum. Robot Interact. 2(1), 112–132 (2013). https://​doi.​org/​10.​
5898/​JHRI.2.​1.​Strab​ala

	30.	 Boardman, M., Butcher, F.: An exploration of maintaining human 
control in ai enabled systems and the challenges of achieving it. 
(2019)

	31.	 Siebert, L.C., et al.: Meaningful human control over AI systems: 
beyond talking the talk. (2021). ArXiv211201298 Cs. [Online]. 
Available: http://​arxiv.​org/​abs/​2112.​01298. Accessed: 24 Mar 
2022

	32.	 Madni, A.M., Madni, C.C.: Architectural framework for exploring 
adaptive human–machine teaming options in simulated dynamic 
environments. Systems 6(4), 4 (2018). https://​doi.​org/​10.​3390/​
syste​ms604​0044

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/arXiv.2108.07258
https://www.esd.whs.mil/portals/54/documents/dd/issuances/dodd/300009p.pdf
https://www.esd.whs.mil/portals/54/documents/dd/issuances/dodd/300009p.pdf
https://doi.org/10.5281/ZENODO.4485695
https://doi.org/10.5281/ZENODO.4485695
https://doi.org/10.21236/ADA596829
https://doi.org/10.21236/ADA596829
https://doi.org/10.1007/s11023-020-09532-9
https://doi.org/10.1007/s44206-022-00022-2
https://doi.org/10.1007/s44206-022-00022-2
https://doi.org/10.1002/9781119636113.ch28
https://doi.org/10.1177/1555343417737203
https://doi.org/10.1177/1555343417737203
https://doi.org/10.1109/MSPEC.1967.5217126
https://doi.org/10.1109/MSPEC.1967.5217126
https://doi.org/10.1518/001872007779598037
https://doi.org/10.1518/001872007779598037
https://journals.sagepub.com/doi.org/10.1518/001872008X288547
https://journals.sagepub.com/doi.org/10.1518/001872008X288547
https://doi.org/10.3390/systems8020010
https://doi.org/10.1007/s101110200022
https://doi.org/10.1007/s101110200022
https://doi.org/10.1080/001401399185595
https://doi.org/10.1080/001401399185595
https://doi.org/10.1109/MIS.2013.70
https://doi.org/10.1109/MIS.2013.70
https://doi.org/10.1145/3434580
https://doi.org/10.1145/3434580
https://www.theguardian.com/technology/2023/feb/08/ai-chatgpt-jobs-economy-inequality
https://www.theguardian.com/technology/2023/feb/08/ai-chatgpt-jobs-economy-inequality
https://www.osti.gov/servlets/purl/5603680
https://humanfactors101.files.wordpress.com/2020/12/summary-report-bea-5-july-2012.pdf
https://humanfactors101.files.wordpress.com/2020/12/summary-report-bea-5-july-2012.pdf
https://doi.org/10.1016/0005-1098(83)90046-8
https://doi.org/10.1145/1774674.1774687
https://doi.org/10.1145/1774674.1774687
https://doi.org/10.1518/001872097778543886
http://www.aerohabitat.eu/uploads/media/Automation_and_Situation_Awareness_-_Endsley.pdf
http://www.aerohabitat.eu/uploads/media/Automation_and_Situation_Awareness_-_Endsley.pdf
https://doi.org/10.5898/JHRI.2.1.Strabala
https://doi.org/10.5898/JHRI.2.1.Strabala
http://arxiv.org/abs/2112.01298
https://doi.org/10.3390/systems6040044
https://doi.org/10.3390/systems6040044


AI and Ethics	

	33.	 Li, K., Wieringa, P.A.: Understanding perceived complexity in 
human supervisory control. (2000)

	34.	 Ullrich, D., Butz, A., Diefenbach, S.: The development of over-
trust: an empirical simulation and psychological analysis in the 
context of human–robot interaction. Front. Robot. AI 8 (2021). 
[Online]. Available: 17 https://​www.​front​iersin.​org/​artic​les/​10.​
3389/​frobt.​2021.​554578. Accessed: Nov 2022

	35.	 Ueno, T., Sawa, Y., Kim, Y., Urakami, J., Oura, H., Seaborn, K.: 
Trust in human–AI interaction: scoping out models, measures, and 
methods. In: CHI Conference on Human Factors in Computing 
Systems Extended Abstracts, pp. 1–7. ACM, New Orleans (2022). 
https://​doi.​org/​10.​1145/​34911​01.​35197​72

