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A B S T R A C T   

This paper is the first to examine the impact of robotization on work meaningfulness, autonomy, competence, 
and relatedness, which are essential to motivation and well-being at work. Using surveys of workers and 
robotization data for 14 industries in 20 European countries spanning 2005–2021, we find a consistent negative 
impact of robotization on perceived work meaningfulness and autonomy. Using instrumental variables, we find 
that doubling robotization leads to a 0.9 % decrease in work meaningfulness and a 1 % decline in autonomy. To 
put this in perspective, if the robotization levels of the top 5 industry were to match those of the leading industry 
in terms of robot adoption in 2020 (equivalent to a 7.5-fold increase), it would result in a decline of 6.8 % in 
work meaningfulness and 7.5 % in autonomy. The link between robotization, competence, and relatedness is also 
negative but less robust. We also examine how tasks, skills, and socio-demographic characteristics moderate the 
main relationships. We find that workers with routine tasks experience an even greater negative effect of 
robotization in terms of declines in their autonomy, competence, and relatedness. However, we also discover that 
utilizing computers as tools for independent work can help workers maintain a sense of autonomy, competence, 
and relatedness in industries and job roles that adopt robots. Our results highlight that by deteriorating work 
meaningfulness and self-determination, robotization can impact work life above and beyond its consequences for 
employment and wages.   

1. Introduction 

Robots are matching or outperforming humans in a growing range of 
tasks, including welding, packing, painting, filling prescriptions, and 
assembling intricate automotive parts. With the integration of artificial 
intelligence (AI), smart machines are now pioneering new frontiers, 
from performing complex surgeries on Earth, to exploring the harsh, 
uncharted surface of Mars. This ongoing wave of automation is arguably 
one of the most powerful forces that has already reshaped and will 
continue altering work in the future. 

This rapid technological advancement has understandably sparked 
widespread fears about the future of work (e.g., Dekker et al., 2017; 
Hinks, 2021), reigniting age-old anxieties concerning the impact of 
technology on employment (e.g., Mokyr et al., 2015; Spencer, 2023). 
Recent projections on which jobs may be susceptible to automation (i.e., 

have automation potential) (Bonin et al., 2015; Bowles, 2014; Frey and 
Osborne, 2017; Pajarinen and Rouvinen, 2014) have recently rekindled 
debates and public fears.1 While subsequent studies show much lower 
automation potentials across countries (Arntz et al., 2017, 2016; 
Nedelkoska and Quintini, 2018), the underlying fear of unemployment 
is understandable given the large earnings (e.g., Couch and Placzek, 
2010; Huckfeldt, 2022) and psychological costs of unemployment (e.g., 
Nikolova and Ayhan, 2019; Kassenboehmer and Haisken-DeNew, 2009), 
and the fact that automation’s consequences are negative for low-and 
middle-skilled workers and those performing routine tasks (e.g., Ace-
moglu et al., 2023; Acemoglu and Restrepo, 2020). Unsurprisingly, ac-
ademic research has primarily focused on the repercussions of 
technology on employment and wages. 

However, recent developments have fostered a broader under-
standing of automation’s impacts. Models of routine-biased 

* Corresponding author at: University of Groningen, Faculty of Economics and Business, Global Economics and Management, Groningen, the Netherlands. 
E-mail addresses: m.v.nikolova@rug.nl (M. Nikolova), f.d.cnossen@rug.nl (F. Cnossen).   

1 In 2021, only 29 % of European respondents believed that artificial intelligence and automation would create more jobs than they would eliminate (European 
Commission, 2021). 

Contents lists available at ScienceDirect 

Research Policy 

journal homepage: www.elsevier.com/locate/respol 

https://doi.org/10.1016/j.respol.2024.104987 
Received 27 June 2022; Received in revised form 30 January 2024; Accepted 27 February 2024   

mailto:m.v.nikolova@rug.nl
mailto:f.d.cnossen@rug.nl
www.sciencedirect.com/science/journal/00487333
https://www.elsevier.com/locate/respol
https://doi.org/10.1016/j.respol.2024.104987
https://doi.org/10.1016/j.respol.2024.104987
https://doi.org/10.1016/j.respol.2024.104987
http://crossmark.crossref.org/dialog/?doi=10.1016/j.respol.2024.104987&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Research Policy 53 (2024) 104987

2

technological change suggest that the job losses from automation can be 
counterbalanced by productivity and reinstatement effects (Acemoglu 
and Restrepo, 2019; Arntz et al., 2019), potentially leading to a net 
economic gain at the societal level (e.g., Gregory et al., 2021). Moreover, 
when firms adopt new technologies, workers adapt their tasks (Dauth 
et al., 2021; Spitz-Oener, 2006), which is why whole professions typi-
cally do not disappear. Nevertheless, the replacement of some tasks can 
lead to a reduction in task variety and autonomy. Therefore, how 
robotization affects job quality and how various tasks impact worker 
well-being are critical questions that the current literature on the 
employment and earnings effects of automation has yet to explore. 

This paper advances previous research by providing a more holistic 
picture of the impact of robotization on workers’ lives. Beyond income 
and job security, workers also value other aspects of their jobs that 
contribute to their well-being and motivation. For example, workers 
care about whether their work is meaningful or fulfilling (Hu and Hirsh, 
2017; Kesternich et al., 2021), whether they have autonomy or discre-
tion over their tasks, feel competent in executing their activities, and 
have positive relationships with their co-workers or clients (Deci and 
Ryan, 1985; Hackman and Oldham, 1976). These factors, intrinsic to 
human motivation and basic psychological needs, have profound effects 
on performance, productivity, and learning outcomes, and are key to 
optimal human functioning (Ryan and Deci, 2017; Ryan and Deci, 
2001). Therefore, it is important to examine how automation affects 
non-monetary aspects of work quality and how workers can cope with 
the challenges and opportunities that automation brings. 

This paper contributes to the literature by examining the impact of 
one type of automation— industrial robots— on two key aspects of work 
quality: work meaningfulness and self-determination. Work meaning-
fulness refers to the extent to which workers perceive their work as 
valuable, significant, or purposeful (Nikolova and Cnossen, 2020; Rosso 
et al., 2010). Self-determination denotes the extent to which workers 
experience autonomy, competence, and relatedness (Ryan and Deci, 
2017). These aspects are derived from the seminal model in psychology: 
self-determination theory (Ryan and Deci, 2017). According to Nikolova 
and Cnossen (2020), autonomy, competence, and relatedness are key 
pre-conditions to achieving work meaningfulness. Furthermore, work 
meaningfulness is instrumental in workers’ efforts and has been linked 
to key organizational outcomes such as absenteeism, retirement in-
tentions, and the willingness to take on skills training (Nikolova and 
Cnossen, 2020; Rosso et al., 2010). 

Industrial robots are capable of interacting with their environment 
by handling or moving objects and primarily perform routine manual 
tasks, such as reaching and handling.2 Adopting industrial robots in the 
workplace can affect work meaningfulness and self-determination 
through several channels. For example, it can lead to diminishing 
human interactions and worsening relationships at work. Automation 
can also reduce workers’ creativity and learning potential and diminish 
skill utilization and competence development, especially for those per-
forming routine or manual tasks. In addition, industrial robots could 
reduce workers’ autonomy if robots and algorithms determine their 
tasks and work sequence (Gombolay et al., 2015). 

Robotization need not be harmful to work meaningfulness and self- 
determination. For instance, automation can also reduce “the drudg-
ery of work” by eliminating repetitive tasks and freeing up time for 
creative pursuits (Spencer, 2018), which can improve job quality and 
the ability of workers to satisfy their innate psychological needs from 
work (Deci & Ryan, 2000). For example, by replacing dangerous or dull 
tasks, robots can improve working conditions, which can increase work 
meaningfulness and self-determination. Indeed, robots are already 

taking over tasks related to high-risk military operations, space explo-
rations, bomb detection, and detonation, as well as “dirty” jobs, such as 
sewer cleanup, milking cows, or conducting autopsies (Marr, 2017). The 
adoption of such technologies can free humans to have more time and 
space to focus on creative tasks, especially those that require human 
judgment or interaction. Thus, the extent to which robots affect workers’ 
perceptions of work meaningfulness and self-determination remains an 
empirical question. 

We use worker-level survey data for 2010, 2015, and 2021 from 20 
European countries and 14 industries to explore how automation tech-
nologies impact workers’ meaningfulness and self-determination. We 
combine these data with industry-level information on changes in robots 
per 10,000 workers (i.e., robotization) and analyze the data using Or-
dinary Least Squares (OLS) and Instrumental Variable (IV) techniques. 

Our key finding is that robots harm work meaningfulness and au-
tonomy. Specifically, based on the IV coefficient estimates, doubling 
robotization would entail a 0.9 % decline in work meaningfulness and a 
1 % drop in autonomy. Across all industries in our sample, the average 
increase in robotization between 2005 and 2020 was 389 % (almost a 
four-fold increase). For some industries, the increase was even more 
dramatic. In mining and quarrying, for instance, there was a staggering 
26-fold increase in robotization over the same period, implying a sub-
stantial loss in meaningfulness and autonomy. To further put our esti-
mates in perspective, consider the food and beverages industry, a top 5 
industry in robot adoption, and the automotive industry (the sector with 
the highest level of robot adoption). Should robot adoption in the food 
and beverages industry increase to match that of the automotive in-
dustry (representing a 7.5-fold increase in robotization), we estimate a 
6.8 % decrease in work meaningfulness and a 7.5 % decrease in au-
tonomy. Based on EUKLEMS data, in 2020, nearly 4.5 million in-
dividuals worked in the food and beverages industry and about 3.3 
million in the automotive industry across the countries in our study. 
Therefore, the impact sizes we document may seem small in isolation, 
but the cumulative and long-term effect could be substantial given the 
large number of employees affected in such sizable industries and long- 
term trends in robotization. 

Furthermore, we find that the negative consequences of robotization 
for work meaningfulness are mostly independent of workers’ tasks, 
skills, and socio-demographic characteristics. We do, however, find 
important heterogeneity related to autonomy. Specifically, working 
with computers –– i.e., being in control of the machine — completely 
offsets the negative consequences of automation for autonomy. Having 
some tertiary education and being high-skilled cushions some of the 
negative effects of robotization on workers’ autonomy as well. At the 
same time, the detrimental effects of robotization are more pronounced 
for workers performing repetitive tasks. Our research highlights that the 
groups disproportionately affected by robotization broadly overlap with 
those identified in prior studies focusing on wages (e.g., Acemoglu et al., 
2023; Acemoglu and Restrepo, 2020; Graetz and Michaels, 2018). With 
respect to competence and relatedness, the results also appear to be 
more strongly negative for those engaged in repetitive tasks and fully 
offset for those working with computers. 

Overall, our study contributes to the scarce literature on the well- 
being implications of automation technology by examining how robot-
ization affects workers’ perceptions of meaningfulness and the fulfill-
ment of their basic psychological needs of autonomy, competence, and 
relatedness. More generally, the unique contribution of our study lies in 
documenting how robotization can benefit or disadvantage various 
groups of workers in terms of their perceived work quality above and 
beyond its impact on wages and employment contracts. Importantly, we 
also highlight which tasks and arrangements could help workers adapt 
and leverage automation technology more effectively. While future 
patterns of robotization remain uncertain, our results provide a useful 
framework and baseline for understanding their effects on job quality 
and well-being outcomes. 

2 In this paper, we focus on industrial robots, rather than service robots used, 
for example, in surgery. The reason for the restriction is that industrial robots 
have seen by far the most adoption, whereas the adoption of service sector 
robots is still in its infancy during our analysis time period. 
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2. Literature review 

The extant literature has mainly focused on the impact of robotiza-
tion on employment and wages without reaching a consensus about the 
overall effects. The main conclusions depend on multiple factors, 
including the level of analysis – firm, industry, or worker – and the 
country context (the US, cross-country, or Europe). Robot-adopting 
firms, which are typically more productive than their counterparts, 
tend to expand their employment (Acemoglu et al., 2023; Acemoglu 
et al., 2020; Bessen et al., 2020; Dixon et al., 2021; Koch et al., 2021), 
and may even increase workers’ wages (e.g., Bessen et al., 2020). At the 
same time, their non-robot-adopting competitors experience the oppo-
site effects, reducing employment. These effects may result in an overall 
decline in employment at the economy level. 

