La generazione aumentata dal recupero delle informazioni (Retrieval-Augmented Generation, RAG) si evolve con l’introduzione del Chain-of-Retrieval Augmented Generation (CoRAG), che combina il potere del recupero iterativo con modelli di ragionamento Chain-of-Thought (CoT). Questo approccio consente di affrontare domande complesse suddividendo il processo in passaggi successivi, recuperando informazioni rilevanti e ragionando su di esse prima di generare una risposta finale.
Cos’è il CoRAG?
Il CoRAG migliora il tradizionale RAG integrando un ragionamento passo-passo, emulando il modo in cui un essere umano affronta domande a più livelli (multi-hop). Questo approccio si rivela cruciale in contesti dove una semplice pipeline “query-risposta” non è sufficiente, come nei task di domande complesse o nei problemi che richiedono più passaggi logici per essere risolti.