	36.	 Karppi, T.: “The Computer Said So”: on the ethics, effective-
ness, and cultural techniques of predictive policing. Soc. Media 
Soc. 4(2), 205630511876829 (2018). https://​doi.​org/​10.​1177/​
20563​05118​768296

	37.	 Cummings, M.: Automation bias in intelligent time critical deci-
sion support systems. In: AIAA 1st Intelligent Systems Techni-
cal Conference. American Institute of Aeronautics and Astro-
nautics, Chicago (2012). https://​doi.​org/​10.​2514/6.​2004-​6313

	38.	 Santoni de Sio, F., van den Hoven, J.: Meaningful human con-
trol over autonomous systems: a philosophical account. Front. 
Robot. AI (2018). https://​doi.​org/​10.​3389/​frobt.​2018.​00015

	39.	 Docherty, B.: Losing humanity. Hum. Rights Watch. (2012). 
[Online]. Available: https://​www.​hrw.​org/​report/​2012/​11/​19/​
losing-​human​ity/​case-​again​st-​killer-​robots. Accessed: 09 May 
2023

	40.	 Taddeo, M. Blanchard A.: A comparative analysis of the defini-
tions of autonomous weapons systems, Science and engineering 
ethics (2022)

	41.	 Wu, X., Xiao, L., Sun, Y., Zhang, J., Ma, T., He, L.: A survey 
of human-in-the-loop for machine learning. Future Gener. Com-
put. Syst. 135, 364–381 (2022). https://​doi.​org/​10.​1016/j.​future.​
2022.​05.​014

	42.	 OpenAI.: OpenAI safety best practices. (2023). https://​platf​orm.​
openai.​com. Accessed 08 Jul 2023

	43.	 Kyriakidis, M., et al.: A human factors perspective on automated 
driving. Theor. Issues Ergon. Sci.. Issues Ergon. Sci. 20(3), 
223–249 (2019). https://​doi.​org/​10.​1080/​14639​22X.​2017.​12931​
87

	44.	 Damacharla, P., Javaid, A.Y., Gallimore, J.J., Devabhaktuni, 
V.K.: Common metrics to benchmark human–machine teams 
(HMT): a review. IEEE Access 6, 38637–38655 (2018). https://​
doi.​org/​10.​1109/​ACCESS.​2018.​28535​60

	45.	 Pagliari, M., Chambon, V., Berberian, B.: What is new with 
artificial intelligence? Human–agent interactions through the 
lens of social agency. (2020)

	46.	 Dafoe et al., A.: Open problems in cooperative AI. arXiv https://​
doi.​org/​10.​48550/​arXiv.​2012.​08630 (2020)

	47.	 Seeber, I., et al.: Machines as teammates: a research agenda on 
AI in team collaboration. Inf. Manag. 57(2), 103174 (2020). 
https://​doi.​org/​10.​1016/j.​im.​2019.​103174

	48.	 Elliot, J.: Artificial social intelligence for successful teams. 
(2021). https://​www.​darpa.​mil/​progr​am/​artif​icial-​social-​intel​
ligen​ce-​for-​succe​ssful-​teams. Accessed 17 Nov 2022

	49.	 DARPA. Teaching AI systems to adapt to dynamic environ-
ments. (2019). https://​www.​darpa.​mil/​news-​events/​2019-​02-​14. 
Accessed 17 Nov 2022

	50.	 Rudd, L.: Competency-aware machine learning. (2019). https://​
www.​darpa.​mil/​progr​am/​compe​tency-​aware-​machi​ne-​learn​ing. 
Accessed 17 Nov 2022

	51.	 Sutton, R.: The bitter lesson. (2019). http://​www.​incom​plete​
ideas.​net/​IncId​eas/​Bitte​rLess​on.​html. Accessed 31 Aug 2020

	52.	 Heaven, D.: Why deep-learning AIs are so easy to fool. 
Nature 574(7777), 163–166 (2019). https://​doi.​org/​10.​1038/​
d41586-​019-​03013-5

	53.	 Daronnat, S., Azzopardi, L., Halvey, M., Dubiel, M.: Inferring 
trust from users’ behaviours; agents’ predictability positively 
affects trust, task performance and cognitive load in human-
agent real-time collaboration. Front. Robot. AI 8, 642201 
(2021). https://​doi.​org/​10.​3389/​frobt.​2021.​642201

	54.	 Perrigo, B.: Exclusive: the $2 per hour workers who made 
ChatGPT safer. Time. (2023). https://​time.​com/​62476​78/​ope-
nai-​chatg​pt-​kenya-​worke​rs/. Accessed 07 July 2023