At the industry level, the evidence for some countries is negative, and 
for others not. Across 17 advanced economies, robotization has led to 
increases in wages overall but declines in the hours worked among the 
low-skilled (Graetz and Michaels, 2018). Furthermore, Acemoglu and 
Restrepo (2020) show that robot adoption between 1990 and 2007 led 
to large declines in employment and wages in US commuting zones. 
Similarly, Borjas and Freeman (2019) estimate that robotization 
entailed wage and employment declines between 2014 and 2016 in the 
US. In China, robot adoption also negatively affects employment and 
wages across cities for the 2000–2016 period (Giuntella et al., 2022). 
Adachi et al. (2022) found that robot adoption in Japanese industries 
and regions increased employment and wages in the 1978–2017 period. 
The French evidence on robots and employment is also positive with no 
consequences for wages (Aghion et al., 2020). Using data on 98 EU re-
gions during the 2001–2016 period, Jestl (2023) finds relatively modest 
effects of robotization on total employment. There are negative conse-
quences for local manufacturing industries, which are offset by 
employment in local services industries (Jestl, 2023). This evidence is in 
line with the German findings that industrial robots displace 
manufacturing workers, but this is offset by job creation in the services 
sector (Dauth et al., 2021). 

The evidence on the wages and employment of individual workers is 
not only mixed but also scarce. The cross-country evidence for 20 Eu-
ropean countries suggests that robots increased the wages of both male 
and female workers (Aksoy et al., 2021). When looking at individual 
workers in Germany, Dauth et al. (2021) find that robotization is asso-
ciated with small employment increases and small wage declines, on 
average. In the Netherlands, robots increase the average hourly wages 
and decrease the hours worked, with no average consequences for 
employment (Acemoglu et al., 2023). Nevertheless, blue-collar, low- 
educated workers, and those performing routine tasks tend to see their 
wages decline (Acemoglu et al., 2023). 

While the literature on robotization is rapidly expanding, economists 
have paid little attention to its impact on the job quality of individual 
workers (see a discussion in Berg et al., 2023). Investigating how auto-
mation influences job quality beyond wages and employment can 
significantly enhance our understanding of the broader consequences of 
robotization on workers’ well-being. Factors beyond financial compen-
sation, such as autonomy and a sense of meaning, play a crucial role in 
defining the comprehensive value of a job (e.g., Clark, 2015; Green, 
2006; Nikolova and Cnossen, 2020) and are essential elements for 
evaluating the broader impact of technological change on the 
workforce. 

The existing body of research on the effects of robotization on health 
and well-being outcomes, however, is still very limited (see Table 1).3 

Documented outcomes differ based on the period, context, and 

dependent variables. Some studies suggest that robotization seems to 
positively affect the health of low-skilled US workers by reducing 
physically demanding tasks, but does not affect high-skilled workers 
(Gunadi and Ryu, 2021). Other studies from the US find that while 
workplace injuries decline (Gihleb et al., 2022), there are decreases in 
mental health (Gihleb et al., 2022) and increases in substance-abuse- 
related deaths (Gihleb et al., 2022; O’Brien et al., 2022) and mortality 
from suicide, homicide, cancer, and cardiovascular causes in certain age 
groups (O’Brien et al., 2022). The evidence on the health consequences 
for Germany is more mixed, with Gihleb et al. (2022) finding no effects 
on mental health, and Abeliansky and Beulmann (2021) finding nega-
tive effects. Studies link automation to worsened job satisfaction in 
Norway, driven by low-skilled workers (Schwabe and Castellacci, 2020) 
and greater work intensity in Europe (Antón et al., 2023). Specifically, 
Antón et al. (2023) examined the effects of robot adoption on job quality 
and working conditions, focusing on elements, such as work intensity (e. 
g., the pace of work, time pressure, etc.), the physical environment, and 
skill discretion (Antón et al., 2023). Their findings suggest that an in-
crease in the robot stock at the regional level is associated with higher 
work intensity but has no effect on any other job quality indicator 
related to the physical environment. 

While the existing literature offers preliminary insights into the 
varying impact of robotization on workers’ health and well-being, it also 
underscores the significant role of automation in shaping job quality. 
Adopting industrial robots can harm job satisfaction by inducing greater 
fear of future machine replacement. For example, studying a large 
sample of workers in Norway for the period 2016–2019, Schwabe and 
Castellacci (2020) find that introducing industrial robots in local labor 
markets increases workers’ fear of machine replacement, which, in turn, 
significantly decreases their job satisfaction. Remarkably, 40 % of 
workers in their sample report fear that smart machines will substitute 
their working tasks in the future, a percentage that is similar to other 
European countries. The results reported by Schwabe and Castellacci 
(2020) are predominantly driven by low-skilled workers who, due to 
their routine-based tasks, are more likely to be exposed to automation. 

A related body of work suggests that automation risk—typically 
associated with expectations of reduced wages and potential future 
unemployment—can also negatively impact workers’ physical and 
mental health (e.g., Lordan and Stringer, 2022; Patel et al., 2018). 
Specifically, job-loss-related fear and anxiety can lead to job insecurity 
(Reichert and Tauchmann, 2017), subsequently culminating in poor 
physical and mental health outcomes (De Witte et al., 2016). Indeed, 
using data from the General Social Survey in the US, Patel et al. (2018) 
find that a 10 % increase in automation risk at the county level is 
associated with 2.38, 0.8, and 0.6 percentage points lower general, 
physical, and mental health, respectively. Similarly, Gorny and Wood-
ard (2020) use data from the US and Europe to show that workers in 
occupations with higher automation potential through computer- 
controlled equipment are more likely to experience lower job satisfac-
tion. However, they find that it is the monotonicity and low perceived 
meaning of such jobs that drive low job satisfaction rather than fears of 
future job replacement. Their results emphasize the crucial role job 
meaning plays in the relationship between robot adoption and subjec-
tive well-being outcomes such as job satisfaction. 

Our study advances this emerging body of literature by examining 
the effect of robotization on work meaning and self-determination (i.e., 
competence, relatedness, and autonomy). This is important because 
prior research underscores that these dimensions do not merely enrich 
job experiences, but serve as key drivers of workers’ motivation, effort, 
and performance (e.g., Nikolova and Cnossen, 2020) and are key aspects 
of the overall value of a job. 

3 See Castellacci and Tveito (2018) for an overview of the literature on well- 
being and ICT and Martin and Hauret (2022) for a summary of the studies on 
the effects of digitalization, including robotization and automation risk, on 
different measures of job quality. 
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3. Conceptual framework 

3.1. Meaningful work and self-determination 

Work meaningfulness is a critical aspect of subjective job quality that 
matters for motivation and work effort (Cassar and Meier, 2018; Niko-
lova and Cnossen, 2020). People derive meaning from the intrinsic value 
of their work when they think they engage in useful, interesting, or 
fulfilling activities. In this sense, work meaningfulness is a psychological 
state that depends on the workers’ perception of their jobs as valuable 
and worthwhile (Hackman and Oldham, 1976). 

When people feel that their efforts are important for successfully 
executing a certain task, they tend to strongly identify with that goal. As 
a result, they are relatively more likely to experience meaning compared 
with a situation when they do not identify themselves with the objective. 
The inner drive to experience a sense of meaning at work is so strong 
that, on average, people are willing to accept a 38 % salary cut to engage 
in more meaningful work—$32,666 for a meaningful job vs. $52,498 for 
a meaningless job (Hu and Hirsh, 2017). Similarly, experimental studies 
from the US and Germany demonstrate that work meaningfulness lowers 
reservation wages (Ariely et al., 2008; Kesternich et al., 2021), yet only 
among those for whom work meaningfulness is very important in the 
German case (Kesternich et al., 2021). 

Simultaneously, feelings of self-determination are based on three 
separate but complementary psychological needs: competence, auton-
omy, and relatedness (Deci and Ryan, 1985; Ryan and Deci, 2017). 
Workers feel competent when their skills match the complexity of the 

task. In such cases, when employees know that their skills are instru-
mental to the task at hand, they feel a greater sense of contribution. 
When a task is too easy, they feel like anyone could have done it, and 
when it is too hard or complex, they feel less self-efficacy and personal 
contribution. Therefore, feeling competent in the workplace is an 
important aspect of self-determination. 

Second, people feel a sense of autonomy when they have “freedom, 
independence, and discretion” to make decisions regarding the planning 
and execution of their tasks (Hackman and Oldham, 1976). Promoting 
own initiatives and encouraging decision-making at the individual level, 
as opposed to traditional top-down directives, can foster an environment 
where employees feel an enhanced sense of control over their work. 

Finally, according to self-determination theory, people have a deep 
psychological need for connectedness and belonging: they want to feel 
appreciated and supported by their co-workers and managers in their 
efforts at the company. Such high-quality relationships at work are also 
important for fostering work meaningfulness (Bailey et al., 2019), 
especially when it comes to the “giving to others” aspects (Colbert et al., 
2016). If such appreciation and opportunities to assist others fall short, 
people can become demotivated and experience feelings of uselessness: 
they don’t matter for the final product. The three self-determination 
factors – autonomy, competence, and relatedness – are also key factors 
that empirically underpin having a sense of work meaningfulness 
(Nikolova and Cnossen, 2020). 

Table 1 
Related literature.  

Reference Outcomes Automation measure Level of 
analysis 

Main data sources Econometric 
technique(s) 

Key findings 

Health 
Abeliansky 

and 
Beulmann 
(2021) 

Mental health Robot stock per 1000 
workers at the industry 
level 

Individual- 
level 

German Socio-Economic Panel, 
International Federation of 
Robotics (IFR), WIOD trade data, 
Baumgarten et al. (2013) task 
content data 

Individual Fixed 
Effects; IV 
(instrument =
robotization in other 
advanced countries) 

Worse mental health; 
driven by job insecurity 
fears, especially for 
routine-task workers and 
males 

Gunadi and 
Ryu (2021) 

Share reporting i) 
poor health; ii) work 
disability; iii) 
quitting a job 
because of health 

Robot stock per 1000 
workers at the 
metropolitan statistical 
area (MSA) level 

MSA-level in 
the US 

Current Population Survey + IFR 
data on robots (2006–2017) 

2SLS regressions 
(instrument = robot 
adoption in select 
European countries) 

Reductions in share 
reporting poor health, 
work disability, and job 
quitting due to health 
among low-skilled 
workers; no effects for 
high-skilled workers; 

Gihleb et al. 
(2022) 

Workplace injuries, 
job intensity, 
disability, mental 
health, work and life 
satisfaction 

Robot stock per US 
worker (for the US); 
Robot stock per German 
worker based on the 
initial occupation 
(German sample) 

City-level 
(US), 
Individual- 
level 
(Germany) 

Occupational Health and Safety 
Administration (OSHA) Data 
Initiative; Center for Disease 
Control and National Center for 
Health Statistics; American 
Community Survey (ACS); 
Behavioral Risk Factor 
Surveillance System 
(BRFSS); German Socio- 
Economic Panel (1994–2016); 
International Federation of 
Robotics (IFR) 

IV (instrument =
robot adoption in 
other countries, only 
for the US but not for 
analyses for Germany) 

US: declines in workplace 
injuries; increase in drug- 
and alcohol-related deaths 
and worse mental health; 
Germany: less physical 
intensity; less disability; no 
effects on mental health 
and work/life satisfaction  

Job satisfaction and job quality 
Schwabe and 

Castellacci 
(2020) 

Job satisfaction Fear of machine 
replacement, 
instrumented using the 
robot stock 

Individual Norway, 2007–2019, Working 
Life Barometer, International 
Federation of Robotics (IFR), 
Eurostat employment data 

IV (instrument =
lagged change in the 
robot stock per 1000 
workers at the region- 
industry level) 

Worse job satisfaction; 
driven by low-skilled 
workers (more exposed 
due to routine tasks) 

Antón et al. 
(2023) 

Job quality aspects 
(work intensity, 
physical 
environment, skills & 
discretion) 

Change in the robot 
stock per worker at the 
regional (NUTS-2) level 

Regional European Working Conditions 
Surveys (1995–2005), 
International Federation of 
Robotics (IFR), European Union 
Labour Force Survey, European 
Community Household Panel, 
EUKLEMS 

IV (instrument =
change in the robot 
stocks in other 
advanced countries) 

Worsens work intensity; 
No effects on any other job 
quality indicators  
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3.2. Robots, work meaningfulness, and self-determination 

An industrial robot is a machine able to “manipulate” its environ-
ment by grasping or moving objects around it. Most of the activities that 
industrial robots perform are reaching and handling tasks. Examples of 
robots fitting this definition include manipulators that weld or paint 
cars, move materials and pack boxes, and load and unload workpieces 
from factory equipment such as Computer Numerical Control (CNC) 
machine tools and semiconductor fabricators. Examples of industrial 
equipment that are not robots include most machine tools, an assembly 
line conveyor belt, and a flexible manufacturing cell (Webb, 2020). 

