L’intelligenza artificiale generativa (GenAI) è un campo affascinante caratterizzato da una vasta e variegata offerta di soluzioni fornite da una molteplicità di attori. Le imprese che si avventurano nell’implementazione della GenAI devono navigare attraverso un complesso ecosistema di fornitori, che comprende produttori di modelli di base, sviluppatori di piattaforme AI, specialisti nella gestione dei dati, fornitori di strumenti per la personalizzazione dei modelli e molti altri.

Ciò che sorprende è che, nonostante il dominio delle grandi aziende di cloud computing nel panorama IT degli ultimi dieci anni, il loro ruolo centrale nel settore della GenAI non è stato così marcato come inizialmente previsto. Almeno finora. Ma ci sono segnali che la situazione potrebbe cambiare. Google ha recentemente tenuto un impressionante evento Cloud Next in cui l’azienda ha presentato un’ampia gamma di funzionalità basate su GenAI.

Siamo ancora in una fase embrionale per quanto riguarda le implementazioni di GenAI, e molte organizzazioni stanno appena cominciando a delineare la propria strategia e il metodo di attuazione. È diventato evidente, tuttavia, che molte aziende stanno riconoscendo l’importanza di avere software e servizi GenAI integrati con le loro fonti di dati primarie.

Considerando l’abbondanza di dati ospitati nel cloud AWS, molte di queste organizzazioni vedranno con favore le nuove funzionalità migliorate offerte da AWS, poiché possono agevolare la creazione e l’ottimizzazione dei modelli GenAI, specialmente con tecnologie come RAG.

Per le aziende che dipendono pesantemente dai servizi di archiviazione dati di AWS per l’addestramento e l’affinamento dei propri modelli GenAI, l’introduzione di queste nuove funzionalità Bedrock potrebbe essere un incentivo significativo per rilanciare i loro progetti applicativi GenAI.

È probabile che assistiamo anche alla crescita delle implementazioni di piattaforme multi-GenAI. Come le imprese hanno imparato che l’adozione di più fornitori di cloud era vantaggiosa dal punto di vista economico, logistico e tecnico, è possibile che si adotti un approccio analogo per sfruttare le diverse piattaforme GenAI per soddisfare le esigenze di diverse tipologie di applicazioni. Sebbene la competizione sia ancora in corso, è evidente che tutti i principali fornitori di cloud computing stanno cercando di affermarsi come player rilevanti anche in questo settore.

La divisione AWS di Amazon sta svelando una serie di nuove funzionalità e miglioramenti per il suo servizio completamente gestito Bedrock GenAI.

Amazon Bedrock è un servizio completamente gestito che offre una scelta di modelli di fondazione (FM) ad alte prestazioni delle principali aziende di IA, come AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI e Amazon, tramite un’unica API, insieme ad un’ampia gamma di funzionalità necessarie per creare applicazioni di IA generativa, utilizzando l’IA in modo sicuro, riservato e responsabile

Nello specifico, Amazon sta aggiungendo la possibilità di importare modelli di fondazione personalizzati nel servizio e quindi consentire alle aziende di sfruttare le capacità di Bedrock attraverso tali modelli personalizzati.

Le aziende che hanno addestrato un modello open source come Llama o Mistral con i propri dati potenzialmente con lo strumento di sviluppo del modello SageMaker di Amazon possono ora integrare quel modello personalizzato insieme ai modelli standardizzati esistenti all’interno di Bedrock.

Come risultato possono utilizzare un’unica API per creare applicazioni che attingono ai loro modelli personalizzati e alle opzioni dei modelli Bedrock esistenti, tra cui le ultime novità di AI21 Labs, Anthropic, Cohere, Meta e Stability AI, nonché i modelli Titan di Amazon.

Amazon ha anche introdotto la versione 2 del suo modello Titan Text Embeddings, che è stato specificamente ottimizzato per le applicazioni RAG.

Uno degli altri vantaggi dell’importazione di modelli personalizzati in Bedrock è la capacità di sfruttare le funzioni RAG integrate del servizio. Ciò consente alle aziende di sfruttare questa nuova tecnologia sempre più popolare per continuare a perfezionare i propri modelli personalizzati con nuovi dati.

La società ha inoltre annunciato la disponibilità generale del suo modello Titan Image Generator.

Poiché è serverless, Bedrock ha funzionalità integrate per scalare senza problemi le prestazioni dei modelli anche tra le istanze AWS, consentendo alle aziende di gestire più facilmente le proprie richieste in tempo reale in base alla situazione.

Le organizzazioni che desiderano creare agenti basati sull’intelligenza artificiale in grado di eseguire attività in più fasi, Bedrock offre anche strumenti che consentono agli sviluppatori di crearli e alle aziende di attingere ai loro modelli personalizzati mentre lo fanno.

Gli agenti sono attualmente uno degli argomenti di discussione più caldi in GenAI, quindi questo tipo di funzionalità è destinato a interessare quelle organizzazioni che vogliono rimanere all’avanguardia. Oltre a queste funzionalità esistenti per Bedrock, Amazon ne ha annunciate altre due, entrambe estensibili ai modelli Bedrock esistenti e anche ai modelli importati personalizzati.

Il Guardrails per Amazon Bedrock aggiunge un ulteriore set di funzionalità di filtro per impedire la creazione e il rilascio di contenuti inappropriati e dannosi, nonché di informazioni personali e/o sensibili.

Praticamente tutti i modelli incorporano già un certo grado di filtraggio dei contenuti, ma i nuovi Guardrail forniscono un ulteriore livello di prevenzione personalizzabile per aiutare le aziende a proteggersi ulteriormente da questo tipo di problemi e garantire che i contenuti generati siano conformi alle linee guida del cliente.

Inoltre, lo strumento di valutazione dei modelli di Amazon all’interno di Bedrock è ora generalmente disponibile. Questo strumento aiuta le organizzazioni a trovare il miglior modello di base per la particolare attività che stanno cercando di realizzare o per l’applicazione che stanno cercando di scrivere.

Il valutatore confronta caratteristiche standard come l’accuratezza e la robustezza delle risposte di diversi modelli. Consente inoltre la personalizzazione di diversi criteri chiave.

Le aziende possono, ad esempio, caricare i propri dati o una serie di suggerimenti personalizzati sul valutatore e quindi generare un report che confronti il ​​comportamento dei diversi modelli in base alle loro esigenze personalizzate.

Amazon offre anche un meccanismo per consentire agli esseri umani di valutare diversi output del modello per misurazioni soggettive come la voce del marchio, lo stile, ecc. Questa valutazione del modello è una capacità importante perché mentre molte aziende potrebbero inizialmente essere attratte da una piattaforma a modello aperto come Bedrock grazie alla gamma delle diverse scelte che offre, quelle stesse scelte possono rapidamente diventare confuse e travolgenti.