	55.	 Dell’Acqua, F., et al.: Navigating the jagged technological fron-
tier: field experimental evidence of the effects of AI on knowl-
edge worker productivity and quality. Rochester (2023). https://​
doi.​org/​10.​2139/​ssrn.​45733​21

	56.	 UNIDIR.: Human–machine interfaces in autonomous weapon 
systems | UNIDIR’. (2022). https://​www.​unidir.​org/​human-​machi​
ne-​inter​faces. Accessed 17 Nov 2022

	57.	 Moretto, G., Walsh, E., Haggard, P.: Experience of agency and 
sense of responsibility. Conscious. Cogn.Cogn. 20(4), 1847–1854 
(2011). https://​doi.​org/​10.​1016/j.​concog.​2011.​08.​014

	58.	 Berberian, B.: Man–machine teaming: a problem of agency. 
IFAC-Pap. 51(34), 118–123 (2019). https://​doi.​org/​10.​1016/j.​
ifacol.​2019.​01.​049

	59.	 Zhavoronkov, A.: Caution with AI-generated content in biomedi-
cine. Nat. Med. 29(3), 532–532 (2023). https://​doi.​org/​10.​1038/​
d41591-​023-​00014-w

	60.	 O’Neill, T., McNeese, N., Barron, A., Schelble, B.: Human–auton-
omy teaming: a review and analysis of the empirical literature. 
Hum. Factors J. Hum. Factors Ergon. Soc. (2020). https://​doi.​org/​
10.​1177/​00187​20820​960865

	61.	 Gao, F., Cummings, M.L., Solovey, E.: Designing for robust and 
effective teamwork in human–agent teams. In: Mittu, R., Sofge, 
D., Wagner, A., Lawless, W.F. (eds.) Robust Intelligence and 
Trust in Autonomous Systems, pp. 167–190. Springer US, Boston 
(2016). https://​doi.​org/​10.​1007/​978-1-​4899-​7668-0_9

	62.	 Demir, M., Likens, A.D., Cooke, N.J., Amazeen, P.G., McNeese, 
N.J.: Team coordination and effectiveness in human-autonomy 
teaming. IEEE Trans. Hum.-Mach. Syst. 49(2), 150–159 (2019). 
https://​doi.​org/​10.​1109/​THMS.​2018.​28774​82

	63.	 Boy, G.A., Morel, C.: The machine as a partner: human–machine 
teaming design using the PRODEC method. Work 73(s1), S15–
S30 (2022). https://​doi.​org/​10.​3233/​WOR-​220268

	64.	 Shih, A., Sawhney, A., Kondic, J., Ermon, S., Sadigh, D.: On the 
critical role of conventions in adaptive human–AI collaboration. 
arXiv (2021). https://​doi.​org/​10.​48550/​arXiv.​2104.​02871

	65.	 U. M. of D. MoD.: Human–machine teaming (JCN 1/18)’, GOV.
UK, 2018. https://​www.​gov.​uk/​gover​nment/​publi​catio​ns/​human-​
machi​ne-​teami​ng-​jcn-​118. Accessed 22 Mar 2022

	66.	 Shih, A., Sawhney, A., Kondic, J., Ermon, S., Sadigh, D.: On the 
critical role of conventions in adaptive human–AI collaboration. 
ArXiv210402871 Cs (2021). [Online]. Available: http://​arxiv.​org/​
abs/​2104.​02871. Accessed: 05 May 2022

	67.	 Chen, J.Y.C., Barnes, M.J., Harper-Sciarini, M.: Supervisory 
control of multiple robots: human-performance issues and user-
interface design. IEEE Trans. Syst. Man Cybern. Part C Appl. 
Rev.Cybern. Part C Appl. Rev. 41(4), 435–454 (2011). https://​
doi.​org/​10.​1109/​TSMCC.​2010.​20566​82

	68.	 Akash, K., Reid, T., Jain, N.: Improving human–machine col-
laboration through transparency-based feedback—Part II: control 
design and synthesis. IFAC-Pap. 51(34), 322–328 (2019). https://​
doi.​org/​10.​1016/j.​ifacol.​2019.​01.​026

	69.	 Konaev, M., Chahal, H.: Building trust in human–machine teams. 
2021. [Online]. Available: https://​www.​brook​ings.​edu/​techs​tream/​
build​ing-​trust-​in-​human-​machi​ne-​teams/