“Human” tasks overlapping with the capabilities of a robot are sus-
ceptible to automation. As industrial robots have a comparative 
advantage in repetitive activities and lifting heavy objects, workers with 
relatively routine and manual task-intensive occupations are at greater 
risk of replacing a large share of their tasks (Autor et al., 2003; Webb, 
2020). However, due to their pre-programmed nature, industrial robots 
without artificial intelligence (AI) capabilities have limited ability to 
execute tasks in unpredictable environments, mostly those involving 
human contact. 

Therefore, industrial robots have relatively little capacity to replace 
cognitive, non-routine, and interpersonal tasks. While AI technologies 
may substitute these tasks in the future, Webb (2020) shows that the 
patent texts for robotic inventions strongly overlap with relatively 
routine and manual occupations and little with nonroutine cognitive 
and interpersonal occupations. 

Because robots only execute a specific set of tasks, the effect of robots 
on meaningfulness and self-determination is ambiguous: robots replace 
relatively mundane tasks, and this may allow humans to focus on new, 
interesting, and more complex tasks (Berg, 2019; Berg et al., 2023; 
Parker and Grote, 2020), increasing the potential of experiencing 
meaningful work. In this sense, automation could reduce unpleasant, 
dirty, dull, or dangerous work and free up time to pursue tasks and ac-
tivities that bring freedom and fulfillment – an idea dating back at least 
to Karl Marx (Spencer, 2018; Spencer, 2023). 

However, if the task replacement is not met with a simultaneous shift 
towards more purposeful activities, experiences of meaningfulness 
might decrease. Robots that directly replace tasks humans perform or 
limit task variety may reduce that person’s sense of meaning. This may 
also occur if only minor or unimportant tasks that are no longer directly 
associated with the final product’s success remain. Such “micro-tasks” 
bear little meaning in themselves, as they are not connected to a purpose 
or directly useful in and of themselves (Parker and Grote, 2020). 
Moreover, given that robots may replace certain activities and make way 
for others, the impact of robots on work design may strongly differ be-
tween workers in the same workplace and working in the same 
occupation. 

Similarly, robots may also positively or negatively affect one’s sense 
of self-determination. This strongly depends on how robots are intro-
duced in the workplace. For instance, autonomy might decrease if one’s 
workflow becomes dependent on the work-pace of a robot. Conversely, 
if workers can use the robot to their benefit, they may acquire more 
room for autonomous agency and discretion in developing new tasks. 
Likewise, one’s feeling of competence may increase if relatively 
mundane tasks are replaced, clearing the way for more skillful tasks. 
However, if the robot takes over tasks that a worker takes pride in, and 
no challenging tasks are introduced, the feeling of competence can 
decrease. Lastly, if robots are seen as partners at work, one’s sense of 
relatedness might not be compromised. And yet, relatedness can 
decrease if the robot affects the physical environment in such a way that 
personal connections are disrupted. 

Barrett et al. (2012) provide an insightful case study highlighting 
how the introduction of a robot may affect workers differently within 
the same workplace. They show that the introduction of a drug- 
dispensing robot in a hospital pharmacy led to contrasting experiences 
for different workers, depending on how the robot altered their work. 

First, pharmacists indicated that their jobs had improved due to the 
increased delivery speed of medication, which provided more room for 
in-depth patient counseling. This made their work more interesting – 
appealing more strongly to their sense of competence – and more 
interactive, increasing their sense of relatedness to their patients. 

Second, the assistants to the pharmacist, originally responsible for 
selecting and delivering the medications to the pharmacist, had the 
opposite experience. Their responsibilities diminished to the point 
where they were only required to load medicine onto the robot. Their 
sense of competence decreased, as the original expertise of knowing 
where to shelve which medicine was no longer necessary. Furthermore, 
they also experienced a decrease in autonomy, as the robot now guided 
where to place each item. 

The third group, the technicians, had an entirely distinct experience. 
Before the robot was introduced, they operated similarly to the assis-
tants. However, with the introduction of the robot, their relative posi-
tion in the pharmacy changed. As the robot often stagnated and the 
technicians were the only workers authorized to fix the problems (even 
if the assistants knew how to), this increased their sense of competence 
and feeling of status within the organization. 

These considerations lead to the following testable hypothesis: 

H1. The impact of robotization on work meaningfulness and workers’ 
sense of self-determination, encompassing autonomy, competence, and 
relatedness, can manifest either positively or negatively. 

3.3. The moderating effect of workers’ skills and demographics 

As the pharmacy case study illustrates, robot adoption can signifi-
cantly impact the experience of meaning and self-determination in the 
workplace. Some workers experience more competence as they can 
focus more on tasks that require their specific human capital (such as 
fixing the machine for the technicians), whereas others experience lower 
competence because the machine makes their expertise and contribu-
tions obsolete. Importantly, these changes can occur even within the 
same company and depend on the tasks people perform and their skills. 

Therefore, we also explore the effects of several moderating vari-
ables: tasks, skill and education levels, and worker demographics. First, 
technology adoption (robots and ICT) generally leads to tasks being 
replaced, augmented, or created (Acemoglu and Restrepo, 2019). In-
dividuals performing tasks comparable to those that can be taken over 
by technology (i.e., routine and manual tasks) are at relatively higher 
risk of task replacement (Autor et al., 2003; Autor, 2013; Acemoglu and 
Restrepo, 2019). While these workers may not face immediate unem-
ployment, the introduction of robots that can perform some of their tasks 
may have implications for workers’ work meaningfulness and self- 
determination, such as reducing the variety of tasks or the discretion 
over when to perform tasks. In addition, workers performing nonroutine 
cognitive (i.e., analytical and interpersonal) tasks face a relatively lower 
risk of replacement, and higher chances of task augmentation. 

Therefore, we hypothesize that the nature of tasks moderates the 
effect of robots on the workers’ perceptions of work meaningfulness and 
self-determination. Some of these tasks, due to their routine nature, 
might be more susceptible to replacement (e.g., the assistants placing 
the medicine in the right place). In contrast, other tasks can be enhanced 
by technology (e.g., the pharmacists seeing productivity increases due to 
faster medicine delivery) or can even lead to the emergence of entirely 
new tasks (e.g., the technicians working on robot maintenance). 

We distinguish between two types of task characteristics that we use 
as moderators in our analysis. First, we observe the routine intensity of 
tasks. To capture routine tasks, we use worker-level information on re-
petitive tasks. Second, we have information about the nonroutine in-
tensity of tasks, which we split into non-routine cognitive and nonroutine 
interactive. For the nonroutine cognitive tasks, we rely on information on 
whether one has to work with a computer, meaning that they are in 
charge of operating and working with the technology. We capture the 

M. Nikolova et al.                                                                                                                                                                                                                              



Research Policy 53 (2024) 104987

6

degree of interactivity at work by utilizing information on the re-
spondent’s degree of working with clients. 

Second, we conjecture that the effect of robots on meaningfulness 
and self-determination depends on workers’ skill levels. High-skilled 
workers are more likely to benefit from the complementarity between 
human skills and machines compared with the low-skilled (Autor et al., 
2003; Webb, 2020). Robots can act as complements to high-skill workers 
by automating only portions of routine and manual jobs, thereby 
increasing the value of the non-routine and cognitive tasks that these 
workers perform (Autor and Dorn, 2013). Therefore, we also include 
interactions with workers’ skills to see whether these moderate the main 
effects. We utilize two measures of skills – one based on educational 
attainment and one based on the occupational category of the 
respondent. 

Third, demographic characteristics could moderate the effects as 
well. Older workers might be more resistant to technological change, but 
on the other hand, they may be less affected by automation if they have 
survived past automation waves. For example, Schwabe and Castellacci 
(2020) show that older workers view technology as a force that does not 
directly threaten their careers but adds positive value to work and so-
ciety. This may be because smart machines substitute for young un-
skilled workers but complement older skilled ones, as predicted by Sachs 
and Kotlikoff (2012) and empirically demonstrated by Battisti and 
Gravina (2021), thus possibly increasing the job quality of older 
workers. 

We also explore whether there are gender differences in the rela-
tionship between automation and work meaningfulness and self- 
determination. For instance, Aksoy et al. (2021) also show that the 
gender pay gap increases with robotization, and medium- and high- 
skilled males disproportionately benefit from robot exposure. While 
Aksoy et al.’s (2021) results highlight differences in pay, the fact that 
robots predominantly increase the productivity of men suggests that the 
impact on their experience of meaningfulness and self-determination 
might also be more positive than for women. 

As summarized in Table 2, these considerations form the basis of our 
analysis and lead to our second set of hypotheses: 

H2a. Workers’ tasks moderate the impact of robotization on work 
meaningfulness and self-determination: robotization is more likely to 
negatively affect those performing routine-based tasks, whereas workers 
with nonroutine-based tasks should be positively affected. 

H2b. The work meaningfulness and self-determination of highly skil-
led workers and those with higher education are less likely to be nega-
tively affected by robotization than the corresponding outcomes of low- 
skilled and low-educated workers. 

H2c. The work meaningfulness and self-determination of older 
workers are less likely to be negatively affected by robotization than 
those of younger workers. 

H2d. Female workers’ work meaningfulness and self-determination 
are more likely to be negatively affected by robotization compared 
with those of male workers. 

4. Data 

Research regarding the consequences of automation relies on two 
main measures: i) industry-level data on industrial robots or ii) auto-
mation potential based on routine intensity at the occupational level 
capturing the risk of replaceability of tasks, regardless of whether the 
worker is actually exposed to that technology. An example of the latter 
type of measure is the Routine Task Intensity (RTI) index as used by 
Autor and Dorn (2013) or Acemoglu and Autor (2011), which measures 
the relative exposure to automation by focusing on the routine task 
component based on occupational descriptions of tasks from the DOT or 
O*NET. The main advantage of the first type of data is that it is based on 
the actual number of robots employed in an industry, rather than the 
future potential for robotization and automation. The main disadvan-
tage is the high level of aggregation at the industry level and the 
inability to measure the quality of robots, just their quantity. The main 
advantage of the second measure is that it is available at a more granular 
level – e.g., two- or three-digit occupations, but the main disadvantage is 
that the data typically do not vary over time, are based on the US 
occupational dictionaries, and do not measure actual exposure to 

Table 2 
Possible consequences of robots on work meaningfulness and self-determination, with explanations regarding the moderators.  