	70.	 Tam, D., Mascarenhas, A., Zhang, S., Kwan, S., Bansal, M., 
Raffel, C.: Evaluating the factual consistency of large language 
models through summarization. arXiv (2022). https://​doi.​org/​10.​
48550/​arXiv.​2211.​08412

https://www.frontiersin.org/articles/10.3389/frobt.2021.554578
https://www.frontiersin.org/articles/10.3389/frobt.2021.554578
https://doi.org/10.1145/3491101.3519772
https://doi.org/10.1177/2056305118768296
https://doi.org/10.1177/2056305118768296
https://doi.org/10.2514/6.2004-6313
https://doi.org/10.3389/frobt.2018.00015
https://www.hrw.org/report/2012/11/19/losing-humanity/case-against-killer-robots
https://www.hrw.org/report/2012/11/19/losing-humanity/case-against-killer-robots
https://doi.org/10.1016/j.future.2022.05.014
https://doi.org/10.1016/j.future.2022.05.014
https://platform.openai.com
https://platform.openai.com
https://doi.org/10.1080/1463922X.2017.1293187
https://doi.org/10.1080/1463922X.2017.1293187
https://doi.org/10.1109/ACCESS.2018.2853560
https://doi.org/10.1109/ACCESS.2018.2853560
https://doi.org/10.48550/arXiv.2012.08630
https://doi.org/10.48550/arXiv.2012.08630
https://doi.org/10.1016/j.im.2019.103174
https://www.darpa.mil/program/artificial-social-intelligence-for-successful-teams
https://www.darpa.mil/program/artificial-social-intelligence-for-successful-teams
https://www.darpa.mil/news-events/2019-02-14
https://www.darpa.mil/program/competency-aware-machine-learning
https://www.darpa.mil/program/competency-aware-machine-learning
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
https://doi.org/10.1038/d41586-019-03013-5
https://doi.org/10.1038/d41586-019-03013-5
https://doi.org/10.3389/frobt.2021.642201
https://time.com/6247678/openai-chatgpt-kenya-workers/
https://time.com/6247678/openai-chatgpt-kenya-workers/
https://doi.org/10.2139/ssrn.4573321
https://doi.org/10.2139/ssrn.4573321
https://www.unidir.org/human-machine-interfaces
https://www.unidir.org/human-machine-interfaces
https://doi.org/10.1016/j.concog.2011.08.014
https://doi.org/10.1016/j.ifacol.2019.01.049
https://doi.org/10.1016/j.ifacol.2019.01.049
https://doi.org/10.1038/d41591-023-00014-w
https://doi.org/10.1038/d41591-023-00014-w
https://doi.org/10.1177/0018720820960865
https://doi.org/10.1177/0018720820960865
https://doi.org/10.1007/978-1-4899-7668-0_9
https://doi.org/10.1109/THMS.2018.2877482
https://doi.org/10.3233/WOR-220268
https://doi.org/10.48550/arXiv.2104.02871
https://www.gov.uk/government/publications/human-machine-teaming-jcn-118
https://www.gov.uk/government/publications/human-machine-teaming-jcn-118
http://arxiv.org/abs/2104.02871
http://arxiv.org/abs/2104.02871
https://doi.org/10.1109/TSMCC.2010.2056682
https://doi.org/10.1109/TSMCC.2010.2056682
https://doi.org/10.1016/j.ifacol.2019.01.026
https://doi.org/10.1016/j.ifacol.2019.01.026
https://www.brookings.edu/techstream/building-trust-in-human-machine-teams/
https://www.brookings.edu/techstream/building-trust-in-human-machine-teams/
https://doi.org/10.48550/arXiv.2211.08412
https://doi.org/10.48550/arXiv.2211.08412


	 AI and Ethics

	71.	 Dziri, N., et al.: Faith and fate: limits of transformers on compo-
sitionality. arXiv (2023). [Online]. Available: http://​arxiv.​org/​abs/​
2305.​18654. Accessed: 08 July 2023

	72.	 Walliser, J.C., de Visser, E.J., Wiese, E., Shaw, T.H.: Team struc-
ture and team building improve human–machine teaming with 
autonomous agents. J. Cogn. Eng. Decis. Mak. 13(4), 258–278 
(2019). https://​doi.​org/​10.​1177/​15553​43419​867563

	73.	 Stowers, K., Brady, L.L., MacLellan, C., Wohleber, R., Salas, E.: 
Improving teamwork competencies in human–machine teams: per-
spectives from team science. Front. Psychol. 12 (2021). [Online]. 
Available: https://​www.​front​iersin.​org/​artic​les/​10.​3389/​fpsyg.​
2021.​590290. Accessed: 08 Nov 2022