Experiences of Potential positive consequences of 
robots 

Potential negative effects of robots Moderators of the consequences of 
robotization for work meaningfulness, 
autonomy, competence, and relatedness 

Meaningfulness 
(a sense of doing useful and fulfilling 
work) 

Robots as partners in pursuing a worthy 
cause, increasing efficiency and the 
successful completion of tasks 

Robots replacing tasks, reducing personal 
contribution to the end goal  

Technology-enabled “micro-tasks” that lack 
meaning 

Task-based moderators 
Routine intensity of tasks (repetitiveness, 
monotonicity, and dependency on the work 
pace of a machine)  

Nonroutine-cognitive and -interactive 
intensity of tasks (working with computers 
and working with clients)   

Skill-based moderators 
Level of education 
Occupational skill   

Individual-level moderators 
Age  

Gender 

Autonomy 
(a sense of discretion in determining the 
order, speed, and methods of work) 

Increased room for job crafting and 
autonomous agency if human workers 
control robots  

Discretion over the development of new 
tasks, when old tasks are replaced 

Few opportunities for job crafting due to 
dependence on the workflow of robot  

Robot control reduces opportunities for 
exercising judgment and agency  

More opportunities for management to 
monitor human work 

Competence 
(a sense of having the right skills to do 
one’s job, the ability to solve unforeseen 
problems, and learning new things) 

Replacing “dull, dangerous, and dirty” 
work with cognitively demanding tasks  

Creation of new tasks related to 
operating robots, requiring new 
complex skills 

Increased standardization and 
fragmentation of tasks, requiring fewer 
skills  

Replacement of tasks makes corresponding 
human skills obsolete 

Relatedness 
(a sense of feeling helped and supported by 
your co-workers and supervisors) 

Robots as colleagues, capable of high- 
level social interaction  

Replacement of non-social tasks, 
increasing time for interpersonal 
contact 

Workers may interpret task replacement as 
being personally replaceable: reducing the 
feeling of being appreciated  

Changes to the physical aspects of work that 
disrupt social connections 

Note: Authors’ adaptation based on Smids et al. (2020) and Parker and Grote (2020). 

M. Nikolova et al.                                                                                                                                                                                                                              



Research Policy 53 (2024) 104987

7

automation, but rather automation risk. 
Our paper adopts the first method of capturing automation exposure. 

As such, we relate the change in the stock of robots per 10,000 workers 
to individual-level experiences of job quality at work. We further use 
task-based moderators to account for the type of work people execute. 

We combine information from several sources to conduct our 
empirical analyses and test our main propositions. First, we rely on data 
on the number of operational multipurpose industrial robots from the 
International Federation of Robotics (IFR) for each industry in each 
country and year. The IFR calculates robot stocks assuming a service life 
of 12 years, implying that the robot is out of operation after that. The IFR 
defines an industrial robot as an “automatically controlled, reprogram-
mable, multipurpose manipulator that is programmable in at least three 
axes, and either fixed in place or mobile and intended for and typically 
used in industrial automation applications” (IFR, 2021, p. 30). 

We use the IFR data after 2005 because the data source has many 
missing values before 2005. Except for Denmark, Finland, France, Ger-
many, Italy, Norway, Spain, Sweden, and the UK, the IFR data only 
provide country totals until 2004, which other papers have dealt with by 
performing imputations. Furthermore, the share of the robot stock that 
is not classified to any particular industry also declined after 2005, 
making 2005 a good starting year for using IFR data (Jurkat et al., 2022). 
Like other studies, we had to impute the data for 2005 for Bulgaria, 
Greece, and Lithuania. 

The denominator of the robotization variable is calculated based on 
the number of employed persons per industry and country in 2000 from 
the EUKLEMS & INTANProd database. We use the national accounts file 
with information on the number of workers per industry. The EUKLEMS 
productivity database is also the source of information on the fixed 
capital stock in computing, communications, computer software, and 
databases, underpinning our ICT control variable. We use the capital 
accounts data file for the ICT variable. Information for several Eastern 

European countries in our analysis sample is missing for the ICT vari-
able, which is why we imputed this information based on the non- 
missing information from neighboring countries. 

Finally, we use worker-level data from the European Working Con-
ditions Surveys for 2010, 2015, and 2021 (Eurofound, 2022, 2023a, 
2023b). The EWCS dataset contains worker-level survey answers 
collected via face-to-face interviews with about 1000 workers per 
country in 2010 and 2015. In 2021, because of the COVID-19 pandemic, 
the survey was conducted via the telephone, and sample sizes per 
country were about 1800, ranging from 1000 to 4000. To account for the 
question format and sampling methodology differences in the 2021 
wave compared with the previous waves, we add year dummies to our 
regression analyses. Different workers are polled each year, and the 
dataset represents pooled cross-sections rather than a panel. 

The EWCS dataset is very opportune for our research for several 
reasons. First, the surveys ask detailed questions about workers’ socio- 
demographics and work characteristics. Importantly, the EWCS has 
the variables we need to construct indices of work meaningfulness, 
competence, autonomy, and relatedness based on the methodology in 
Nikolova and Cnossen (2020) and Nikolova et al. (2022). Second, the 
survey contains each worker’s industry of employment (NACE Rev. 2, 
two-digit), which allows us to merge the information from the IFR and 
EUKLEMS with the EWCS. While the EWCS also has information on work 
meaningfulness and self-determination in 2005, the two-digit NACE 
Rev. 2 required for merging on the industry level information is only 
available starting in 2010. We drop individuals from the EWCS with 
missing industry of employment as their information cannot be merged 
with the rest of the data. 

After merging all the information, we drop individuals with more 
than one job and those in the armed forces occupation. Our final merged 
dataset has information on individuals working in 14 industries and 20 
countries in 2010, 2015, and 2021. Like most other papers using the IFR 

Table 3 
Constructions and variable definitions of main variables.  

Variable Explanation and coding 

Dependent variables 
Meaningful work 

index 
Index based on extracting the first component of a polychoric principal component analysis (PCA) using the following variables: (1) “your job gives you the 
feeling of work well done” and (2) “you have the feeling of doing useful work.” The response scale is: 1 = Never, 2 = Rarely, 3 = Sometimes, 4 = Most of the 
time, 5 = Always. The index is standardized to have a mean of 50 and a standard deviation of 10. The index is created based on Nikolova and Cnossen (2020). 
Cronbach’s alpha = 0.74. The first principal component has an eigenvalue of 1.69 and explains 85 % of the total variance. 

Autonomy index Index based on extracting the first component of a polychoric principal component analysis (PCA) of the following variables: (1) able to choose or change the 
order of tasks, (2) able to choose or change methods of work, and (3) able to choose or change speed or rate of work. Variables (1)–(3) are originally measured 
on a scale 0 = No, 1 = Yes. The index is standardized to have a mean of 50 and a standard deviation of 10. The index is created based on Nikolova et al. (2021). 
Cronbach’s alpha = 0.79. The first principal component has an eigenvalue of 2.57 and explains 86 % of the total variance. 

Competence index Index based on extracting the first component of a polychoric principal component analysis (PCA) of the following variables: (1) respondent has appropriate 
skills to cope with current or more demanding duties, (2) main paid job involves” solving unforeseen problems on your own,” (3) main paid job involves” 
learning new things.” Variable (1) is measured as 0 = No. 1 = Yes. Variables (2)–(3) are measured on a scale, whereby 1 = Never, 2 = Rarely, 3 = Sometimes, 
4 = Most of the time, 5 = Always. The index is standardized to have a mean of 50 and a standard deviation of 10. The index is created based on Nikolova and 
Cnossen (2020). Cronbach’s alpha = 0.42. The first principal component has an eigenvalue of 1.75 and explains 58 % of the total variance. 

Relatedness index Index based on extracting the first component of a polychoric principal component analysis (PCA) using the variables: (1)” your colleagues help and support 
you,” (2)” your manager helps and supports you.” Both variables are measured on a scale, whereby 1 = Never, 2 = Rarely, 3 = Sometimes, 4 = Most of the 
time, 5 = Always. The index is standardized to have a mean of 50 and a standard deviation of 10. The index is created based on Nikolova and Cnossen (2020). 
Cronbach’s alpha = 0.70. The first principal component has an eigenvalue of 1.65 and explains 83 % of the total variance.  

Key independent variable 
Robotization The inverse hyperbolic sine transformation of the change in robot stocks between year t-1 and year t-5 in each industry and country, normalized by the 

number of workers (in 10,000 s) in 2000 in that industry and country.  

Control variables 
ICT The inverse hyperbolic sine transformation of the change in ICT capital stocks (in computing, communications, computer software, and databases) between 

year t-1 and year t-5 in each industry and country, normalized by the number of workers (in 10,000 s) in 2000 in that industry and country. Missing values 
were imputed based on data for the neighboring countries. 

Other control 
variables 

Age (in years) split into age groups (1 = 15–35; 2 = 36–45; 3 = 45–60; 4 - over 60; 5 = missing); biological sex dummy (1 = female; 2 = male; 3 = missing 
information); household size (number of people in household); weekly working hours transformed into a categorical variable denoting the within-country 
hours quartile to which the respondent belongs. 1 = lowest quartile, 2 = second lowest quartile, 3 = third quartile, 4 = fourth quartile, 5 = missing 
information; education (1 = primary = early childhood education, primary education; 2 = secondary = lower secondary education, upper secondary 
education, and post-secondary non-tertiary education; 3 = tertiary = short-cycle tertiary education, bachelor or equivalent, master or equivalent, and 
doctorate or equivalent; 4 = missing information); company size indicator (1 = <250 employees, 2 >=250 employees, 3 = missing information); occupation 
dummies (ISCO 08 one-digit categories, including a missing category); year dummies; country dummies.  
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data, we exclude the “all other non-manufacturing” industry, which 
mostly represents services. Table 3 details the construction of the key 
variables used in the analyses. 

4.1. Key independent variable: robotization 

Our key regressor is the change in the number of robots per 10,000 
workers in each industry, country, and year. Following Aksoy et al. 
(2021), we transformed the robotization measure using the inverse hy-
perbolic sine transformation (IHS). This transformation deals with the 
issue that the distribution of the change in robots is highly skewed. 
Taking the logarithm is less desirable than the IHS because the log 
transformation does not deal with negative numbers and zeros. Other 
authors in the literature have addressed the skewed distribution of the 
robotization variable by taking the percentile rankings of the industries 
(de Vries et al., 2020; Graetz and Michaels, 2018). Nevertheless, this 
solution is problematic because it over-emphasizes small differences 
between the values at the top of the distribution and under-emphasizes 
large differences between changes in the robotization at the bottom of 
the distribution (Bekhtiar et al., 2021). The IHS transformation is, 
therefore, preferable because it is similar to a logarithm but preserves 
zero and negative observations (Bellemare and Wichman, 2020). To 
ease the interpretation of the magnitudes of the estimated coefficient 
estimates, we calculate and report elasticities, where possible. 

Specifically, for each industry j in country c and year t, the roboti-
zation measure R is: 

Rjct = IHS

[
num.robotsjc(t− 1)

10, 000 employeesjc(t=2000)
−

num.robotsjc(t− 5)

10, 000 employeesjc(t=2000)

]

(1) 

We define robotization as a change because we are interested in 
technological change in terms of a “shock.” We use a four-year gap to 
calculate the change between t-1 and t-5 because of the gap between the 
EWCS survey waves. Robotization is also lagged one year to mitigate 
reverse causality issues and to minimize inconsistencies in terms of 
when the EWCS data were collected and the reference period for the 
robotization stocks. We use the number of workers in 2000 in the de-
nominator so that the changes in the robot stock are independent of 
changes in the number of employees. The year 2000 was selected 
because it predates the explosive growth in adopting robots in many 
countries in the sample. 

4.2. Dependent variables 

We utilize four dependent variables, which are all standardized 
composite indices with a mean of 50 and a standard deviation of 10. 
These indices are based on Nikolova and Cnossen (2020) and Nikolova 
et al. (2022). Table 3 details the concrete steps involved in constructing 
the variables. Our measure of autonomy deviates from that of Nikolova 
and Cnossen (2020) as it is based on combining only three variables (and 
not five) into the index. Specifically, we rely on a measure of task au-
tonomy based on the following variables: (1) ability to choose or change 
the order of tasks, (2) ability to select or change methods of work, and 
(3) ability to choose or change speed or rate of work. Job autonomy has 
two interrelated aspects: i) decision-making over the work process and 
ii) choice over when and where to work (Parker and Grote, 2020). Our 
autonomy measure captures only the first aspect about having decision- 
making latitude about the work process. The construction of the vari-
ables is detailed in Table 3. 

4.3. Control variables 

We source other control variables at the individual level from the 
EWCS files. We create an additional “missing information” indicator for 
all categorical control variables to avoid omitting observations with 
missing information from the analyses. This additional “missing 

information” category has no informational value but only helps us 
preserve the number of observations. 

The control variables include age group, biological sex, working 
hours, education level, private or public sector of employment, number 
of years with the firm (tenure), and ISCO-08 occupation (excluding the 
armed services), and company size. 

Finally, we include the inverse hyperbolic sine transformation of 
changes in ICT capital (per 10,000 workers) as an additional control 
variable. The construction of this variable is identical to that of roboti-
zation. We want to ensure that we capture the effects of robotization on 
work meaningfulness and self-determination above and beyond any 
consequences of digitalization. 

5. Methods 

5.1. OLS 

We explore the causal effects of robotization on work meaningfulness 
and self-determination using ordinary least squares (OLS) and instru-
mental variables techniques. Our analyses dovetail with and combine 
strategies explored in the extant literature (e.g., Aksoy et al., 2021; 
Anelli et al., 2021; Dauth et al., 2021; de Vries et al., 2020; Graetz and 
Michaels, 2018). 

In our OLS estimations, the work meaningfulness or self- 
determination outcome Y of individual i, living in country c and work-
ing in industry j in survey year t is: 

Yijct = α0 + α1Rjct + α2Ijct + Zictφ + μc + πt + εijct (2)  

where R denotes robotization as detailed in Eq. (1). Furthermore, the 
control variables Z include age group, biological sex, working hours, 
education, sector of employment (public or private), number of years 
with the firm, and ISCO-08 occupation detailed in Section 3.3 above, I is 
a measure of ICT changes (constructed similarly to robotization), πt 
denotes time fixed effects (a dummy variable for the 2010, 2015, or 
2021 survey wave), μc denotes country fixed-effects, and εijct is the sto-
chastic error term. We use robust standard errors clustered at the 
country×industry level. In additional specifications (Table A3), we also 
report results using weights calculated with the within-country industry 
employment shares of hours worked (Aksoy et al., 2021; Graetz and 
Michaels, 2018) that provide more importance to industries with larger 
employment shares. Furthermore, we check whether the results are 
based on the differential number of worker-level observations per 
country available in the EWCS. To this end, we weigh all regressions 
using the inverse of the number of observations per country in each 
analysis sample in each year (Table A3). 

We include time dummies (i.e., EWCS survey wave) to, at least in 
part, account for shocks and cyclicalities that affect countries and in-
dustries similarly in the year of the survey. Specifically, technological 
adoption is often pro-cyclical (Anzoategui et al., 2019; Leduc and Liu, 
2023), and economic booms and busts may also affect workers’ sense of 
work meaningfulness and self-determination. Of course, we cannot 
perfectly capture all cyclical effects given the frequency of our data, but 
the inclusion of the time dummies should account for some of these 
influences, as well as differences in the survey mode. Furthermore, 
country-specific fixed effects account for different institutional and 
cultural features across countries, including cultural interpretation of 
the underlying self-reported work quality, as well as slow-changing in-
stitutions and labor market regulations. 

5.2. Instrumental variables 

The two main challenges of estimating causal effects with Eq. (2) are 
omitted variables bias and sorting of workers into industries. First, there 
may be omitted industry-specific shocks that are correlated with both 
the pace of adopting automation and also affect the way that individuals 
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perceive their work meaningfulness and can derive autonomy, compe-
tence, and relatedness from their jobs. Second, workers with particular 
unobservable traits may be more likely to choose jobs that are more or 
less likely to be automated. 

We mitigate these issues by relying on instrumental variables tech-
niques. Like Anelli et al. (2021), our main instrument is based on the 
industry adoption of robotization in all other countries in the sample 
except the respondent’s, which is similar to the instrument used in 
Acemoglu and Restrepo (2020). The logic of this instrument is that we 
are trying to capture the industry-specific trends in innovation and 
technological progress that are common across all countries. The in-
strument deals well with the first source of endogeneity outlined above 
as well as with self-selection. We also include relevant control variables 
to mitigate selection issues and offer several sensitivity checks. 

This instrument relies on the untestable assumption the industry 
level of robotization in other countries is independent of the re-
spondents’ work meaningfulness and self-determination. The instru-
ment would be invalid if it correlates with unobserved shocks that are 
common across all countries and industries and cause all industries to 
undertake robotization.4 

The cross-country literature on automation has mostly relied on two 
instruments proposed by Graetz and Michaels (2018), i.e., the so-called 
“replaceable hours” and “robot arms” instruments (see, for example, 
Aksoy et al., 2021 and de Vries et al., 2020). The first instrument cap-
tures the share of the industry’s employment hours performed in occu-
pations that are potentially replaceable by robots from the viewpoint of 
the task descriptions of occupations in the 1980s in the US. The second 
instrument captures the extent to which US industries in 1980 contained 
occupations with reaching and handling tasks relative to other physical 
tasks. 

These instruments have several limitations, as discussed in, for 
example, de Vries et al. (2020). The variables are based on the US’s 
industrial structure and may capture trends and developments across 
industries that correlate with other changes over time (e.g., globaliza-
tion). More fundamentally, these instruments have recently come under 
attack because they violate the monotonicity assumption. Specifically, 
the first-stage results show implausible correlations when we split the 
data into the manufacturing and non-manufacturing sectors, a problem 
described in Bekhtiar et al. (2021). Nevertheless, for completeness and 
transparency, we present the results with these instruments (Table A2), 
though we advise readers to exercise caution. 

While the instrument of the industry-level adoption of automation in 
all other countries except the respondent’s is not a silver bullet, its 
performance in the first-stage regressions and associated diagnostic tests 
seem reasonable. The IV results are also qualitatively in line with the 
OLS results, though the magnitudes of the coefficient estimates are 
higher with the IV than with the OLS results, which is plausible. 

Our goal is not to argue about the superiority of one set of in-
struments over another or claim that we resolve all endogeneity con-
cerns. Rather, it is to provide plausibly causal estimates and compare 
and contrast the performance of OLS vs. the 2SLS, while also providing 
additional robustness checks. 

5.3. Exploring heterogeneity 

We empirically test whether workers performing different tasks 
differentially experience self-determination and work meaningfulness 
by interacting the tasks with robotization, following from H2a-H2d. We 
focus on three tasks: i) repetitive tasks ii) working with computers, and 

iii) social tasks.5 

Yijct = α0 + α1Rjct + βττijct + γτRjct*τijct + α2Ijct + Zictφ + μc + πt + εijct (3) 

In Eq. (3), the coefficient estimates γτ allow us to explore whether 
robotization differentially affects the work meaningfulness and self- 
determination of people working in jobs requiring different tasks. We 
estimate Eq. (3) based on the IV strategy using the 2SLS estimator. 

Furthermore, we explore whether workers in different parts of the 
skills distribution and of different ages and genders differentially 
experience meaningfulness and self-determination. Specifically, we 
anticipate that automation may lead to de-skilling and therefore worsen 
the work meaningfulness and self-determination experiences of low- 
skilled workers while providing high-skilled workers with the opportu-
nity to shift to new and creative tasks. In this instance, τijct indicates skill 
levels (high, medium, and low). 

We operationalize skills by education (i.e., primary, secondary, and 
tertiary) and by grouping 1-digit ISCO occupations into high-, medium-, 
and low-skilled based on the ILO definitions. Specifically, we classify 
managers, professionals, technicians and associate professionals as high- 
skilled; clerical support workers, service and sales workers, skilled 
agricultural, forestry, and fishery workers as “medium-skilled” workers; 
and craft and related trades workers, plant and machine operators, and 
assemblers, and elementary occupations as “low-skilled”. The analyses 
by age and gender are performed analogously to those with tasks and 
skill levels. 

6. Results 

6.1. Descriptive statistics 

Fig. 1 depicts the average number of robots per 10,000 workers for 
the years 2005, 2009, 2010, 2014, 2016, and 2020. Given our empirical 
setup, our measures of robotization refer to changes in the number of 
robots per 10,000 workers between 2005 and 2009 (for EWCS obser-
vations in survey wave 2010), 2010–2014 (for EWCS observations in 
survey wave 2015), and 2016–2020 (for the 2021 EWCS). Industrial 
robots are most prevalent in the automotive industry (e.g., 629 robots 
per 10,000 workers in 2020) and least widespread in the electricity, gas, 
water supply, construction, and education/research industries. 

During the 2005–2020 period, the average increase in robotization 
across all industries was 389 %, with the mining and quarrying industry 
realizing a change of 2601 %, followed by growth of 689 % in the in-
dustrial machinery sector, and 475 % in the electricity, gas, and water 
supply. These are all industries that started with relatively low levels of 
robots in 2005, which explains these high increases (See Table A1). 

Figs. 2–5 detail the development of work meaningfulness and self- 
determination variables over the analysis period. The key takeaway 
from these figures is that the changes in the dependent variables tend to 
be rather modest both within industries and over time. 

Table 4 provides summary statistics for the analysis samples for each 
dependent variable. Because those who work alone did not answer the 
relatedness questions, the analysis sample for relatedness is smaller than 
for the other dependent variables. In addition, the competence questions 
were not asked in the 2021 survey. Table A9 also details the sample 
composition for the work meaningfulness sample across the 2010, 2015, 
and 2021 survey waves. The 2021 sample contains a much larger share 
of individuals with tertiary education (0.54 in 2021 compared with 
roughly 0.3 in 2010 and 2015), which is because these respondents were 
easier to reach during the pandemic (Ipsos, 2022). 

4 Moreover, workers sort into industries and jobs offering different oppor-
tunities for meaningfulness and self-determination because they have particular 
unobserved traits, such as motivation or particular preferences for work 
meaningfulness and job quality. The IV strategy also deals with this problem. 
We include individual-level controls to mitigate this issue. 

5 In a working paper version of this manuscript, which only relied on the 
2010 and 2015 EWCS waves, we also reported heterogeneity by dependence on 
the work pace of a machine and performing monotonous tasks. Unfortunately, 
these heterogeneity analyses are not possible with the 2021 EWCS as these 
questions were not asked then. 

M. Nikolova et al.                                                                                                                                                                                                                              



Research Policy 53 (2024) 104987

10

Fig. 1. Industrial robots per 10,000 workers by industry and year, 2005–2020. 
Source: Authors’ calculations based on IFR and EUKLEMS. 
Notes: The figure shows the average robot density (robot stock per 10,000 workers) by industry for 2005, 2009, 2010, 2014, 2016, and 2020 and sorted by the robot 
density in 2020. The values for 2020 are shown next to each bar. The industries Construction, Education/research/development, and Electricity, gas, and water 
supply have very small non-zero values. 

Fig. 2. Work meaningfulness, by industry and year. 
Source: Authors’ calculations based on the European Working Conditions Surveys (2010, 2015, 2021). 
Notes: The figure shows the average work meaningfulness by industry for 2010, 2015, and 2021, sorted by the robot density in 2020 as in Fig. 1. Work mean-
ingfulness is standardized to have a mean of 50 and a standard deviation of 10. 
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Fig. 3. Autonomy, by industry and year. 
Source: Authors’ calculations based on the European Working Conditions Surveys (2010, 2015, 2021). 
Notes: The figure shows the average autonomy levels by industry for the years 2010, 2015, and 2021, sorted by the robot density in 2020 as in Fig. 1. Autonomy is 
standardized to have a mean of 50 and a standard deviation of 10. 
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Fig. 4. Competence, by industry and year. 
Source: Authors’ calculations based on the European Working Conditions Surveys (2010, 2015, 2021). 
Notes: The figure shows the average competence levels by industry for the years 2010 and 2015, sorted by the robot density in 2020 as in Fig. 1. Competence is 
standardized to have a mean of 50 and a standard deviation of 10. There is no information about the underlying variables comprising the competence index in the 
2021 EWCS survey. 

M. Nikolova et al.                                                                                                                                                                                                                              



Research Policy 53 (2024) 104987

13

Fig. 5. Relatedness, by industry and year. 
Source: Authors’ calculations based on the European Working Conditions Surveys (2010, 2015, 2021). 
Notes: The figure shows the average relatedness levels by industry for the years 2010, 2015, and 2021, sorted by the robot density in 2020 as in Fig. 1. Relatedness is 
standardized to have a mean of 50 and a standard deviation of 10. 
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6.2. Main results based on OLS and IV estimations 

Table 5 details our main results regarding the relationship between 
robotization, work meaningfulness, and self-determination. Panel A re-
ports OLS estimates. Panels B and C feature the second and first stages of 
the 2SLS estimates, respectively. 