	74.	 MoD.: Human–machine teaming. Joint Concept Note 1/18 (2018)
	75.	 Bagwell, K.: Commitment and observability in games. Games 

Econ. Behav. 8(2), 271–280 (1995). https://​doi.​org/​10.​1016/​
S0899-​8256(05)​80001-6

	76.	 North, D.C.: Institutions and credible commitment. J. Inst. Theor. 
Econ. JITE Z. Für Gesamte Staatswiss. 149(1), 11–23 (1993). 
[Online]. Available: https://​www.​jstor.​org/​stable/​40751​576. 
Accessed: 18 Oct 2022

	77.	 Musick, G., O’Neill, T.A., Schelble, B.G., McNeese, N.J., Henke, 
J.B.: What happens when humans believe their teammate is an AI? 
An investigation into humans teaming with autonomy. Comput. 
Hum. Behav.. Hum. Behav. 122, 106852 (2021). https://​doi.​org/​
10.​1016/j.​chb.​2021.​106852

	78.	 Lewis, M., Wang, H., Chien, S.Y., Velagapudi, P., Scerri, P., 
Sycara, K.: Process and performance in human–robot teams. J. 
Cogn. Eng. Decis. Mak. 5(2), 186–208 (2011). https://​doi.​org/​10.​
1177/​15553​43411​409323

	79.	 Warren, A., Hillas, A.: Friend or frenemy? The role of trust in 
human–machine teaming and lethal autonomous weapons sys-
tems. Small Wars Insur. 31(4), 822–850 (2020). https://​doi.​org/​
10.​1080/​09592​318.​2020.​17434​85

	80.	 DARPA.: ASIST—Artificial Social Intelligence for Successful 
Teams. 2020. https://​www.​darpa.​mil/​progr​am/​artif​icial-​social-​
intel​ligen​ce-​for-​succe​ssful-​teams. Accessed 17 Oct 2022

	81.	 National Academies of Sciences, Engineering, and Medicine.: 
Human–AI Teaming: State-of-the-Art and Research Needs, p. 
26355. National Academies Press, Washington, D.C. (2022). 
https://​doi.​org/​10.​17226/​26355

	82.	 Henry, K.E., et al.: Human–machine teaming is key to AI adop-
tion: clinicians experiences with a deployed machine learning 
system, Npj Digit. Med. 5(1). (2022). https://​doi.​org/​10.​1038/​
s41746-​022-​00597-7

	83.	 Cooke, N.J., Demir, M., McNeese, N.: Synthetic teammates as 
team players: coordination of human and synthetic teammates. 
Cognitive Engineering Research Institute Mesa United States 
(2016). [Online]. Available: https://​apps.​dtic.​mil/​sti/​citat​ions/​
AD101​7169. Accessed: 21 June 2022

	84.	 McNeese, N.J., Schelble, B.G., Canonico, L.B., Demir, M.: 
Who/what is my teammate? Team composition considerations in 
human–AI teaming. ArXiv210511000 Cs (2021). [Online]. Avail-
able: http://​arxiv.​org/​abs/​2105.​11000. Accessed: 28 Mar 2022

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2305.18654
http://arxiv.org/abs/2305.18654
https://doi.org/10.1177/1555343419867563
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.590290
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.590290
https://doi.org/10.1016/S0899-8256(05)80001-6
https://doi.org/10.1016/S0899-8256(05)80001-6
https://www.jstor.org/stable/40751576
https://doi.org/10.1016/j.chb.2021.106852
https://doi.org/10.1016/j.chb.2021.106852
https://doi.org/10.1177/1555343411409323
https://doi.org/10.1177/1555343411409323
https://doi.org/10.1080/09592318.2020.1743485
https://doi.org/10.1080/09592318.2020.1743485
https://www.darpa.mil/program/artificial-social-intelligence-for-successful-teams.
https://www.darpa.mil/program/artificial-social-intelligence-for-successful-teams.
https://doi.org/10.17226/26355
https://doi.org/10.1038/s41746-022-00597-7
https://doi.org/10.1038/s41746-022-00597-7
https://apps.dtic.mil/sti/citations/AD1017169
https://apps.dtic.mil/sti/citations/AD1017169
http://arxiv.org/abs/2105.11000

	Human control of AI systems: from supervision to teaming
	Abstract
	1 Introduction
	2 Supervisory human control and its challenges
	2.1 Meaningful human control

	3 Challenges in applying SHC to foundation model-based AI systems
	4 The human–machine teaming approach to foundation model-based AI systems
	5 HMT for real-world deployment of foundation models-based multi-agent systems
	6 Conclusion
	Acknowledgements 
	References