Our OLS in Panel A results suggest that robotization is negatively 
associated with work meaningfulness, autonomy, competence, and 
relatedness, with the latter association being statistically insignificant. 

The IV estimates also corroborate this conclusion. The second-stage 
results (Panel B) further confirm the negative relationship between 
robotization, work meaningfulness, and self-determination. The coeffi-
cient estimates in Panel B are larger than the OLS ones and relatedness is 
now statistically significant at the 5 % level, suggesting that the OLS 
estimates are likely affected by endogeneity that leads to under-
estimating the impact of robotization on the well-being outcomes we 
study. The coefficient estimates from the first-stage regressions (Panel C) 

show that our instrument is good at predicting robotization. The F-sta-
tistic ranges from 80 to 262, which suggests that our instrument is 
strong. 

At first sight, the elasticity estimates appear rather small. For 
example, doubling robotization corresponds to a 0.9 % decline in work 
meaningfulness, a 1 % drop in autonomy, a 0.7 % decline in competence, 
and a 0.3 % drop in relatedness, based on the elasticities in Panel B. 

To put these results in perspective, we illustrate their significance by 
using the robotization levels of two industries – the food and beverages 
(74 robots per 10,000 workers) and the automotive industry (629 robots 
per 10,000 workers) in 2020. Should robot adoption in the food and 
beverage industry increase to match that of the automotive industry 
(representing a 7.5-fold increase in robotization), we estimate a 6.8 % 
(750*0.009) decrease in work meaningfulness and 7.5 % (750*0.010) 
decrease in autonomy, as well as a 5.3 % (750*0.007) drop in compe-
tence and a 2.3 % fall in relatedness (based on the elasticities reported 
below our IV estimations in Table 5, Panel B). Our calculations are based 

Table 4 
Summary statistics.   

Work meaningfulness sample, 
N = 26,083 

Autonomy sample, 
N = 26,039 

Competence sample, 
N = 16,578 

Relatedness sample, 
N = 21,651  

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. 

Robotization  1.041  1.808  1.034  1.815  0.767  1.726  1.119  1.869 
ICT adoption  1.835  2.350  1.818  2.349  1.725  2.136  1.912  2.386 
Age group         

15–35  0.268  0.443  0.268  0.443  0.253  0.435  0.284  0.451 
36–45  0.275  0.447  0.276  0.447  0.275  0.447  0.278  0.448 
45–60  0.387  0.487  0.386  0.487  0.399  0.490  0.383  0.486 
Over 60  0.067  0.250  0.067  0.251  0.068  0.252  0.052  0.222 
Missing information  0.003  0.056  0.003  0.059  0.004  0.063  0.003  0.052 

Biological sex         
Female  0.406  0.491  0.408  0.491  0.402  0.490  0.428  0.495 
Male  0.593  0.491  0.591  0.492  0.598  0.490  0.571  0.495 
Missing information  0.001  0.033  0.001  0.032  0.000  0.011  0.001  0.033 

Working hours quartile         
1st  0.432  0.495  0.432  0.495  0.435  0.496  0.457  0.498 
2nd  0.188  0.391  0.187  0.390  0.195  0.396  0.206  0.404 
3rd  0.139  0.346  0.138  0.345  0.139  0.346  0.148  0.355 
4th  0.210  0.407  0.213  0.409  0.203  0.402  0.169  0.375 
Missing information  0.031  0.173  0.030  0.171  0.028  0.165  0.020  0.139 

Education         
Primary  0.043  0.202  0.043  0.204  0.057  0.232  0.033  0.177 
Secondary  0.567  0.495  0.569  0.495  0.641  0.480  0.555  0.497 
Tertiary  0.386  0.487  0.383  0.486  0.299  0.458  0.408  0.492 
Missing information  0.004  0.061  0.004  0.062  0.003  0.055  0.004  0.061 

Occupation         
Managers  0.078  0.269  0.078  0.269  0.057  0.232  0.065  0.246 
Professionals  0.250  0.433  0.248  0.432  0.204  0.403  0.278  0.448 
Technicians and associate professionals  0.099  0.298  0.098  0.298  0.084  0.277  0.110  0.313 
Clerical support workers  0.061  0.240  0.061  0.239  0.058  0.234  0.069  0.253 
Service and sales workers  0.044  0.205  0.044  0.205  0.049  0.216  0.046  0.210 
Skilled agricultural, forestry, and fisheries workers  0.054  0.226  0.055  0.228  0.070  0.256  0.015  0.123 
Craft and related trades workers  0.241  0.428  0.241  0.428  0.272  0.445  0.229  0.420 
Plant and machine operators, and assemblers  0.096  0.294  0.096  0.295  0.109  0.311  0.109  0.312 
Elementary occupations  0.076  0.265  0.077  0.266  0.094  0.291  0.079  0.269 
Unknown occupation  0.001  0.039  0.001  0.039  0.002  0.048  0.001  0.035 

Company size         
<250 workers  0.831  0.375  0.834  0.372  0.854  0.353  0.807  0.394 
250 workers and more  0.145  0.352  0.142  0.349  0.124  0.329  0.167  0.373 
Missing information  0.024  0.153  0.024  0.154  0.023  0.149  0.026  0.159 

Tenure         
Less than 1 year  0.106  0.308  0.107  0.309  0.131  0.337  0.112  0.315 
1–5 years  0.264  0.441  0.267  0.443  0.256  0.436  0.279  0.449 
More than 5 years  0.577  0.494  0.575  0.494  0.595  0.491  0.560  0.496 
Missing information  0.052  0.223  0.050  0.219  0.019  0.135  0.049  0.215 

Employee type         
Private employee  0.750  0.433  0.753  0.431  0.766  0.423  0.715  0.451 
Public employee  0.241  0.428  0.239  0.426  0.228  0.420  0.277  0.447 
Missing information  0.009  0.093  0.008  0.090  0.005  0.072  0.008  0.090 

Notes: The table denotes the summary statistics for the key variables used in the regression analyses. Variable definitions are available in Table 3. Data on competence 
is available only for 2010 and 2015. Relatedness questions are not asked to those who work alone. 
Source: Authors’ calculations based on IFR, EUKLEMS, and European Working Conditions Surveys (2010, 2015, 2021). 
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Table 5 
The effect of robotization on work meaningfulness, autonomy, competence, and relatedness.   

(1) (2) (3) (4)  

Panel A: Ordinary Least Squares  
Work meaningfulness Autonomy Competence Relatedness 

Robotization − 0.252*** − 0.177*** − 0.128** − 0.043  
(0.042) (0.052) (0.058) (0.056) 

Elasticity − 0.005 − 0.004 − 0.003 − 0.001 
R2 0.054 0.141 0.192 0.046  

Panel B: IV Peer Robot Adoption Second Stage  
Work meaningfulness Autonomy Competence Relatedness 

Robotization − 0.447*** − 0.515*** − 0.346*** − 0.162**  
(0.085) (0.082) (0.128) (0.080) 

Elasticity − 0.009 − 0.010 − 0.007 − 0.003 
R2 0.053 0.138 0.191 0.045  

Panel C: IV Peer Robot Adoption First Stage  
Robotization Robotization Robotization Robotization 

Peer robot adoption 0.680*** 0.677*** 0.578*** 0.677***  
(0.042) (0.043) (0.065) (0.043) 

1st stage F-stat 261.5 249.5 79.51 242.9 
Number of observations 26,083 26,039 16,578 21,651 

Notes: The table reports results from OLS (Panel A) and IV (Panel B) regressions of work meaningfulness, autonomy, competence, and relatedness on robotization. The 
first stage results are reported in Panel C. Robotization is measured as the inverse hyperbolic sine transformation of the change in the number of robots per 10,000 
workers. All regressions include a constant and country and year fixed effects, and the following demographic and job controls: age group, gender, hours of work, 
education, occupation, company size, number of years with the company, public/private sector, and the inverse hyperbolic sine transformation of changes in ICT 
capital. All regressions include standard errors clustered at the country×industry level. All dependent variables are standardized to have a mean of 50 and standard 
deviation of 10. By construction, the relatedness index excludes individuals who work alone. The instrumental variable is based on the industry adoption of robots in all 
other countries in the sample (except that particular country). The analysis sample is based on 20 European countries and 14 industries. See Table 3 for variable 
definitions. 
*** p < 0.01. 
** p < 0.05. 
* p < 0.1. 

Fig. 6. Specification curve analysis, work meaningfulness. 
Source: Authors’ calculations based on IFR, EUKLEMS, and European Working Conditions Surveys (2010, 2015, 2021). 
Notes: The figure shows the specification curve analysis for work meaningfulness as the dependent variable and different estimations of Eq. (2). The main speci-
fication is the one from Table 5, Panel B, Model (1). Work meaningfulness is standardized to have a mean of 50 and a standard deviation of 10. 
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Fig. 7. Specification curve analysis, autonomy. 
Source: Authors’ calculations based on IFR, EUKLEMS, and European Working Conditions Surveys (2010, 2015, 2021) 
Notes: The figure shows the specification curve analysis for autonomy as the dependent variable and different estimations of Eq. (2). The main specification is the one 
from Table 5, Panel B, Model (2). Autonomy is standardized to have a mean of 50 and a standard deviation of 10. 

Fig. 8. Specification curve analysis, competence. 
Source: Authors’ calculations based on IFR, EUKLEMS, and European Working Conditions Surveys (2010, 2015, 2021). 
Notes: The figure shows the specification curve analysis for competence as the dependent variable and different estimations of Eq. (2). The main specification is the 
one from Table 5, Panel B, Model (3). Competence is standardized to have a mean of 50 and a standard deviation of 10. 
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on a move from a top 5 to a top 1 industry regarding robot adoption 
levels in 2020 (see Table A1). Based on the EUKLEMS data, in 2020, 
nearly 4.5 million individuals worked in the food and beverages industry 
and about 3.3 million in the automotive industry across the countries in 
our study. Therefore, the impact sizes we document may seem small in 
isolation, but given the large number of employees affected in such 
sizable industries, the overall effect could be substantial.6 

Moreover, if we extrapolate these calculations to less automated 
industries such as agriculture, the effect sizes become even more pro-
nounced. An increase from the robot adoption levels in agriculture in 
2020 (roughly 6 robots per 10,000 workers) to the levels in Plastic, 
chemical products, and glass (93 robots per 10,000 workers) (a 14.5-fold 
increase) could result in a 13 % drop in work meaningfulness and a 14.5 
% drop in autonomy. We note that this is a shift from the top 10 industry 
to the top 4 industry in terms of robot adoption in 2020. 

The substantial surge in robot adoption within various industries 
during our study period, especially among those industries with previ-
ously low levels of robot adoption, entails large consequences for 
meaningfulness and autonomy. The average percentage change in the 
industries we studied across the 2005–2020 time period was 389 %. This 
change suggests that the average loss of meaningfulness and autonomy 
for a typical worker in our sample would be around 3.5 % (0.009*389) 
and 4 % (0.010*389), respectively. 

Therefore, the main conclusion from Table 5 is that robotization 
hurts work meaningfulness and self-determination, and the conse-
quences may appear modest but are economically significant. Therefore, 

we show support for Hypothesis 1 in the sense that we find a negative 
and statistically significant relationship between robotization and our 
outcome variables. 

6.3. Robustness checks 

We offer a battery of sensitivity checks. First, using specification 
curve analyses (Simonsohn et al., 2020), we investigate whether our 
results are robust to using different sub-samples and modifications of Eq. 
(2). The main logic of the specification curve analyses is to re-estimate 
Eq. (2) with alternative control variables (e.g., including and 
excluding the ICT control, including and excluding demographic vari-
ables, education, and job controls), estimating the equation using OLS or 
an IV, and excluding one country at a time from the analysis sample. We 
provide such specification charts for all four dependent variables. We 
then graphically present the distribution of the estimates and their 
confidence intervals in Figs. 6–9. 

All estimates we detail in those figures include country and year fixed 
effects but differ based on the estimator and the included covariates and 
countries. Specifically, we present the first set of estimates based on OLS 
estimations – first only including the ICT control in addition to the 
country and year fixed effects. We then sequentially include education 
variables, demographic variables, job characteristics, or only education 
and demographic variables, and finally, all possible controls. We then 
show different variations of the IV specifications. The baseline IV esti-
mates from Table 5, Panel B, are highlighted in blue. We sequentially 
include different sets of control variables and exclude one country at a 
time from the regression models. Figs. 6–9 detail that the results in 
Table 5 are consistent across different specifications and modifications 
of Eq. (2). 

In addition, we check whether the results are robust to using the 
replaceable hours and robotic arms instruments from Graetz and Mi-
chaels (2018), which we offer for completeness in Table A2. As we 
explain in Section 4.2 above, these instruments are less desirable than 

Fig. 9. Specification curve analysis, relatedness. 
Source: Authors’ calculations based on IFR, EUKLEMS, and European Working Conditions Surveys (2010, 2015, 2021). 
Notes: The figure shows the specification curve analysis for relatedness as the dependent variable and different estimations of Eq. (2). The main specification is the 
one from Table 5, Panel B, Model (4). Relatedness is standardized to have a mean of 50 and a standard deviation of 10. 

6 Another way to think of the 6.8 % decline in work meaningfulness is in 
terms of switching from the education/research/and development industry in 
2021, where workers had an average work meaningfulness score of 51 to the 
automobile industry in 2021, where work meaningfulness in 2021 was 48. 
Therefore, a 7.5 fold-increase in robotization is like switching from a high- 
meaning industry like education and research to the automobile industry in 
terms of the loss in meaning it generates. 
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the instrument we utilize in the main specifications. The results remain 
in line with the those in Table 5. 

Table A3 investigates whether the effects we estimate are robust to 
different weighting schemes. In Panel A of Table A3, we use the country- 
specific industry employment shares as Graetz and Michaels (2018) and 
Aksoy et al. (2021), which puts more importance on larger industries. 
Furthermore, in Panel B of Table A3, we check whether the results are 
driven by countries with a larger number of observations by weighting 
all regressions using the inverse of the number of observations in each 
country and year as a weight. The results support our conclusions from 
our estimations in Table 5. 

Furthermore, Table A4 offers a robustness check where we include 
country×year fixed effects, which control for shocks and omitted factors 
that differentially affect countries across time (e.g., globalization, 
country-specific natural disasters, or technological breakthroughs in 
particular countries). In Panel B, we also add an offshorability control, 
which is at the industry level and sourced from Graetz and Michaels 
(2018). The results largely align with our main findings, though the 
evidence for competence and relatedness is less robust, being insignifi-
cant for relatedness, and marginally statically significant in Panel B for 

competence, which is why we put less emphasis on these outcomes in 
the paper. 

Finally, Table A5 checks whether our results differ based on workers’ 
job tenure (number of years in the same company). Specifically, our 
results may be driven by the self-selection of workers into industries that 
have become automated, or particular workers may be self-selecting into 
staying in given industries. While IV in principle deal with these con-
cerns, our sample only includes employed people who have not lost their 
jobs due to robotization. This implies that those individuals may have 
largely adjusted to their new circumstances. While testing the adapta-
tion explanation requires panel data on the same workers over time, our 
results suggest that our findings do not differ among people who just 
started the job compared to those with longer tenure (Table A5). This 
suggests that adaptation may not be the main driver of our findings, as 
workers who have been in the company for a long time do not experi-
ence automation differently than the newcomers. 

7. Heterogeneity 

We next turn to the tests of Hypotheses H2a-H2d. The results of our 

Table 6 
The moderating effects of tasks for the relationship between robotization and work, meaningfulness, autonomy, competence, and relatedness.   

(1) (2) (3) (4)  

Work meaningfulness Autonomy Competence Relatedness 

Panel A: The moderating effect of individual-level repetitive tasks, IV regressions second stage 
Robotization − 0.383*** − 0.150 − 0.014 − 0.002  

(0.135) (0.118) (0.182) (0.102) 
Repetitive tasks − 0.644*** 0.162 0.241 − 0.609***  

(0.214) (0.232) (0.233) (0.223) 
Robotization×Repetitive tasks − 0.083 − 0.714*** − 0.469** − 0.246**  

(0.150) (0.141) (0.182) (0.117) 
R2 0.059 0.146 0.191 0.047 
1st stage F-stat 89.72 85.44 37.66 118.8 
Number of observations 21,240 21,232 16,533 21,595  

Panel B: The moderating effect of working with computers, IV regressions second stage 
Robotization − 0.428*** − 1.287*** − 0.942*** − 0.388***  

(0.123) (0.144) (0.176) (0.113) 
Working with computers 1.094*** 2.910*** 2.712*** 0.393**  

(0.149) (0.190) (0.192) (0.159) 
Robotization×Working with computers 0.062 1.474*** 1.604*** 0.392***  

(0.120) (0.140) (0.198) (0.110) 
R2 0.056 0.159 0.209 0.046 
1st stage F-stat 109 109.6 39.26 106 
Number of observations 25,998 25,957 16,512 21,593  

Panel C: The moderating effect of social tasks, IV regressions second stage 
Robotization − 0.247** − 0.457*** − 0.083 − 0.189*  

(0.113) (0.113) (0.161) (0.104) 
Working with clients 1.431*** 2.871*** 3.029*** 0.309  

(0.215) (0.261) (0.248) (0.209) 
Robotization×Working with clients − 0.307** 0.205 − 0.251 0.110  

(0.124) (0.134) (0.183) (0.128) 
R2 0.055 0.158 0.207 0.046 
1st stage F-stat 125 119 37.10 118.4 
Number of observations 26,020 25,976 16,527 21,605 

Notes: The table reports results from IV regressions of work meaningfulness, autonomy, competence, and relatedness on robotization, by whether the respondent 
performs repetitive hand or arm movements (Panel A), by whether the respondent works with a computer (Panel B), and by whether the respondent performs social 
tasks (dealing directly with people who are not employees at the respondent’s workplace, such as customers, passengers, pupils, or patients) (Panel C). Robotization is 
measured as the inverse hyperbolic sine transformation of the change in the number of robots per 10,000 workers. All regressions include a constant and country and 
year fixed effects, and the following demographic and job controls: age group, gender, hours of work, education, occupation, company size, the number of years with 
the company, public/private sector, and the inverse hyperbolic sine transformation of changes in ICT capital. All regressions include standard errors clustered at the 
country×industry level. All dependent variables are standardized to have a mean of 50 and standard deviation of 10. By construction, the relatedness index excludes 
individuals who work alone. The instrumental variable is based on the industry adoption of robots in all other countries in the sample (except that particular country). 
The analysis sample is based on 20 European countries and 14 industries. See Table 3 for variable definitions. 

*** p < 0.01. 
** p < 0.05. 
* p < 0.1. 

Source: Authors’ calculations based on IFR, EUKLEMS, and European Working Conditions Surveys (2010, 2015, 2021) 
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heterogeneity analyses based on the type of tasks, skills, and socio- 
demographic characteristics are presented in Tables 6 and 7, 
respectively. 

Tables 6–7 demonstrate that robotization’s effect on work mean-
ingfulness does not differ much based on the respondent’s task content, 
skills, or demographics. This suggests that the negative effect of robot-
ization on work meaningfulness is independent of workers’ tasks, skills, 
age, and gender. These findings could imply that people do not derive 

meaning directly from the content of their tasks in the context of 
robotization, but from the individual goals they pursue by doing these 
tasks that imbue their work with meaning. 

Furthermore, we find that having a routine role drives the negative 
impact of robotization on autonomy, competence, and relatedness 
(Models (2)–(4) in Panel A of Table 6). This may be because robotization 
furnishes fewer opportunities for job crafting and problem-solving, and 
in the presence of routine tasks, leaves even fewer tasks requiring 

Table 7 
The moderating effects of skills for the relationship between robotization and work, meaningfulness, autonomy, competence, and relatedness.   

(1) (2) (3) (4)  

Work meaningfulness Autonomy Competence Relatedness 

Panel A: The moderating effect of skill levels (education), IV regressions second stage 
Robotization − 0.381*** − 0.657*** − 0.364** − 0.234**  

(0.105) (0.102) (0.146) (0.100) 
Tertiary education − 0.184 1.337*** 2.330*** − 0.055  

(0.271) (0.241) (0.291) (0.275) 
Robotization×Tertiary Education − 0.282* 0.475*** − 0.042 0.187  

(0.152) (0.114) (0.240) (0.139) 
R2 0.050 0.135 0.188 0.045 
1st stage F-stat 121.2 120 31.29 121 
Number of observations 25,984 25,940 16,528 21,570  

Panel B: The moderating effect of skill levels (based on ILO classification), IV regressions second stage 
Robotization − 0.430*** − 0.915*** − 0.387* − 0.184  

(0.138) (0.133) (0.197) (0.120) 
High Skilled 1.659*** 4.371*** 5.216*** 1.069***  

(0.374) (0.285) (0.431) (0.309) 
Medium Skilled 1.201*** 3.940*** 1.377*** 0.760*  

(0.342) (0.472) (0.398) (0.397) 
Robotization×High Skilled − 0.129 0.755*** 0.056 0.044  

(0.187) (0.149) (0.293) (0.152) 
Robotization×Medium Skilled − 0.304 0.173 0.019 − 0.135  

(0.195) (0.244) (0.280) (0.208) 
R2 0.041 0.117 0.164 0.042 
1st stage F-stat 74.69 72.87 28.91 70.50 
Number of observations 26,001 25,958 16,498 21,586  

Panel C: The moderating effect of age, IV regressions second stage 
Robotization − 0.507*** − 0.450*** − 0.388*** − 0.138  

(0.091) (0.088) (0.138) (0.089) 
Aged 50 and older 1.383*** 0.573*** − 0.961*** − 0.778***  

(0.184) (0.204) (0.240) (0.181) 
Robotization×Aged 50 and older 0.089 − 0.227* 0.037 − 0.107  

(0.113) (0.122) (0.185) (0.122) 
R2 0.048 0.135 0.186 0.043 
1st stage F-stat 134.3 130 42.04 127.2 
Number of observations 26,001 25,949 16,512 21,593  

Panel D: The moderating effect of gender, IV regressions second stage 
Robotization − 0.395*** − 0.572*** − 0.733*** − 0.102  

(0.123) (0.127) (0.199) (0.125) 
Male − 0.006 0.937*** 0.826*** 0.284  

(0.242) (0.230) (0.256) (0.262) 
Robotization×Male − 0.120 0.084 0.519*** − 0.103  

(0.127) (0.122) (0.189) (0.140) 
R2 0.051 0.136 0.188 0.045 
1st stage F-stat 134.6 122.5 41.02 124.4 
Number of observations 26,055 26,013 16,576 21,627 

Notes: The table reports results from IV regressions of work meaningfulness, autonomy, competence, and relatedness on robotization, by the respondent’s education 
level (Panel A), skill level (Panel B), the respondents’ age (Panel C), and by the respondent’s gender (Panel D). Robotization is measured as the inverse hyperbolic sine 
transformation of the change in the number of robots per 10,000 workers. All regressions include a constant and country and year fixed effects, and the following 
demographic and job controls: age group, gender, hours of work, education, occupation, company size, number of years with the company, private/public sector, and 
the inverse hyperbolic sine transformation of changes in ICT capital. All regressions include standard errors clustered at the country×industry level. All dependent 
variables are standardized to have a mean of 50 and standard deviation of 10. By construction, the relatedness index excludes individuals who work alone. The 
instrumental variable is based on the industry adoption of robots in all other countries in the sample (except that particular country). The analysis sample is based on 20 
European countries and 14 industries. See Table 3 for variable definitions. 

*** p < 0.01. 
** p < 0.05. 
* p < 0.1. 

Source: Authors’ calculations based on IFR, EUKLEMS, and European Working Conditions Surveys (2010, 2015, 2021). 

M. Nikolova et al.                                                                                                                                                                                                                              



Research Policy 53 (2024) 104987

20

judgment and agency in the work process. Furthermore, workers with 
routine tasks may have less time to socialize with their colleagues after 
robots are introduced. This is in line with the insights from the Barrett 
et al. (2012) pharmacy case study, as well as the broader literature 
documenting the negative impacts of technology on workers executing 
routine tasks (e.g., Acemoglu and Autor, 2011). 

Conversely, those working with computers (Panel B of Table 6) — 
which we interpret as being in control of the workflow of technology by 
operating it— can completely offset the negative impact of robotization 
on autonomy, competence, and relatedness (but not work meaningful-
ness). Yet, working with clients (Panel C of Table 6) in robot-intensive 
industries does not offset or alter the negative effects of robotization 
on autonomy or any of the other outcomes we study. 

When exploring skills’ moderating effect on the relationship between 
robotization and work meaningfulness and self-determination, we 
perform two separate regressions—based on the education (primary, 
secondary, and tertiary) and skill level (low-, medium-, and high- 
skilled). Higher education seems to cushion the negative effects of 
robotization on autonomy (Panel A of Table 7). This finding is unsur-
prising: those with higher education can enjoy more autonomy due to 
robots’ introduction in the workplace, as they may outsource some tasks 
to the machines, giving them the freedom to focus on developing new 
ones. Beyond that, robotization negatively and similarly impacts re-
spondents’ work meaningfulness, competence, and relatedness regard-
less of their education level. 

The results based on skill levels (Panel B of Table 7) provide similar 
insights – high-skilled workers see somewhat smaller negative conse-
quences of robotization when it comes to autonomy, but workers’ skills 
do not attenuate the effect of robots on work meaningfulness, compe-
tence, and relatedness. 

Finally, Panels C and D of Table 7 detail the results of our hetero-
geneity analysis based on age group and gender, respectively. Age does 
not significantly affect the relationship between robots and work 
meaningfulness and self-determination. More specifically, robotization 
increases the competence perception of men, likely because robotization 
rises the productivity of men (Aksoy et al., 2021). Men may perceive 
their competencies more highly than women because they have more 
exposure or access to robots, or because they have more confidence or 
self-efficacy in using them. Alternatively, women may perceive their 
competencies less strongly than men because they face more barriers or 
challenges in using robots or because they have more negative or fearful 
attitudes towards them. Understanding these gender differences may 
help to design more inclusive and equitable policies and practices for 
robotization. These patterns should be explored in future research. 

Gender, however, does not moderate robots’ impact on work 
meaningfulness, autonomy, and relatedness. Furthermore, the finding 
that robotization equally erodes the work meaningfulness and self- 
determination of workers of all ages is interesting, suggesting that em-
ployers need to pay attention to workers of all ages and help them adapt 
to new technologies. 

8. Potential mechanisms and alternative explanations 

We acknowledge that our ability to definitively pinpoint the mech-
anisms behind our findings is limited, not least because our dataset 
comprises pooled cross-sections rather than a panel of individual 
workers. Nevertheless, we explore several aspects of the data, which 
provide more detail and help explore the channels. 

One possibility is that our results merely reflect job loss and 
restructuring more generally rather than automation per se. We unfor-
tunately lack information on workers’ job spells and previous unem-
ployment experiences. Nevertheless, we have data on workers’ job 
security fears, elicited using the survey item, “I might lose my job in the 
next 6 months.” This allows us to understand whether what we are 
capturing is fear of the labor-saving aspects of robotization or whether 
we are measuring the actual job quality consequences of automation. We 

recoded the original responses, which ranged from strongly agree to 
strongly disagree on a 5-point scale into 1 = “Agree” and 0 = “Neutral 
and disagree.” The results, reported in Table A6, suggest that individuals 
experiencing job insecurity are more likely to view their jobs as being 
less meaningful and bringing less autonomy, and relatedness. Never-
theless, robotization does not seem to be amplifying these effects. 
Therefore, it is unlikely that our results are due to job insecurity and fear 
of job loss. 

Nevertheless, it may still be possible that our results are driven by 
structural changes affecting different occupations and industries. In 
Table A4, we demonstrated that the results survive the inclusion of 
offshorability control and country and year fixed effects. However, it is 
possible that other structural changes simultaneously coincide with 
robot adoption. To check whether this is the case, we conduct analyses 
adding occupation×year interactions and also education×year, which 
capture shocks that affect whole occupations in particular years, such as, 
for example, the COVID-19 pandemic, which had differential impacts on 
workers in different occupations and skills levels. Furthermore, a study 
by Dixon et al. (2021) finds that robotization leads to a decline in the 
employment of managers and supervisors employed in a firm, because 
robots reduce the quality variance, leading to less need for managerial 
control. If such trends are indeed occupation- or education-level- 
specific, we could capture them, at least in part, through the use of 
occupation-by-year or education-by-year fixed effects. The results, re-
ported in Table A7, show that such trends do not seem to influence our 
results. 

Furthermore, we explore whether the effects we document differ 
across the survey waves, which could shed light on issues related to the 
temporal distribution of the impacts (Table A8). Importantly, the results 
seem to be largely consistent across the different survey waves, except 
autonomy. Specifically, workers in the 2021 EWCS survey seem to have 
experienced positive and not negative effects of automation as related to 
autonomy, likely because they have adapted to the previous automation 
shocks and have learned to benefit from the technology. Alternatively, 
this finding may be driven by the fact that the 2021 EWCS survey over- 
sampled highly educated individuals who benefited from more auton-
omy during the COVID-19 pandemic (Table A9). Whether future tech-
nological developments will change these trends or yield similar results 
and how they will interact with other developments related to the world 
of work is still an open question that future research should address. 

Overall, the findings presented so far suggest that the effects we 
document do not simply reflect structural changes in the economy and 
fear of imminent job loss, but rather the consequences of technological 
change related to robotization. Taken together with the evidence in 
Section 6, our findings imply that workers performing routine tasks, who 
are also most affected by industrial robots, are the losers of this process. 
In contrast, workers who can benefit from the new technologies and 
have the right skills and occupational background may cushion the 
negative effects of technology and benefit from it. 

9. Discussion and conclusion 

This paper studies the implications of robotization for workers’ work 
meaningfulness, autonomy, competence, and relatedness. Our analysis 
relies on worker-level data from the 2010, 2015, and 2021 European 
Working Conditions Surveys and data on robotization for 14 industries 
in 20 countries and OLS and 2SLS estimations. We discover that robot-
ization negatively affects work meaningfulness and autonomy. The re-
sults related to competence and relatedness are also negative but less 
robust. The effect sizes we document imply that doubling robotization 
reduces work meaningfulness by 0.9 % and autonomy by 1 %. 

To provide context for our findings, we compared the robotization 
levels of the food and beverages industry (the top five industries in terms 
of robot adoption) and the automotive industry (the leading industry in 
robot adoption). If the food and beverages industry were to match the 
level of robot adoption seen in the automotive industry, representing a 
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7.5-fold increase in robotization, our estimates would imply a decrease 
of 6.8 % in the meaningfulness of work and a 7.5 % decrease in au-
tonomy, which is economically important. 

Future robotization and technology adoption patterns are uncertain. 
Some industries, such as agriculture or textiles, have relatively low 
levels of industrial robot penetration that may increase in the future (see 
Table A1 and Fig. 1). Large increases in the stock of robots per worker 
are not uncommon across the industries we study, as illustrated in 
Table A1 and Fig. 1. Industries with low levels of robotization might see 
large increases in the future because robots are resource and energy- 
efficient and becoming increasingly enhanced with AI capabilities 
(IFR, 2023). This is in line with the large increases in robotization seen 
in the past—a fourfold increase in industrial robots in the US and 
Western Europe between 1993 and 2007—and what experts predict for 
the future – a twofold to a fourfold in the next decade (Acemoglu and 
Restrepo, 2020). 

While past automation waves have affected individuals performing 
routine tasks, future technologies – such as AI – will affect high-skilled 
workers (Brynjolfsson et al., 2018; Webb, 2020). While all occupations 
have some tasks that can be replaced by machine learning, there are few 
(if any) occupations in which all tasks are replaceable by machine 
learning (Brynjolfsson et al., 2018). This suggests that the nature of 
many people’s jobs will change in the near future, which has implica-
tions for job quality and perceived well-being at work. 

Whether our results hold for future automation waves and techno-
logical advances remains to be seen. Yet, they provide a useful bench-
mark against which we could conceptualize the consequences of these 
currently emerging and future technologies. If technologies are adopted 
in a democratic and deliberative way, together with all stakeholders 
including workers, their consequences for future job quality need not be 
bleak or deterministic. Firms, supported by representative institutions, 
such as works councils, trade unions, and work committees, can help 
deliberate strategies for modifying and creating job designs and tasks for 
workers. Such job designs can ensure that humans and machines coop-
erate rather than compete for tasks and that the machines help improve 
workers’ well-being. 

Against this backdrop, it is important to move beyond the explora-
tions of wage and employment consequences of technology and study 
the implications for workers’ job characteristics and well-being. An 
emerging body of literature has focused on these understudied aspects, 
producing mixed results. These emerging studies suggest that adopting 
industrial robots can hurt workers’ job satisfaction and mental health by 
inducing greater fear of future machine replacement and promoting job 
insecurity (e.g., Schwabe and Castellacci, 2020; Abeliansky and Beul-
mann, 2021). The fear and anxiety of future job losses associated with 
the introduction of smart machines can be particularly pronounced for 
low-skilled workers who are more likely to perform repetitive tasks. 

Our paper provides novel and complementary evidence that roboti-
zation erodes workers’ well-being regarding work meaningfulness and 
self-determination related to autonomy and relatedness. Studying the 
causes and consequences of automation for work meaningfulness and 
self-determination is instrumental in designing policies to enhance well- 
being at work. Understanding how automation shapes meaningful work 
perceptions is key to ensuring worker productivity and health and 
minimizing turnover amidst the ongoing processes of globalization and 
automation that can fundamentally change the nature of work. 

We acknowledge several limitations to our study that future data 
collection efforts and extensions can help address. Our paper only fo-
cuses on European countries and the subset of industries common in the 
IFR, EUKLEMS, and EWCS. In this sense, it is unclear whether our 
findings can be extrapolated to developing countries or countries 
outside our sample, limiting our geographic generalizability. Moreover, 
our study faces temporal limitations as our analysis stops in 2021. 
Furthermore, we lack data on service robots. Our information on in-
dustrial robots is likewise imperfect, and we lack details on the char-
acteristics of the robots, including their quality. We also do not have 

matching industry- or occupation-level information on Artificial Intel-
ligence, the more contemporary form of automation. Despite these 
challenges, the findings of our paper provide important insights that can 
be used as the basis for public policy and job design or understanding 
future technological innovations. 

In this sense, our results open up several fruitful avenues for future 
research. For example, combining employer and employee-level data 
can help shed light on how firm-level technology adoption and man-
agement practices influence workers’ work meaningfulness and self- 
determination outcomes. Our data only provide information on robot 
exposure at the industry level, but we do not know whether workers in 
the survey work with robots. Such information can be indispensable to 
better comprehend the underlying mechanisms behind our findings and 
provide analyses for particular industries and occupations for which our 
data are underpowered. 

In addition, understanding the technology adoption process and 
whether or not it is being done in consultation with workers can help 
shed light on the mechanisms through which workers adapt to new 
technologies in the workplace. “Democratizing” technology adoption 
and involving workers in the design and implementation of the process 
could enhance workers’ sense of agency and well-being (Spencer, 2023). 
Therefore, understanding the role of employee representation struc-
tures, such as works councils, trade unions, or other representative 
committees (Belloc et al., 2022), in technology adoption could be crucial 
to understanding how robotization can be implemented to satisfy 
workers’ key psychological needs. 

Finally, labor market institutions, working arrangements, and the 
institutional environment significantly differ across countries. While we 
have accounted for these differences using country-fixed effects, an 
interesting avenue for future research would be to unpack how the new 
technologies affect workers’ work meaningfulness and self- 
determination in light of employment protection, technology regula-
tions, and regimes, or institutional characteristics, such as the varieties 
of capitalism (Hall and Soskice, 2001), which have implications for the 
organization of labor and inequality. 
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